General measure extensions of projection bodies With Applications to Zhang's Inequality

Dylan Langharst

June 23, 2022

Based on joint work with Michael Roysdon \& Artem Zvavitch תלאביב UNIVERSITY

Introduction: Convex bodies \& Volume.
$K, L \subset \mathbb{R}^{n}$: convex bodies. $0 \in \operatorname{int}(K)$.
$K=-K \rightarrow K$ is symmetric.

Introduction: Convex bodies \& Volume.

$K, L \subset \mathbb{R}^{n}$: convex bodies. $0 \in \operatorname{int}(K)$.
$K=-K \rightarrow K$ is symmetric.
The Minkowski sum of K and L is the set defined given by $K+L=\{x+y: x \in K, y \in L\}$.

Introduction: Convex bodies \& Volume.

$K, L \subset \mathbb{R}^{n}$: convex bodies. $0 \in \operatorname{int}(K)$.
$K=-K \rightarrow K$ is symmetric.
The Minkowski sum of K and L is the set defined given by $K+L=\{x+y: x \in K, y \in L\}$.

1. The radial function given by

$$
\rho_{K}(x)=\max \{t>0: t x \in K\}
$$

Introduction: Convex bodies \& Volume.

$K, L \subset \mathbb{R}^{n}$: convex bodies. $0 \in \operatorname{int}(K)$.
$K=-K \rightarrow K$ is symmetric.
The Minkowski sum of K and L is the set defined given by $K+L=\{x+y: x \in K, y \in L\}$.

1. The radial function given by

$$
\rho_{K}(x)=\max \{t>0: t x \in K\}
$$

2. The Minkowski functional given by

$$
\|x\|_{K}=\frac{1}{\rho_{K}(x)}=\min \{t>0: x \in t K\} .
$$

Thus, $K=\left\{x:\|x\|_{K} \leq 1\right\}$.

Introduction: Convex bodies \& Volume.

$K, L \subset \mathbb{R}^{n}$: convex bodies. $0 \in \operatorname{int}(K)$.
$K=-K \rightarrow K$ is symmetric.
The Minkowski sum of K and L is the set defined given by $K+L=\{x+y: x \in K, y \in L\}$.

1. The radial function given by

$$
\rho_{K}(x)=\max \{t>0: t x \in K\}
$$

2. The Minkowski functional given by

$$
\|x\|_{K}=\frac{1}{\rho_{K}(x)}=\min \{t>0: x \in t K\} .
$$

Thus, $K=\left\{x:\|x\|_{K} \leq 1\right\}$.
3. The support function given by

$$
h_{K}(x)=\max _{y \in K}\langle x, y\rangle .
$$

For $f \in L^{1}(K): \int_{K} f(x) d x=\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{K}(\theta)} f(r \theta) r^{n-1} d r d \theta$.

For $f \in L^{1}(K): \int_{K} f(x) d x=\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{K}(\theta)} f(r \theta) r^{n-1} d r d \theta$.

$$
\operatorname{Vol}_{n}(K)=\frac{1}{n} \int_{\mathbb{S}^{n}-1} \rho_{K}(\theta)^{n} d \theta
$$

For $f \in L^{1}(K): \int_{K} f(x) d x=\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{K}(\theta)} f(r \theta) r^{n-1} d r d \theta$.

$$
\operatorname{Vol}_{n}(K)=\frac{1}{n} \int_{\mathbb{S}^{n}-1} \rho_{K}(\theta)^{n} d \theta
$$

The Gauss
map $n_{K}(y): \partial K \rightarrow \mathbb{S}^{n-1}$ sends $y \in \partial K$
to its outer unit normal.

For $f \in L^{1}(K): \int_{K} f(x) d x=\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{K}(\theta)} f(r \theta) r^{n-1} d r d \theta$.

$$
\operatorname{Vol}_{n}(K)=\frac{1}{n} \int_{\mathbb{S}^{n-1}} \rho_{K}(\theta)^{n} d \theta
$$

The Gauss
map $n_{K}(y): \partial K \rightarrow \mathbb{S}^{n-1}$ sends $y \in \partial K$
to its outer unit normal.
The surface area measure of $K:$ for $E \subset \mathbb{S}^{n-1}$
Borel, $S_{K}(E)=\int_{n_{K}^{-1}(E)} d y$.

Cauchy's Integral Formula

If $P_{\theta \perp} K$ denotes the orthogonal projection of K onto the hyperplane through the origin orthogonal to $\theta \in \mathbb{S}^{n-1}$, then Cauchy's integral formula states
$\operatorname{Vol}_{n-1}\left(P_{\theta^{\perp}} K\right)=\frac{1}{2} \int_{\mathbb{S}^{n}-1}|\langle\theta, u\rangle| d S_{K}(u)$.

Cauchy's Integral Formula

If $P_{\theta \perp} K$ denotes the orthogonal projection of K onto the hyperplane through the origin orthogonal to $\theta \in \mathbb{S}^{n-1}$, then Cauchy's integral formula states
$\operatorname{Vol}_{n-1}\left(P_{\theta^{\perp}} K\right)=\frac{1}{2} \int_{\mathbb{S}^{n-1}}|\langle\theta, u\rangle| d S_{K}(u)$.
The above integral defines a norm (in θ). The projection body of K, denoted ΠK, is the symmetric convex body whose support function is given
 by $h_{\Pi K}(\theta)=\mathrm{Vol}_{n-1}\left(P_{\theta^{\perp}} K\right)$.

