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Introduction: Convex bodies & Volume.
K , L ⊂ Rn: convex bodies. 0 ∈ int(K ).

K = −K → K is symmetric.

The Minkowski sum of K and L is the set defined given by
K + L = {x + y : x ∈ K , y ∈ L}.

1. The radial function given by

ρK (x) = max
{
t > 0 : tx ∈ K

}
2. The Minkowski functional given by

‖x‖K =
1

ρK (x)
= min

{
t > 0 : x ∈ tK

}
.

Thus, K = {x : ‖x‖K ≤ 1}.
3. The support function given by

hK (x) = max
y∈K
〈x , y〉.
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For f ∈ L1(K ):
∫
K f (x)dx =

∫
Sn−1

∫ ρK (θ)
0 f (rθ)rn−1drdθ.

Voln(K ) =
1

n

∫
Sn−1

ρK (θ)ndθ.

The Gauss
map nK (y) : ∂K → Sn−1

sends y ∈ ∂K
to its outer unit normal.
The surface area measure
of K : for E ⊂ Sn−1

Borel, SK (E ) =
∫
n−1
K (E) dy .
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Cauchy’s Integral Formula

If Pθ⊥K denotes the orthogonal projection of K onto the
hyperplane through the origin orthogonal to θ ∈ Sn−1, then
Cauchy’s integral formula states

Voln−1 (Pθ⊥K ) =
1

2

∫
Sn−1

|〈θ, u〉|dSK (u).

The above integral defines
a norm (in θ). The projection
body of K , denoted ΠK ,
is the symmetric convex body
whose support function is given
by hΠK (θ) = Voln−1 (Pθ⊥K ) .
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Affine Invariant Quantity

The polar body of K is the unit ball of hK (x) (hK (x) = ‖x‖K◦)

K ◦ =
{
x : hK (x) ≤ 1

}
.

Using the notation (ΠK )◦ = Π◦K , and κn = Voln(Bn
2 ), one has

1

nn

(
2n

n

)
≤ Voln(K )n−1Voln(Π◦K ) ≤

(
κn
κn−1

)n

.
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Equality occurs in Petty’s inequality if, and only if, K is an
ellipsoid.
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The polar body of K is the unit ball of hK (x) (hK (x) = ‖x‖K◦)

K ◦ =
{
x : hK (x) ≤ 1

}
.

Using the notation (ΠK )◦ = Π◦K , and κn = Voln(Bn
2 ), one has

1

nn

(
2n

n

)
≤

Zhang(′91)
Voln(K )n−1Voln(Π◦K ) ≤

Petty(′71)

(
κn
κn−1

)n

.

Equality occurs in Petty’s inequality if, and only if, K is an
ellipsoid.

Equality holds in Zhang’s if, and only if, K is a simplex (convex
hull of n + 1 affinely independent points).



Covariogram

The covariogram of a convex body K is given by

gK (x) = Voln (K ∩ (K + x)) .

The support of gK (x) is the difference body of K , given by

DK = {x : K ∩ (K + x) 6= ∅} = K + (−K ),

The function g
1/n
K (and thus log(gK )) is concave on DK .

The radial derivative of the covariogram
of K is called its brightness. Matheron:

dgK (rθ)

dr

∣∣∣∣
r=0

= −hΠK (θ) = −ρ−1
Π◦K (θ)

.
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Rogers-Shephard Inequality

2n ≤ Voln(K )−1Voln(DK ) ≤
(

2n

n

)

The l.h.s. follows from the Brunn-Minkowski inequality, which
asserts that the function K → Voln(K )1/n is concave on the class
of convex bodies.
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Rogers-Shephard Inequality

2n ≤
BM

Voln(K )−1Voln(DK ) ≤
RS(′57)

(
2n

n

)

The l.h.s. follows from the Brunn-Minkowski inequality, which
asserts that the function K → Voln(K )1/n is concave on the class
of convex bodies.

Equality in the l.h.s. if, and only if, K is symmetric.

There is equality in the r.h.s. if, and only if, K is a simplex.



