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The Minkowski sum of K and L is the set defined given by
K+L={x+y:xeK,yel}
1. The radial function given by

pK(x):max{t>O:tXEK}

2. The Minkowski functional given by
1
x|l = —— = min{t >0:x€ tK}.
Pk (X)

Thus, K = {x : ||x||x < 1}.
3. The support function given by

hk(x) = max(x, y).
veK
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For f € LY(K): [, f(x)dx = [y s J¥O) £(r0)r"—2drd0.
1 n
Voln(K) = / pic(6)"do.
Sn— 1

The Gauss

map nk(y): OK — S"1
sends y € 0K

to its outer unit normal.
The surface area measure
of K : for E C Sn—1
Borel, Sk(E f 1




Cauchy’s Integral Formula

If PyL K denotes the orthogonal projection of K onto the
hyperplane through the origin orthogonal to # € S"™1, then
states
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If PyL K denotes the orthogonal projection of K onto the
hyperplane through the origin orthogonal to # € S"™1, then
states

vO|n_1(P(,LK):;/ (6, )| S (u).
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The above integral defines
a norm (in ). The projection

body of K, denoted K,

is the symmetric convex body
. Py K
whose support function is given

by hnK(e) = V0|n,1 (PQJ_ K) .
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Affine Invariant Quantity
The polar body of K is the unit ball of hx(x) (hk(x) = ||x]|ke)

K°® = {x D hi(x) < 1}.

Using the notation (MK)° = MN°K, and x, = Vol,(Bj), one has

1(2”> < Volo(K)"™ Vol (M°K) < (””)n.

n"\ n /) Zhang(91) Petty('71) \ Kn—1

Equality occurs in Petty's inequality if, and only if, K is an
ellipsoid.

Equality holds in Zhang's if, and only if, K is a simplex (convex
hull of n+ 1 affinely independent points).



Covariogram

The covariogram of a convex body K is given by
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The covariogram of a convex body K is given by
gk(x) = Vol, (KN (K + x)).
The support of gx(x) is the difference body of K, given by

DK ={x: KN(K+x) # 0} = K+ (—K),
The function g,l/"(and thus log(gk)) is concave on DK.
The radial derivative of the covariogram
of K is called its brightness. Matheron:

d 0
9elr)] b (0) = —pr0)
dr |2
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Rogers-Shephard Inequality

2" < Vol,(K) 'Vol,(DK) <
BM RS(’57)

(

2n
n

)

The L.h.s. follows from the Brunn-Minkowski inequality, which
asserts that the function K — Vol,(K)'/" is concave on the class

of convex bodies.

Equality in the L.h.s. if, and only if, K is symmetric.

There is equality in the r.h.s. if, and only if, K is a simplex.
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For 6 € S"71, r € [0, ppk (0)]

o< [1- i) < (Vo
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|
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Facts of the Covariogram

For 0 € S™1, r € [0, ppk ()]

o<t il < (5552?)>1/n < | @

pok(0) < nVol,(K)prex(8) <

DK C nVol,(K)N°K. Equality

occurs if, and only if g;1</” is affine. This
implies equality in the Brunn-Minkowski
equality, implying K N (K + x) and

K are homothetic for x € DK, which

is a characterization of the simplex.
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Classical proofs of the inequalities of Zhang and
Rogers-Shephard

Use the translation invariance the Lebesgue measure

Vol,(K) = v0|1( / Vol (y - K)dy—Voll(K) /D ey

pok (0 9)
gK r = 1
/Sn . / Voln(k)" -

For Rogers-Shepard inequality - use supporting line to bound from

below:
pok (0) r n
2/ / [1— ] r"~Ldrde.
sn-1 Jo pok (6)

For Zhang's inequality - tangent line to bound from above:

nVola(K)pnok (0) ) r n Lo
< — r"~*drdf.
- /S"—l/o [ ”VOln(K)PI'IOK(H)]

Then, use a variable substitution, the radial function formula for
volume and the Beta function B(x,y) = fol (1 — t)YLdt.
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. Each generalization comes with a Berwald-type theorem.
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Measure Properties

A measure p is s-concave, s > 0, on a class C if every pair
A, B € C with positive measure and every t € [0, 1]

i((1 — YA+ tB) > (1 — )u(A)* + tu(B)®

When s = 1, we merely say the measure is concave. The limit as
s — 0, one obtains log-concavity:

u((1 = t)A+tB) = p(A)*u(B)".