Affine Invariant Quantity

The polar body of K is the unit ball of $h_{K}(x)\left(h_{K}(x)=\|x\|_{K^{\circ}}\right)$

$$
K^{\circ}=\left\{x: h_{K}(x) \leq 1\right\} .
$$

Affine Invariant Quantity

The polar body of K is the unit ball of $h_{K}(x)\left(h_{K}(x)=\|x\|_{K^{\circ}}\right)$

$$
K^{\circ}=\left\{x: h_{K}(x) \leq 1\right\} .
$$

Using the notation $(\Pi K)^{\circ}=\Pi^{\circ} K$, and $\kappa_{n}=\operatorname{Vol}_{n}\left(B_{2}^{n}\right)$, one has

$$
\frac{1}{n^{n}}\binom{2 n}{n} \leq \operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \leq\left(\frac{\kappa_{n}}{\kappa_{n-1}}\right)^{n}
$$

Affine Invariant Quantity

The polar body of K is the unit ball of $h_{K}(x)\left(h_{K}(x)=\|x\|_{K^{\circ}}\right)$

$$
K^{\circ}=\left\{x: h_{K}(x) \leq 1\right\}
$$

Using the notation $(\Pi K)^{\circ}=\Pi^{\circ} K$, and $\kappa_{n}=\operatorname{Vol}_{n}\left(B_{2}^{n}\right)$, one has

$$
\frac{1}{n^{n}}\binom{2 n}{n} \leq \operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \underset{\operatorname{Petty}(71)}{\leq}\left(\frac{\kappa_{n}}{\kappa_{n-1}}\right)^{n}
$$

Equality occurs in Petty's inequality if, and only if, K is an ellipsoid.

Affine Invariant Quantity

The polar body of K is the unit ball of $h_{K}(x)\left(h_{K}(x)=\|x\|_{K^{\circ}}\right)$

$$
K^{\circ}=\left\{x: h_{K}(x) \leq 1\right\} .
$$

Using the notation $(\Pi K)^{\circ}=\Pi^{\circ} K$, and $\kappa_{n}=\operatorname{Vol}_{n}\left(B_{2}^{n}\right)$, one has

$$
\frac{1}{n^{n}}\binom{2 n}{n} \underset{\text { Zhang }(' 91)}{\leq} \operatorname{Vol}_{n}(K)^{n-1} \operatorname{Vol}_{n}\left(\Pi^{\circ} K\right) \underset{\operatorname{Petty}\left({ }^{\prime} 71\right)}{\leq}\left(\frac{\kappa_{n}}{\kappa_{n-1}}\right)^{n}
$$

Equality occurs in Petty's inequality if, and only if, K is an ellipsoid.
Equality holds in Zhang's if, and only if, K is a simplex (convex hull of $n+1$ affinely independent points).

Covariogram

The covariogram of a convex body K is given by

$$
g_{K}(x)=\operatorname{Vol}_{n}(K \cap(K+x)) .
$$

The support of $g_{K}(x)$ is the difference body of K, given by

$$
D K=\{x: K \cap(K+x) \neq \emptyset\}=K+(-K)
$$

The function $g_{K}^{1 / n}$ (and thus $\left.\log \left(g_{K}\right)\right)$ is concave on $D K$.

Covariogram

The covariogram of a convex body K is given by

$$
g_{K}(x)=\operatorname{Vol}_{n}(K \cap(K+x)) .
$$

The support of $g_{K}(x)$ is the difference body of K, given by

$$
D K=\{x: K \cap(K+x) \neq \emptyset\}=K+(-K),
$$

The function $g_{K}^{1 / n}$ (and thus $\left.\log \left(g_{K}\right)\right)$ is concave on $D K$. The radial derivative of the covariogram
 of K is called its brightness. Matheron:

$$
\left.\frac{\mathrm{d} g_{K}(r \theta)}{\mathrm{d} r}\right|_{r=0}=-h_{\Pi K}(\theta)=-\rho_{\Pi^{\circ} K}^{-1}(\theta)
$$

Rogers-Shephard Inequality

$$
2^{n} \leq \operatorname{Vol}_{n}(K)^{-1} \operatorname{Vol}_{n}(D K) \leq\binom{ 2 n}{n}
$$

The I.h.s. follows from the Brunn-Minkowski inequality, which asserts that the function $K \rightarrow \operatorname{Vol}_{n}(K)^{1 / n}$ is concave on the class of convex bodies.

Rogers-Shephard Inequality

$$
2^{n} \underset{B M}{\leq} \operatorname{Vol}_{n}(K)^{-1} \operatorname{Vol}_{n}(D K) \leq\binom{ 2 n}{n}
$$

The I.h.s. follows from the Brunn-Minkowski inequality, which asserts that the function $K \rightarrow \operatorname{Vol}_{n}(K)^{1 / n}$ is concave on the class of convex bodies.

Equality in the I.h.s. if, and only if, K is symmetric.

Rogers-Shephard Inequality

$$
2^{n} \underset{B M}{\leq} \operatorname{Vol}_{n}(K)^{-1} \operatorname{Vol}_{n}(D K) \underset{\left.R S S^{\prime} 57\right)}{\leq}\binom{2 n}{n}
$$

The I.h.s. follows from the Brunn-Minkowski inequality, which asserts that the function $K \rightarrow \operatorname{Vol}_{n}(K)^{1 / n}$ is concave on the class of convex bodies.

Equality in the l.h.s. if, and only if, K is symmetric.
There is equality in the r.h.s. if, and only if, K is a simplex.