Facts of the Covariogram

For θ ∈ Sn−1, r ∈ [0, ρDK (θ)]

0 ≤
[

1− r

ρDK (θ)

]
≤
(

gK (rθ)

Voln(K )

)1/n

≤
[

1− r

nVoln(K )ρΠ◦K (θ)

]

ρDK (θ) ≤ nVoln(K )ρΠ◦K (θ)⇐⇒
DK ⊆ nVoln(K )Π◦K . Equality

occurs if, and only if g
1/n
K is affine. This

implies equality in the Brunn-Minkowski
equality, implying K ∩ (K + x) and
K are homothetic for x ∈ DK , which
is a characterization of the simplex.
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Classical proofs of the inequalities of Zhang and
Rogers-Shephard

Use the translation invariance the Lebesgue measure

Voln(K ) =
1

Voln(K )

∫
K

Voln(y − K )dy =
1

Voln(K )

∫
DK

gK (y)dy

=

∫
Sn−1

∫ ρDK (θ)

0

gK (rθ)

Voln(K )
rn−1drdθ.

For Rogers-Shepard inequality - use supporting line to bound from
below:

≥
∫
Sn−1

∫ ρDK (θ)

0

[
1− r

ρDK (θ)

]n
rn−1drdθ.

For Zhang’s inequality - tangent line to bound from above:

≤
∫
Sn−1

∫ nVoln(K)ρΠ◦K (θ)

0

[
1− r

nVoln(K )ρΠ◦K (θ)

]n
rn−1drdθ.

Then, use a variable substitution, the radial function formula for
volume and the Beta function B(x , y) =

∫ 1
0 tx−1(1− t)y−1dt.
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Today:

1. We will be generalizing the inequalities of Rogers-Shephard
and Zhang to Borel measures with density.

2. A Borel measure µ has density if there exists some
φ : Rn → R+ such that dµ(x)

dx = φ(x). Throughout, µ will
always denote such a measure on a class of compact Borel
sets C closed under Minkowski summation.

3. As an example, we will look at the standard Gaussian measure
on Rn, the log-concave measure given by:

dγn(x) =
1

(2π)
n
2

e−
|x|2

2 dx .

4. Each generalization comes with a Berwald-type theorem.
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Measure Properties

A measure µ is s-concave, s > 0, on a class C if every pair
A,B ∈ C with positive measure and every t ∈ [0, 1]

µ((1− t)A + tB)s ≥ (1− t)µ(A)s + tµ(B)s

When s = 1, we merely say the measure is concave.

The limit as
s → 0, one obtains log-concavity:

µ((1− t)A + tB) ≥ µ(A)1−tµ(B)t .

A measure µ is F -concave on a class C if there exists a continuous,
invertible function F such that for

µ((1− t)A + tB) ≥ F−1 ((1− t)F (µ(A)) + tF (µ(B))) .
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First generalization: Translated Averages

We first define the translated-average of K with respect to ν as:

νλ(K ) =
1

Voln(K )

∫
K
ν(y − K )dy =

1

Voln(K )

∫
DK

gK (x)dν(x).

Notice we immediately obtain a weak Zhang’s inequality

νλ(K ) =
1

Voln(K )

∫
DK

gK (x)dν(x) ≤ ν(DK ) ≤ ν(nVoln(K )Π◦K ).

If one replaces ν with the Lebesgue measure, we see that we are
missing the factor of

(2n
n

)
. However, this result is asymptotically

sharp by picking certain measures, e.g. ν = γn.
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Translated Averages: why just one?

The ν-translation of a convex body K averaged with respect to µ
is given by

νµ(K ) =
1

µ(K )

∫
K
ν(y − K )dµ(y) =

1

µ(K )

∫
DK

gµ,K (x)dν(x) ,

where, if χK is the characteristic function of K , we have defined
the µ-covariogram of K as

gµ,K (x) =

∫
K
χK (y−x)φ(y)d(y) = µ(K∩(K+x)) = (χKφ?χ−K )(x).

gµ,K inherits? any concavity property of µ, e.g. F ◦ µ concave
implies F ◦ gµ,K concave.
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Two Inequalities of Berwald type (L., Roysdon, Zvavitch)

f be a non-negative, concave function supported on L a convex
body, and let h be an increasing, non-negative function. ν a Borel
measure with density ϕ. If ϕ radially non-increasing, then∫

L
h(f (x))ϕ(x)dx ≥ n

∫ 1

0
h(f (0)t)(1− t)n−1dt.