A measure p is F-concave on a class C if there exists a continuous,
invertible function F such that for

w(1 = t)A+tB) > F71 (1 — t)F(u(A)) + tF(u(B))).
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First generalization: Translated Averages

We first define the translated-average of K with respect to v as:

1 1

(K = o [ vty =Koy = TS | ex(xdvt).

Notice we immediately obtain a weak Zhang's inequality

1

vA(K) = Voln(K) /DK grk(x)dr(x) < v(DK) < v(nVol,(K)N°K).

If one replaces v with the Lebesgue measure, we see that we are
missing the factor of (2n"). However, this result is asymptotically
sharp by picking certain measures, e.g. v = 7,.
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Translated Averages: why just one?

The v-translation of a convex body K averaged with respect to u
is given by

1
(K) = s [y =Kt = s [ gdavl)

where, if xk is the characteristic function of K, we have defined
the p-covariogram of K as

guk(x) = /K X (y—x)o(Y)d(y) = u(KN(K+x)) = (xidrx—)(x):

8u,K inherits* any concavity property of 1, e.g. F oy concave
implies F o g, x concave.
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Two Inequalities of Berwald type (L., Roysdon, Zvavitch)

f be a non-negative, concave function supported on L a convex
body, and let h be an increasing, non-negative function. v a Borel
measure with density ¢. If ¢ radially non-increasing, then

1
/h(f(x))go(x)dx > n/ h(f(0)t)(1 — t)"dt.
L 0

If ¢ is and max,¢ f(x) = £(0), then

/ h(f (x))e(x)dx < v(L)n / 1 h(F(0)t)(1 — t)" dt,
L 0
where L is the star body defined by pz(é)) —— (W

P r—O) - (0).

There is equality in either case if, and only if, for every 6 € S"~1, (r0) is

a constant and f(rf) = ||f]| (1 - m) In this instance, L = L.




Generalization of Rogers-Shephard'’s: the inequality
Theorem (L., Roysdon; 2022)

Let v be a Borel measure with radially non-increasing density, and
suppose y is F-concave, F : R — R™ an increasing, invertible and
differentiable function. Let K be a convex body. Then, one has

VM(K)M(K)
n [y F-Y(F(u(K))t)(1 — t)"Ldt

> v(DK).

Additionally, if F is multiplicative, i.e. F(ab) = F(a)F(b), then this
becomes

-1

min{v,(K), v.(—K)} (n /01 F1(t)(1 - t)"—ldt> > v(DK).

In particular, if F(x) = x°,s > 0, one obtains



Generalization Rogers-Shephard’s: equality conditions

Theorem (L., Roysdon; 2022)

Equality occurs if, and only if, the following are true:
1. If ¢ is the density of v, then, for each 6 € S"~, (rf) is
independent of r and
2. for each 0 € S"71, F o g, (r0) is an affine function in the
variable r.

e We have shown the last equality condition implies K is a simplex
if F(x)=x%s>0.
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Generalization Rogers-Shephard’s: equality conditions

Theorem (L., Roysdon; 2022)

Equality occurs if, and only if, the following are true:
1. If ¢ is the density of v, then, for each 6 € S"~, (rf) is
independent of r and
2. for each 0 € S"71, F o g, (r0) is an affine function in the
variable r.

e We have shown the last equality condition implies K is a simplex
if F(x)=x%s>0.
e Case when i = v = X was done by Chakerian.

e Case when p = X\ was done by Alonso-Gutierrez, Hernandez
Cifre, Roysdon, Yepes Nicolas and Zvavitch (without equality
conditions).

e They gave an example showing that v having radially
non-increasing density is necessary.
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Let f € LY(S™1). For ;1 Borel measure with density ¢ and a
convex body K, S, i is the Borel measure on S"—1 that satisfies
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Generalizing the Projection Body

Let f € LY(S™1). For ;1 Borel measure with density ¢ and a
convex body K, S, i is the Borel measure on S"—1 that satisfies

| ooy = [ #()ds,u(o)
oK sn—1

The projection body of K with respect to u is the convex body
I,,K whose support function is

i,k (6) = ;/S (6, u)| dS,.(u)




Left: A triangle/simplex K C R?. Right: ns,K.