Facts of the Covariogram

For $\theta \in \mathbb{S}^{n-1}, r \in\left[0, \rho_{D K}(\theta)\right]$

$$
0 \leq\left[1-\frac{r}{\rho_{D K}(\theta)}\right] \leq\left(\frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)}\right)^{1 / n} \leq\left[1-\frac{r}{n \operatorname{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta)}\right]
$$

Facts of the Covariogram

For $\theta \in \mathbb{S}^{n-1}, r \in\left[0, \rho_{D K}(\theta)\right]$

$$
0 \leq\left[1-\frac{r}{\rho_{D K}(\theta)}\right] \leq\left(\frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)}\right)^{1 / n} \leq\left[1-\frac{r}{n \operatorname{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta)}\right]
$$

$\rho_{D K}(\theta) \leq n \operatorname{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta) \Longleftrightarrow$ $D K \subseteq n \mathrm{Vol}_{n}(K) \Pi^{\circ} K$.

Facts of the Covariogram

For $\theta \in \mathbb{S}^{n-1}, r \in\left[0, \rho_{D K}(\theta)\right]$

$$
0 \leq\left[1-\frac{r}{\rho_{D K}(\theta)}\right] \leq\left(\frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)}\right)^{1 / n} \leq\left[1-\frac{r}{n \operatorname{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta)}\right]
$$

$\rho_{D K}(\theta) \leq n \mathrm{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta)$
$D K \subseteq n \mathrm{Vol}_{n}(K) \Pi^{\circ} K$. Equality
occurs if, and only if $g_{K}^{1 / n}$ is affine. This implies equality in the Brunn-Minkowski equality, implying $K \cap(K+x)$ and K are homothetic for $x \in D K$, which is a characterization of the simplex.

Classical proofs of the inequalities of Zhang and Rogers-Shephard

Use the translation invariance the Lebesgue measure

$$
\begin{aligned}
\operatorname{Vol}_{n}(K) & =\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \operatorname{Vol}_{n}(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(y) d y \\
& =\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)} \frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)} r^{n-1} d r d \theta
\end{aligned}
$$

Classical proofs of the inequalities of Zhang and Rogers-Shephard

Use the translation invariance the Lebesgue measure

$$
\begin{aligned}
\operatorname{Vol}_{n}(K) & =\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \operatorname{Vol}_{n}(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(y) d y \\
& =\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)} \frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)} r^{n-1} d r d \theta
\end{aligned}
$$

For Rogers-Shepard inequality - use supporting line to bound from below:

$$
\geq \int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)}\left[1-\frac{r}{\rho_{D K}(\theta)}\right]^{n} r^{n-1} d r d \theta
$$

Classical proofs of the inequalities of Zhang and Rogers-Shephard

Use the translation invariance the Lebesgue measure

$$
\begin{aligned}
\operatorname{Vol}_{n}(K) & =\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \operatorname{Vol}_{n}(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(y) d y \\
& =\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)} \frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)} r^{n-1} d r d \theta
\end{aligned}
$$

For Rogers-Shepard inequality - use supporting line to bound from below:

$$
\geq \int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)}\left[1-\frac{r}{\rho_{D K}(\theta)}\right]^{n} r^{n-1} d r d \theta
$$

For Zhang's inequality - tangent line to bound from above:

$$
\leq \int_{\mathbb{S}^{n-1}} \int_{0}^{n \operatorname{Vol}_{n}(K) \rho_{\Pi \circ}{ }^{\kappa}(\theta)}\left[1-\frac{r}{n \operatorname{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta)}\right]^{n} r^{n-1} d r d \theta
$$

Classical proofs of the inequalities of Zhang and Rogers-Shephard

Use the translation invariance the Lebesgue measure

$$
\begin{aligned}
\operatorname{Vol}_{n}(K) & =\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \operatorname{Vol}_{n}(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(y) d y \\
& =\int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)} \frac{g_{K}(r \theta)}{\operatorname{Vol}_{n}(K)} r^{n-1} d r d \theta
\end{aligned}
$$

For Rogers-Shepard inequality - use supporting line to bound from below:

$$
\geq \int_{\mathbb{S}^{n-1}} \int_{0}^{\rho_{D K}(\theta)}\left[1-\frac{r}{\rho_{D K}(\theta)}\right]^{n} r^{n-1} d r d \theta
$$

For Zhang's inequality - tangent line to bound from above:

$$
\leq \int_{\mathbb{S}^{n-1}} \int_{0}^{n \operatorname{Vol}_{n}(K) \rho_{\Pi \circ}{ }^{(\theta)}}\left[1-\frac{r}{n \operatorname{Vol}_{n}(K) \rho_{\Pi^{\circ} K}(\theta)}\right]^{n} r^{n-1} d r d \theta
$$

Then, use a variable substitution, the radial function formula for volume and the Beta function $B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t$.

Today:

1. We will be generalizing the inequalities of Rogers-Shephard and Zhang to Borel measures with density.

Today:

1. We will be generalizing the inequalities of Rogers-Shephard and Zhang to Borel measures with density.
2. A Borel measure μ has density if there exists some $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$such that $\frac{d \mu(x)}{d x}=\phi(x)$. Throughout, μ will always denote such a measure on a class of compact Borel sets \mathcal{C} closed under Minkowski summation.