If φ is radially non-decreasing and maxx∈L f (x) = f (0), then∫
L
h(f (x))ϕ(x)dx ≤ ν(L̃)n

∫ 1

0
h(f (0)t)(1− t)n−1dt,

where L̃ is the star body defined by ρL̃(θ) = −
(
df (rθ)

dr

∣∣∣∣
r=0

)−1

f (0).

There is equality in either case if, and only if, for every θ ∈ Sn−1, ϕ(rθ) is

a constant and f (rθ) = ‖f ‖∞
(

1− r
ρL(θ)

)
. In this instance, L = L̃.
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Generalization of Rogers-Shephard’s: the inequality
Theorem (L., Roysdon; 2022)
Let ν be a Borel measure with radially non-increasing density, and
suppose µ is F -concave, F : R→ R+ an increasing, invertible and
differentiable function. Let K be a convex body. Then, one has

νµ(K )µ(K )

n
∫ 1

0
F−1(F (µ(K ))t)(1− t)n−1dt

≥ ν(DK ).

Additionally, if F is multiplicative, i.e. F (ab) = F (a)F (b), then this
becomes

min{νµ(K ), νµ(−K )}
(
n

∫ 1

0

F−1(t)(1− t)n−1dt

)−1

≥ ν(DK ).

In particular, if F (x) = x s , s > 0, one obtains

min{νµ(K ), νµ(−K )}
(
n + s−1

n

)
≥ ν(DK ).



Generalization Rogers-Shephard’s: equality conditions

Theorem (L., Roysdon; 2022)

Equality occurs if, and only if, the following are true:
1. If ϕ is the density of ν, then, for each θ ∈ Sn−1, ϕ(rθ) is

independent of r and
2. for each θ ∈ Sn−1, F ◦ gµ,K (rθ) is an affine function in the

variable r .

• We have shown the last equality condition implies K is a simplex
if F (x) = x s , s > 0.

• Case when µ = ν = λ was done by Chakerian.

• Case when µ = λ was done by Alonso-Gutierrez, Hernandez
Cifre, Roysdon, Yepes Nicolas and Zvavitch (without equality
conditions).

• They gave an example showing that ν having radially
non-increasing density is necessary.
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Generalizing the Projection Body

Let f ∈ L1(Sn−1). For µ Borel measure with density φ and a
convex body K , Sµ,K is the Borel measure on Sn−1 that satisfies∫

∂K
f (nK (y))φ(y)dy =

∫
Sn−1

f (u)dSµ,K (u).

The projection body of K with respect to µ is the convex body
ΠµK whose support function is

hΠµK (θ) =
1

2

∫
Sn−1

|〈θ, u〉| dSµ,K (u).
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Left: A triangle/simplex K ⊂ R2. Right: Π◦γ2
K .



The derivative
q : Ω→ R is Lipschitz on a bounded domain Ω if, for every
x , y ∈ Ω, one has |q(x)− q(y)| ≤ C |x − y | for some C > 0.

Theorem (µ-brightness (L., Roysdon, Zvavitch; 2022))

Suppose the density of µ is locally Lipschitz. Then,

dgµ,K (rθ)

dr

∣∣∣∣
r=0

= −
(
hΠµK (θ)− 1

2

∫
K
〈∇φ(y), θ〉dy

)
= −hΠµK−ηµ,K (θ),

where we have defined the shift of K with respect to µ to be the
vector ηµ,K = 1

2

∫
K ∇φ(y)dy .

Consider the case where µ is F -concave. Suppose ηµ,K is the origin
(for example if µ has even density and K is symmetric).

