Spectral clustering of combinatorial fullerene isomers based on their facet graph structure

Artur Bille ${ }^{1}$, Viktor Buchstaber ${ }^{2}$ and Evgeny Spodarev ${ }^{1}$
1 : Institute of Stochastics, Ulm University, Germany,
2 : Steklov Mathematical Institute Moscow, Russia.

Object of Research

We call a convex polyhedron F_{n} in \mathbb{R}^{3} with n vertices a fullerene if
\bullet it is simple,

- it is compact,
- it has twelve pentagonal facets and $n / 2-10$ hexagonal facets.

By C_{n} we mean the set of all equivalence classes w.r.t. combinatorial equivalency of fullerenes with n vertices. These classes are called (combinatorial) isomers.

Basic properties:

- At least one fullerene exists for every even $n \geq 20$, except for $n=22$.
- The number of isomers grows like $\mathcal{O}\left(n^{9}\right)$.
- Every fullerene F_{n} can be mapped on a planar graph G_{n} s.t. vertex connectivity is preserved.

- Since F_{n} is simple, the dual graph \boldsymbol{T}_{n} of G_{n} is (combinatorially) unique.

Problem Setting

Consider the dual graph T_{n} of a planar graph associated with a fullerene F_{n}, and its subgraphs T_{n}^{5} and T_{n}^{6} induced by all vertices of T_{n} of degree 5 and 6 , respectively.

Aim: Classify fullerene isomers using the spectra of adjacency matrices of $T_{n}, T_{n}^{5}, T_{n}^{6}$, i.e., create a graph invariant which reflects the similarity of shapes between two distinct fullerenes.
Idea: Eigenvalues of adjacency matrices contain information about the arrangement of pentagons and hexagons on a fullerene's surface, and, therefore, information about the shape of a fullerene.
We use Newton polynomials to classify fullerenes.
Definition
For an adjacency matrix $A \in \mathbb{R}^{m \times m}$ and an integer $k \in \mathbb{N}_{0}$, we call

$$
N(A, k):=\operatorname{tr}\left(A^{k}\right)=\sum_{j=1}^{m} \lambda_{j}^{k}
$$

the Newton polynomial of \boldsymbol{A} of degree \boldsymbol{k}, where $\lambda_{1}, \ldots, \lambda_{m}$ are the (real) eigenvalues of A.
Newton polynomials can be interpreted as the number of closed paths.

Lemma

Let $k \leq m$ be an integer and A be the adjacency matrix of a graph G with m vertices. Then the Newton polynomials can be calculated recursively as
$N(A, k)=-k \sum_{|H|=k}(-1)^{e(H)+c(H)} 2^{c(H)}-\sum_{j=2}^{k-2} N(A, k-j) \sum_{H:|H|=j}(-1)^{e(H)+c(H)} 2^{c(H)}$,
where the inner sum runs over all subgraphs H of G with j nodes and connected components being either edges or cycles, $e(H)$ being the numbers of edges among these components and $c(H)$ being the number of cycles.

Numerical and Theoretical Results

Number of non-unique spectra of graphs T_{n}, T_{n}^{5} and T_{n}^{6} of C_{n}-isomers:

$$
\begin{array}{|c|c|ccccccccccccccccccccccc|c|c|c|}
\hline n & 20 & 24 & 26 & 28 & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 & 52 & 54 & 56 & 58 & 60 \\
\hline T_{n} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 3 & 0 & 0 & 2 \\
T_{n}^{5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 3 & 15 & 16 & 43 & 63 & 95 & 111 & 147 & 146 & 177 \\
T_{n}^{6} & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

This table can be extended to any $n>60$ with positive integers in its first and second row, and zeroes in its third row. These numerical results yield to the following

- For all feasible n the graph T_{n}^{6} is uniquely determined by its spectrum.

- For all feasible $n \geq 60$ at least two C_{n}-isomers exist having the same spectrum w.r.t. T_{n}.
- For all feasible $n \geq 54$ two C_{n}-isomers are isomorphic iff they are cospectral w.r.t. T_{n}^{6}.
- For any feasible n at least one of the spectra $\sigma\left(T_{n}\right), \sigma\left(T_{n}^{5}\right), \sigma\left(T_{n}^{6}\right)$ is unique for all C_{n}-isomers.

Theorem

Let Γ be a set of graphs with m vertices and with distinct absolute spectra such that $\lambda_{\max (G)}>1$ for all $G \in \Gamma$. Then all graphs $G \in \Gamma$ can be uniquely characterized by at most two Newton polynomials of even degrees k_{1}^{*}, k_{2}^{*} with $m \geq k_{1}^{*} \geq k_{2}^{*}$.

This theorem applied on fullerene graphs yield

Corollary

Assuming the above Conjecture to be true, all C_{n}-isomers can be uniquely characterized by at most two Newton polynomials $N\left(A_{G}, k_{1}^{*}\right)$ and $N\left(A_{G}, k_{2}^{*}\right), k_{1}^{*} \geq k_{2}^{*}$ even, w.r.t. at least one of the graphs $G \in\left\{T_{n}, T_{n}^{5}, T_{n}^{6}\right\}$.

Number of clusters w.r.t. Newton polynomial $N\left(A_{60}^{6}, k\right)$ for even $2 \leq k \leq 100$:

> | k | 2 | 4 | 6 | 8 | 10 | 12 | \ldots | 100 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# Clusters | 18 | 218 | 1233 | 1784 | 1807 | 1812 | \ldots | 1812 |
| \# Clusters with one element | 5 | 47 | 845 | 1757 | 1802 | 1812 | \ldots | 1812 |

Denote by $k_{\text {single }}^{*}$ and $k_{\text {pair }}^{*}$ the minimal degree k of Newton polynomials which is needed for a complete clusterization using a single and two Newton polynomials, respectively.

Outlook

- Prove the Conjecture.

Further Results

- Analyze the spectra of other matrices associated with a graph
- Analyze the behavior of the spectra for infinitely large fullerenes.

References

[1] Artur Bille, Viktor Buchstaber, and Evgeny Spodarev. Spectral clustering of combinatorial fullerene isomers based on their facet graph structure. Journal of Mathematical Chemistry, 59 (2021), 264-288.