Today:

1. We will be generalizing the inequalities of Rogers-Shephard and Zhang to Borel measures with density.
2. A Borel measure μ has density if there exists some $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$such that $\frac{d \mu(x)}{d x}=\phi(x)$. Throughout, μ will always denote such a measure on a class of compact Borel sets \mathcal{C} closed under Minkowski summation.
3. As an example, we will look at the standard Gaussian measure on \mathbb{R}^{n}, the log-concave measure given by:

$$
d \gamma_{n}(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{2}} d x
$$

Today:

1. We will be generalizing the inequalities of Rogers-Shephard and Zhang to Borel measures with density.
2. A Borel measure μ has density if there exists some $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$such that $\frac{d \mu(x)}{d x}=\phi(x)$. Throughout, μ will always denote such a measure on a class of compact Borel sets \mathcal{C} closed under Minkowski summation.
3. As an example, we will look at the standard Gaussian measure on \mathbb{R}^{n}, the log-concave measure given by:

$$
d \gamma_{n}(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{2}} d x
$$

4. Each generalization comes with a Berwald-type theorem.

Measure Properties

A measure μ is s-concave, $s>0$, on a class \mathcal{C} if every pair $A, B \in \mathcal{C}$ with positive measure and every $t \in[0,1]$

$$
\mu((1-t) A+t B)^{s} \geq(1-t) \mu(A)^{s}+t \mu(B)^{s}
$$

When $s=1$, we merely say the measure is concave.

Measure Properties

A measure μ is s-concave, $s>0$, on a class \mathcal{C} if every pair $A, B \in \mathcal{C}$ with positive measure and every $t \in[0,1]$

$$
\mu((1-t) A+t B)^{s} \geq(1-t) \mu(A)^{s}+t \mu(B)^{s}
$$

When $s=1$, we merely say the measure is concave. The limit as $s \rightarrow 0$, one obtains log-concavity:

$$
\mu((1-t) A+t B) \geq \mu(A)^{1-t} \mu(B)^{t} .
$$

Measure Properties

A measure μ is s-concave, $s>0$, on a class \mathcal{C} if every pair $A, B \in \mathcal{C}$ with positive measure and every $t \in[0,1]$

$$
\mu((1-t) A+t B)^{s} \geq(1-t) \mu(A)^{s}+t \mu(B)^{s}
$$

When $s=1$, we merely say the measure is concave. The limit as $s \rightarrow 0$, one obtains log-concavity:

$$
\mu((1-t) A+t B) \geq \mu(A)^{1-t} \mu(B)^{t} .
$$

A measure μ is F-concave on a class \mathcal{C} if there exists a continuous, invertible function F such that for

$$
\mu((1-t) A+t B) \geq F^{-1}((1-t) F(\mu(A))+t F(\mu(B))) .
$$

First generalization: Translated Averages

We first define the translated-average of K with respect to ν as:

$$
\nu_{\lambda}(K)=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \nu(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(x) d \nu(x) .
$$

First generalization: Translated Averages

We first define the translated-average of K with respect to ν as:

$$
\nu_{\lambda}(K)=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \nu(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(x) d \nu(x)
$$

Notice we immediately obtain a weak Zhang's inequality

$$
\nu_{\lambda}(K)=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(x) d \nu(x) \leq \nu(D K) \leq \nu\left(n \operatorname{Vol}_{n}(K) \Pi^{\circ} K\right)
$$

First generalization: Translated Averages

We first define the translated-average of K with respect to ν as:

$$
\nu_{\lambda}(K)=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{K} \nu(y-K) d y=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(x) d \nu(x) .
$$

Notice we immediately obtain a weak Zhang's inequality

$$
\nu_{\lambda}(K)=\frac{1}{\operatorname{Vol}_{n}(K)} \int_{D K} g_{K}(x) d \nu(x) \leq \nu(D K) \leq \nu\left(n \operatorname{Vol}_{n}(K) \Pi^{\circ} K\right)
$$

If one replaces ν with the Lebesgue measure, we see that we are missing the factor of $\binom{2 n}{n}$. However, this result is asymptotically sharp by picking certain measures, e.g. $\nu=\gamma_{n}$.

Translated Averages: why just one?

The ν-translation of a convex body K averaged with respect to μ is given by

$$
\nu_{\mu}(K)=\frac{1}{\mu(K)} \int_{K} \nu(y-K) d \mu(y)=\frac{1}{\mu(K)} \int_{D K} g_{\mu, K}(x) d \nu(x)
$$

where, if χ_{K} is the characteristic function of K, we have defined the μ-covariogram of K as

Translated Averages: why just one?

The ν-translation of a convex body K averaged with respect to μ is given by

$$
\nu_{\mu}(K)=\frac{1}{\mu(K)} \int_{K} \nu(y-K) d \mu(y)=\frac{1}{\mu(K)} \int_{D K} g_{\mu, K}(x) d \nu(x)
$$

where, if χ_{K} is the characteristic function of K, we have defined the μ-covariogram of K as

$$
g_{\mu, K}(x)=\int_{K} \chi_{K}(y-x) \phi(y) d(y)=\mu(K \cap(K+x))=\left(\chi_{K} \phi \star \chi_{-K}\right)(x) .
$$

Translated Averages: why just one?