DK ⊆ F (µ(K ))

F ′(µ(K ))
Π◦µK .
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Theorem (Zhang’s inequality for positive-concavity (L.,
Roysdon, Zvavitch; 2022))
Suppose ν is a Borel measure with radially non-decreasing density and µ
is Borel measure with Lipschitz density that is F -concave, F a
non-negative, increasing, invertible function. Then, for K convex body

νµ(K ) ≤ n

µ(K )
ν

(
F (µ(K ))

F ′(µ(K ))
(ΠµK − ηµ,K )◦

)∫ 1

0

F−1 (F (µ(K ))t) (1− t)n−1dt.

Equality occurs if, and only if, the following are true:

1. If ϕ is the density of ν, then, for each θ ∈ Sn−1, ϕ(rθ) is
independent of r ,

2. for each θ ∈ Sn−1, F ◦ gµ,K (rθ) is an affine function in the variable
r , and

3. K is so that ηµ,K = 0 and

DK =
F (µ(K ))

F ′(µ(K ))
Π◦µK .



Special Cases

If µ is s-concave:(
n + s−1

n

)
νµ(K ) ≤ ν

(
s−1µ(K ) (ΠµK − ηµ,K )◦

)
.

In this instance, the last two equality conditions are equivalent,
and imply that K is a simplex whose shift is zero.

If ν = λ, the Lebesgue measure, then we have(∫ 1

0

F−1[F (µ(K ))t](1− t)n−1dt

)−1

≤
(
F (µ(K ))

F ′(µ(K ))

)n nVoln
(
(ΠµK − ηµ,K )◦

)
Voln(K )µ(K )

ν = λ and µ is s ∈ (0, 1/n], then

sn
(
n + s−1

n

)
≤
µn(K )Voln ((ΠµK − ηµ,K )◦)

Voln(K )
.
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Gaussian Measure
Theorem (The log-concave theorem (L., Roysdon, Zvavitch))
Let µ have locally Lipschitz density, µ(K ) > 0. Let Q : (0,∞)→ R be
an invertible, increasing function such that limr→0+ Q(r) ∈ [−∞,∞) and
Q ◦ gµ,K is concave. Then, if Q ′(µ(K ))) 6= 0 :

Voln(K ) ≤
nVoln

(
(ΠµK − ηµ,K )◦

)
µ(K )(Q ′(µ(K )))n

∫ ∞
0

Q−1 (Q(µ(K ))− t) tn−1dt.

Corollary:

1

n!
≤
γnn(K )Voln ((ΠγnK − ηγn,K )◦)

Voln(K )
.

The Ehrhard inequality states that γn is Φ−1 concave on Borel
sets, where Φ(x) = γ1((−∞, x)).
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Better Concavities for the Gaussian Measure

Q(x) = Φ−1(x) satisfies the hypotheses of the log-concave
theorem. Set x = Φ−1(γn(K ))

1

n!
≤ enx

2/2(2πΦ(x)2)(n+1)/2∫∞
0 zne−(z−x)2/2dz

≤
γnn(K )Voln ((ΠγnK − ηγn,K )◦)

Voln(K )
.

The Gardner-Zvavitch inequality: for symmetric K , L and t ∈ [0, 1]:

γn ((1− t)K + tL)1/n ≥ (1− t)γn(K )1/n + tγn(L)1/n.

• Conjectured by Gardner and Zvavitch in (’10)

• Counter examples constructed for non-symmetric bodies by
Nayar and Tkocz (’12)

• Resolved in the affirmative for symmetric convex bodies by
Eskenazis and Moschidis (’21).
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Polarized Covariogram
If K is symmetric, then one sees that K ∩ (K + x) is not
symmetric, but (K − x/2) ∩ (K + x/2) is symmetric.

The polarized µ covariogram of symmetric K :

rµ,K (x) = µ((K − x/2) ∩ (K + x/2))

and obtain that the the polarized µ-brightness of a symmetric K is

drµ,K (rθ)

dr

∣∣∣∣
r=0

= −hΠµK (θ).

Can obtain the two Zhang-type inequalities shown (with rµ,K in
place of gµ,K ).

E.g. the following Polarized Zhang’s Inequality for the Gaussian
Measure for a radially non-decreasing measure ν :(

2n

n

)
νγn(K ) ≤ ν

(
nγn(K )Π◦γnK

)
.
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