The ν-translation of a convex body K averaged with respect to μ is given by

$$
\nu_{\mu}(K)=\frac{1}{\mu(K)} \int_{K} \nu(y-K) d \mu(y)=\frac{1}{\mu(K)} \int_{D K} g_{\mu, K}(x) d \nu(x)
$$

where, if χ_{K} is the characteristic function of K, we have defined the μ-covariogram of K as
$g_{\mu, K}(x)=\int_{K} \chi_{K}(y-x) \phi(y) d(y)=\mu(K \cap(K+x))=\left(\chi_{K} \phi \star \chi_{-K}\right)(x)$.
$g_{\mu, K}$ inherits * any concavity property of μ, e.g. $F \circ \mu$ concave implies $F \circ g_{\mu, K}$ concave.

Two Inequalities of Berwald type (L., Roysdon, Zvavitch)

f be a non-negative, concave function supported on L a convex body, and let h be an increasing, non-negative function. ν a Borel measure with density φ. If φ radially non-increasing, then

$$
\int_{L} h(f(x)) \varphi(x) d x \geq n \int_{0}^{1} h(f(0) t)(1-t)^{n-1} d t .
$$

Two Inequalities of Berwald type (L., Roysdon, Zvavitch)

f be a non-negative, concave function supported on L a convex body, and let h be an increasing, non-negative function. ν a Borel measure with density φ. If φ radially non-increasing, then

$$
\int_{L} h(f(x)) \varphi(x) d x \geq n \int_{0}^{1} h(f(0) t)(1-t)^{n-1} d t
$$

If ϕ is radially non-decreasing and $\max _{x \in L} f(x)=f(0)$, then

$$
\int_{L} h(f(x)) \varphi(x) d x \leq \nu(\widetilde{L}) n \int_{0}^{1} h(f(0) t)(1-t)^{n-1} d t
$$

where \tilde{L} is the star body defined by $\rho_{\tilde{L}}(\theta)=-\left(\left.\frac{\mathrm{d} f(r \theta)}{\mathrm{d} r}\right|_{r=0}\right)^{-1} f(0)$.

Two Inequalities of Berwald type (L., Roysdon, Zvavitch)

f be a non-negative, concave function supported on L a convex body, and let h be an increasing, non-negative function. ν a Borel measure with density φ. If φ radially non-increasing, then

$$
\int_{L} h(f(x)) \varphi(x) d x \geq n \int_{0}^{1} h(f(0) t)(1-t)^{n-1} d t
$$

If ϕ is radially non-decreasing and $\max _{x \in L} f(x)=f(0)$, then

$$
\int_{L} h(f(x)) \varphi(x) d x \leq \nu(\widetilde{L}) n \int_{0}^{1} h(f(0) t)(1-t)^{n-1} d t
$$

where \tilde{L} is the star body defined by $\rho_{\tilde{L}}(\theta)=-\left(\left.\frac{\mathrm{d} f(r \theta)}{\mathrm{d} r}\right|_{r=0}\right)^{-1} f(0)$.
There is equality in either case if, and only if, for every $\theta \in \mathbb{S}^{n-1}, \varphi(r \theta)$ is a constant and $f(r \theta)=\|f\|_{\infty}\left(1-\frac{r}{\rho_{L}(\theta)}\right)$. In this instance, $L=\widetilde{L}$.

Generalization of Rogers-Shephard's: the inequality

 Theorem (L., Roysdon; 2022)Let ν be a Borel measure with radially non-increasing density, and suppose μ is F-concave, $F: \mathbb{R} \rightarrow \mathbb{R}^{+}$an increasing, invertible and differentiable function. Let K be a convex body. Then, one has

$$
\frac{\nu_{\mu}(K) \mu(K)}{n \int_{0}^{1} F^{-1}(F(\mu(K)) t)(1-t)^{n-1} d t} \geq \nu(D K)
$$

Additionally, if F is multiplicative, i.e. $F(a b)=F(a) F(b)$, then this becomes

$$
\min \left\{\nu_{\mu}(K), \nu_{\mu}(-K)\right\}\left(n \int_{0}^{1} F^{-1}(t)(1-t)^{n-1} d t\right)^{-1} \geq \nu(D K)
$$

In particular, if $F(x)=x^{s}, s>0$, one obtains

$$
\min \left\{\nu_{\mu}(K), \nu_{\mu}(-K)\right\}\binom{n+s^{-1}}{n} \geq \nu(D K)
$$

Generalization Rogers-Shephard's: equality conditions

Theorem (L., Roysdon; 2022)
Equality occurs if, and only if, the following are true:

1. If φ is the density of ν, then, for each $\theta \in \mathbb{S}^{n-1}, \varphi(r \theta)$ is independent of r and
2. for each $\theta \in \mathbb{S}^{n-1}, F \circ g_{\mu, K}(r \theta)$ is an affine function in the variable r.

- We have shown the last equality condition implies K is a simplex if $F(x)=x^{s}, s>0$.

Generalization Rogers-Shephard's: equality conditions

Theorem (L., Roysdon; 2022)
Equality occurs if, and only if, the following are true:

1. If φ is the density of ν, then, for each $\theta \in \mathbb{S}^{n-1}, \varphi(r \theta)$ is independent of r and
2. for each $\theta \in \mathbb{S}^{n-1}, F \circ g_{\mu, K}(r \theta)$ is an affine function in the variable r.

- We have shown the last equality condition implies K is a simplex if $F(x)=x^{s}, s>0$.
- Case when $\mu=\nu=\lambda$ was done by Chakerian.

Generalization Rogers-Shephard's: equality conditions

Theorem (L., Roysdon; 2022)

Equality occurs if, and only if, the following are true:

1. If φ is the density of ν, then, for each $\theta \in \mathbb{S}^{n-1}, \varphi(r \theta)$ is independent of r and
2. for each $\theta \in \mathbb{S}^{n-1}, F \circ g_{\mu, K}(r \theta)$ is an affine function in the variable r.

- We have shown the last equality condition implies K is a simplex if $F(x)=x^{s}, s>0$.
- Case when $\mu=\nu=\lambda$ was done by Chakerian.
- Case when $\mu=\lambda$ was done by Alonso-Gutierrez, Hernandez Cifre, Roysdon, Yepes Nicolas and Zvavitch (without equality conditions).

Generalization Rogers-Shephard's: equality conditions

Theorem (L., Roysdon; 2022)

Equality occurs if, and only if, the following are true:

1. If φ is the density of ν, then, for each $\theta \in \mathbb{S}^{n-1}, \varphi(r \theta)$ is independent of r and
2. for each $\theta \in \mathbb{S}^{n-1}, F \circ g_{\mu, K}(r \theta)$ is an affine function in the variable r.

- We have shown the last equality condition implies K is a simplex if $F(x)=x^{s}, s>0$.
- Case when $\mu=\nu=\lambda$ was done by Chakerian.
- Case when $\mu=\lambda$ was done by Alonso-Gutierrez, Hernandez Cifre, Roysdon, Yepes Nicolas and Zvavitch (without equality conditions).
- They gave an example showing that ν having radially non-increasing density is necessary.

Generalizing the Projection Body

Let $f \in L^{1}\left(\mathbb{S}^{n-1}\right)$. For μ Borel measure with density ϕ and a convex body $K, S_{\mu, K}$ is the Borel measure on \mathbb{S}^{n-1} that satisfies

$$
\int_{\partial K} f\left(n_{K}(y)\right) \phi(y) d y=\int_{\mathbb{S}^{n}-1} f(u) d S_{\mu, K}(u)
$$

Generalizing the Projection Body

Let $f \in L^{1}\left(\mathbb{S}^{n-1}\right)$. For μ Borel measure with density ϕ and a convex body $K, S_{\mu, K}$ is the Borel measure on \mathbb{S}^{n-1} that satisfies

$$
\int_{\partial K} f\left(n_{K}(y)\right) \phi(y) d y=\int_{\mathbb{S}^{n}-1} f(u) d S_{\mu, K}(u) .
$$

The projection body of K with respect to μ is the convex body $\Pi_{\mu} K$ whose support function is

$$
h_{\Pi_{\mu} K}(\theta)=\frac{1}{2} \int_{\mathbb{S}^{n}-1}|\langle\theta, u\rangle| d S_{\mu, K}(u) .
$$

Left: A triangle/simplex $K \subset \mathbb{R}^{2}$. Right: $\Pi_{\gamma_{2}}^{\circ} K$.

The derivative

$q: \Omega \rightarrow \mathbb{R}$ is Lipschitz on a bounded domain Ω if, for every $x, y \in \Omega$, one has $|q(x)-q(y)| \leq C|x-y|$ for some $C>0$.
Theorem (μ-brightness (L., Roysdon, Zvavitch; 2022))
Suppose the density of μ is locally Lipschitz. Then, $\left.\frac{\mathrm{d} g_{\mu, K}(r \theta)}{\mathrm{d} r}\right|_{r=0}=-\left(h_{\Pi_{\mu} K}(\theta)-\frac{1}{2} \int_{K}\langle\nabla \phi(y), \theta\rangle d y\right)=-h_{\Pi_{\mu} K-\eta_{\mu, K}}(\theta)$,
where we have defined the shift of K with respect to μ to be the vector $\eta_{\mu, K}=\frac{1}{2} \int_{K} \nabla \phi(y) d y$.

The derivative

$q: \Omega \rightarrow \mathbb{R}$ is Lipschitz on a bounded domain Ω if, for every $x, y \in \Omega$, one has $|q(x)-q(y)| \leq C|x-y|$ for some $C>0$.
Theorem (μ-brightness (L., Roysdon, Zvavitch; 2022))
Suppose the density of μ is locally Lipschitz. Then,

$$
\left.\frac{\mathrm{d} g_{\mu, K}(r \theta)}{\mathrm{d} r}\right|_{r=0}=-\left(h_{\Pi_{\mu} K}(\theta)-\frac{1}{2} \int_{K}\langle\nabla \phi(y), \theta\rangle d y\right)=-h_{\Pi_{\mu} K-\eta_{\mu, K}}(\theta)
$$

where we have defined the shift of K with respect to μ to be the vector $\eta_{\mu, K}=\frac{1}{2} \int_{K} \nabla \phi(y) d y$.
Consider the case where μ is F-concave. Suppose $\eta_{\mu, K}$ is the origin (for example if μ has even density and K is symmetric).

$$
D K \subseteq \frac{F(\mu(K))}{F^{\prime}(\mu(K))} \Pi_{\mu}^{\circ} K .
$$

Theorem (Zhang's inequality for positive-concavity (L., Roysdon, Zvavitch; 2022))

Suppose ν is a Borel measure with radially non-decreasing density and μ is Borel measure with Lipschitz density that is F-concave, F a non-negative, increasing, invertible function. Then, for K convex body
$\nu_{\mu}(K) \leq \frac{n}{\mu(K)} \nu\left(\frac{F(\mu(K))}{F^{\prime}(\mu(K))}\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right) \int_{0}^{1} F^{-1}(F(\mu(K)) t)(1-t)^{n-1} d t$.
Equality occurs if, and only if, the following are true:

1. If φ is the density of ν, then, for each $\theta \in \mathbb{S}^{n-1}, \varphi(r \theta)$ is independent of r,
2. for each $\theta \in \mathbb{S}^{n-1}, F \circ g_{\mu, K}(r \theta)$ is an affine function in the variable r, and
3. K is so that $\eta_{\mu, K}=0$ and

$$
D K=\frac{F(\mu(K))}{F^{\prime}(\mu(K))} \Pi_{\mu}^{\circ} K .
$$

Special Cases

If μ is s-concave:

$$
\binom{n+s^{-1}}{n} \nu_{\mu}(K) \leq \nu\left(s^{-1} \mu(K)\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)
$$

In this instance, the last two equality conditions are equivalent, and imply that K is a simplex whose shift is zero.

Special Cases

If μ is s-concave:

$$
\binom{n+s^{-1}}{n} \nu_{\mu}(K) \leq \nu\left(s^{-1} \mu(K)\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)
$$

In this instance, the last two equality conditions are equivalent, and imply that K is a simplex whose shift is zero.
If $\nu=\lambda$, the Lebesgue measure, then we have

$$
\left(\int_{0}^{1} F^{-1}[F(\mu(K)) t](1-t)^{n-1} d t\right)^{-1} \leq\left(\frac{F(\mu(K))}{F^{\prime}(\mu(K))}\right)^{n} \frac{n \operatorname{Vol}_{n}\left(\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K) \mu(K)}
$$

Special Cases

If μ is s-concave:

$$
\binom{n+s^{-1}}{n} \nu_{\mu}(K) \leq \nu\left(s^{-1} \mu(K)\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)
$$

In this instance, the last two equality conditions are equivalent, and imply that K is a simplex whose shift is zero.
If $\nu=\lambda$, the Lebesgue measure, then we have
$\left(\int_{0}^{1} F^{-1}[F(\mu(K)) t](1-t)^{n-1} d t\right)^{-1} \leq\left(\frac{F(\mu(K))}{F^{\prime}(\mu(K))}\right)^{n} \frac{n \operatorname{Vol}_{n}\left(\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K) \mu(K)}$
$\nu=\lambda$ and μ is $s \in(0,1 / n]$, then

$$
s^{n}\binom{n+s^{-1}}{n} \leq \frac{\mu^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)} .
$$

Gaussian Measure

Theorem (The log-concave theorem (L., Roysdon, Zvavitch)) Let μ have locally Lipschitz density, $\mu(K)>0$. Let $Q:(0, \infty) \rightarrow \mathbb{R}$ be an invertible, increasing function such that $\lim _{r \rightarrow 0+} Q(r) \in[-\infty, \infty)$ and $Q \circ g_{\mu, K}$ is concave. Then, if $\left.Q^{\prime}(\mu(K))\right) \neq 0$:

$$
\operatorname{VoI}_{n}(K) \leq \frac{n \operatorname{Vol}_{n}\left(\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)}{\mu(K)\left(Q^{\prime}(\mu(K))\right)^{n}} \int_{0}^{\infty} Q^{-1}(Q(\mu(K))-t) t^{n-1} d t
$$

Gaussian Measure

Theorem (The log-concave theorem (L., Roysdon, Zvavitch)) Let μ have locally Lipschitz density, $\mu(K)>0$. Let $Q:(0, \infty) \rightarrow \mathbb{R}$ be an invertible, increasing function such that $\lim _{r \rightarrow 0+} Q(r) \in[-\infty, \infty)$ and $Q \circ g_{\mu, K}$ is concave. Then, if $\left.Q^{\prime}(\mu(K))\right) \neq 0$:

$$
\operatorname{VoI}_{n}(K) \leq \frac{n \operatorname{VoI}_{n}\left(\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)}{\mu(K)\left(Q^{\prime}(\mu(K))\right)^{n}} \int_{0}^{\infty} Q^{-1}(Q(\mu(K))-t) t^{n-1} d t
$$

Corollary:

$$
\frac{1}{n!} \leq \frac{\gamma_{n}^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\gamma_{n}} K-\eta_{\gamma_{n}, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)}
$$

Gaussian Measure

Theorem (The log-concave theorem (L., Roysdon, Zvavitch)) Let μ have locally Lipschitz density, $\mu(K)>0$. Let $Q:(0, \infty) \rightarrow \mathbb{R}$ be an invertible, increasing function such that $\lim _{r \rightarrow 0+} Q(r) \in[-\infty, \infty)$ and $Q \circ g_{\mu, K}$ is concave. Then, if $\left.Q^{\prime}(\mu(K))\right) \neq 0$:

$$
\operatorname{VoI}_{n}(K) \leq \frac{n \operatorname{VoI}_{n}\left(\left(\Pi_{\mu} K-\eta_{\mu, K}\right)^{\circ}\right)}{\mu(K)\left(Q^{\prime}(\mu(K))\right)^{n}} \int_{0}^{\infty} Q^{-1}(Q(\mu(K))-t) t^{n-1} d t
$$

Corollary:

$$
\frac{1}{n!} \leq \frac{\gamma_{n}^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\gamma_{n}} K-\eta_{\gamma_{n}, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)}
$$

The Ehrhard inequality states that γ_{n} is Φ^{-1} concave on Borel sets, where $\Phi(x)=\gamma_{1}((-\infty, x))$.

Better Concavities for the Gaussian Measure

$Q(x)=\Phi^{-1}(x)$ satisfies the hypotheses of the log-concave theorem. Set $x=\Phi^{-1}\left(\gamma_{n}(K)\right)$

$$
\frac{1}{n!} \leq \frac{e^{n x^{2} / 2}\left(2 \pi \Phi(x)^{2}\right)^{(n+1) / 2}}{\int_{0}^{\infty} z^{n} e^{-(z-x)^{2} / 2} d z} \leq \frac{\gamma_{n}^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\gamma_{n}} K-\eta_{\gamma_{n}, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)}
$$

Better Concavities for the Gaussian Measure

$Q(x)=\Phi^{-1}(x)$ satisfies the hypotheses of the log-concave theorem. Set $x=\Phi^{-1}\left(\gamma_{n}(K)\right)$

$$
\frac{1}{n!} \leq \frac{e^{n x^{2} / 2}\left(2 \pi \Phi(x)^{2}\right)^{(n+1) / 2}}{\int_{0}^{\infty} z^{n} e^{-(z-x)^{2} / 2} d z} \leq \frac{\gamma_{n}^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\gamma_{n}} K-\eta_{\gamma_{n}, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)}
$$

The Gardner-Zvavitch inequality: for symmetric K, L and $t \in[0,1]$:

$$
\gamma_{n}((1-t) K+t L)^{1 / n} \geq(1-t) \gamma_{n}(K)^{1 / n}+t \gamma_{n}(L)^{1 / n}
$$

Better Concavities for the Gaussian Measure

$Q(x)=\Phi^{-1}(x)$ satisfies the hypotheses of the log-concave theorem. Set $x=\Phi^{-1}\left(\gamma_{n}(K)\right)$

$$
\frac{1}{n!} \leq \frac{e^{n x^{2} / 2}\left(2 \pi \Phi(x)^{2}\right)^{(n+1) / 2}}{\int_{0}^{\infty} z^{n} e^{-(z-x)^{2} / 2} d z} \leq \frac{\gamma_{n}^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\gamma_{n}} K-\eta_{\gamma_{n}, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)}
$$

The Gardner-Zvavitch inequality: for symmetric K, L and $t \in[0,1]$:

$$
\gamma_{n}((1-t) K+t L)^{1 / n} \geq(1-t) \gamma_{n}(K)^{1 / n}+t \gamma_{n}(L)^{1 / n}
$$

- Conjectured by Gardner and Zvavitch in ('10)

Better Concavities for the Gaussian Measure

$Q(x)=\Phi^{-1}(x)$ satisfies the hypotheses of the log-concave theorem. Set $x=\Phi^{-1}\left(\gamma_{n}(K)\right)$

$$
\frac{1}{n!} \leq \frac{e^{n x^{2} / 2}\left(2 \pi \Phi(x)^{2}\right)^{(n+1) / 2}}{\int_{0}^{\infty} z^{n} e^{-(z-x)^{2} / 2} d z} \leq \frac{\gamma_{n}^{n}(K) \operatorname{Vol}_{n}\left(\left(\Pi_{\gamma_{n}} K-\eta_{\gamma_{n}, K}\right)^{\circ}\right)}{\operatorname{Vol}_{n}(K)}
$$

The Gardner-Zvavitch inequality: for symmetric K, L and $t \in[0,1]$:

$$
\gamma_{n}((1-t) K+t L)^{1 / n} \geq(1-t) \gamma_{n}(K)^{1 / n}+t \gamma_{n}(L)^{1 / n}
$$

- Conjectured by Gardner and Zvavitch in ('10)
- Counter examples constructed for non-symmetric bodies by Nayar and Tkocz ('12)
- Resolved in the affirmative for symmetric convex bodies by Eskenazis and Moschidis ('21).

Polarized Covariogram

If K is symmetric, then one sees that $K \cap(K+x)$ is not symmetric, but $(K-x / 2) \cap(K+x / 2)$ is symmetric.

Polarized Covariogram

If K is symmetric, then one sees that $K \cap(K+x)$ is not symmetric, but $(K-x / 2) \cap(K+x / 2)$ is symmetric.
The polarized μ covariogram of symmetric K :

$$
r_{\mu, K}(x)=\mu((K-x / 2) \cap(K+x / 2))
$$

and obtain that the the polarized μ-brightness of a symmetric K is

$$
\left.\frac{\mathrm{d} r_{\mu, K}(r \theta)}{\mathrm{d} r}\right|_{r=0}=-h_{\Pi_{\mu} K}(\theta)
$$

Polarized Covariogram

If K is symmetric, then one sees that $K \cap(K+x)$ is not symmetric, but $(K-x / 2) \cap(K+x / 2)$ is symmetric.
The polarized μ covariogram of symmetric K :

$$
r_{\mu, K}(x)=\mu((K-x / 2) \cap(K+x / 2))
$$

and obtain that the the polarized μ-brightness of a symmetric K is

$$
\left.\frac{\mathrm{d} r_{\mu, K}(r \theta)}{\mathrm{d} r}\right|_{r=0}=-h_{\Pi_{\mu} K}(\theta)
$$

Can obtain the two Zhang-type inequalities shown (with $r_{\mu, K}$ in place of $g_{\mu, K}$).
E.g. the following Polarized Zhang's Inequality for the Gaussian Measure for a radially non-decreasing measure ν :

$$
\binom{2 n}{n} \nu_{\gamma_{n}}(K) \leq \nu\left(n \gamma_{n}(K) \sqcap_{\gamma_{n}}^{\circ} K\right) .
$$