The derivative
qg:Q — R is Lipschitz on a bounded domain € if, for every
x,y € Q, one has |g(x) — q(y)| < C|x — y| for some C > 0.
Theorem (y-brightness (L., Roysdon, Zvavitch; 2022))
Suppose the density of i is locally Lipschitz. Then,

dgu.k(ro)
dr

= (k) - 3 [ (T60).00 ) = =, 1(0),

r=0

where we have defined the shift of K with respect to i to be the
_1
vector 1,k = 5 [, Vo(y)dy.



The derivative
qg:Q — R is Lipschitz on a bounded domain € if, for every
x,y € Q, one has |g(x) — q(y)| < C|x — y| for some C > 0.
Theorem (y-brightness (L., Roysdon, Zvavitch; 2022))
Suppose the density of i is locally Lipschitz. Then,

dgu.k(ro)

dr = (h”uK(e) - ;/K<V¢(Y)79>d)/> = —hn,k—n,«(9),

r=0

where we have defined the shift of K with respect to i to be the
_1

vector 1,k = 5 [, Vo(y)dy.

Consider the case where 11 is F-concave. Suppose 7, k is the origin
(for example if 1 has even density and K is symmetric).

F(1(K) o
DK S iy K




Theorem (Zhang's inequality for positive-concavity (L.,
Roysdon, Zvavitch; 2022))
Suppose v is a Borel measure with and p

is Borel measure with Lipschitz density that is F-concave, F a
non-negative, increasing, invertible function. Then, for K convex body

(k) = s (D Ok =) [P RN @ - e

Equality occurs if, and only if, the following are true:

1. If ¢ is the density of v, then, for each 0 € S™1, p(rf) is
independent of r,

2. for each § € S"™', F o g, x(r0) is an affine function in the variable
r, and

3. K isso thatn, x =0 and

(k)
PR = By
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Special Cases

If 1 is s-concave:

n+s!
("5 k) <0 (5 K K = 1))

In this instance, the last two equality conditions are equivalent,
and imply that K is a simplex whose shift is zero.

If v = A, the Lebesgue measure, then we have

-1

L . F(u(K)) \" Vol (M, K — 1,)°)
(/ PRI - ) 1dt> < (F’(u(K))> Vol o(K)(K)
v=MAand piss € (0,1/n], then

N <” + 51> < u"(K)Vol, (M, K — 77M7K)o)
n - Vol,(K) '




Gaussian Measure

Theorem (The log-concave theorem (L., Roysdon, Zvavitch))

Let p have locally Lipschitz density, n(K) > 0. Let Q : (0,00) — R be
an invertible, increasing function such that lim, 0. Q(r) € [—00,00) and
Q o g,k is concave. Then, if Q' (u(K))) # 0
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Gaussian Measure

Theorem (The log-concave theorem (L., Roysdon, Zvavitch))

Let p have locally Lipschitz density, n(K) > 0. Let Q : (0,00) — R be
an invertible, increasing function such that lim, 0. Q(r) € [—00,00) and
Q o g,k is concave. Then, if Q' (u(K))) # 0

Vol,(K) < "VZ/(” (g(l‘l i U“K / Q! (K)) —t)t" dt.

Corollary:

1 _ an(K)Vola (M, K = 15,,k)°)
n! — Vol,(K)

The Ehrhard inequality states that ~y, is @~ concave on Borel
sets, where ®(x) = v1((—o0, x)).



Better Concavities for the Gaussian Measure

Q(x) = ®71(x) satisfies the hypotheses of the log-concave
theorem. Set x = ®~1(7,(K))
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theorem. Set x = ®~1(7,(K))

1 e PRre()?)" 2 R(K)Vola (Mo, K = 1,,.k)°)
nl — fooo zne—(z=x)?/2¢4, — Voln(K) .

The Gardner-Zvavitch inequality: for symmetric K, L and t € [0, 1]:
Yo (1= O)K + tL)" > (1 = )ya(K)M" + ty,(L)M".

e Conjectured by Gardner and Zvavitch in ('10)

e Counter examples constructed for non-symmetric bodies by
Nayar and Tkocz ('12)

e Resolved in the affirmative for symmetric convex bodies by
Eskenazis and Moschidis ('21).



Polarized Covariogram
If K is symmetric, then one sees that K N (K + x) is not
symmetric, but (K — x/2) N (K + x/2) is symmetric.



Polarized Covariogram
If K is symmetric, then one sees that K N (K + x) is not

symmetric, but (K — x/2) N (K + x/2) is symmetric.
The polarized p covariogram of symmetric K:
ruk(x) = p((K — x/2) N (K + x/2))
and obtain that the the polarized p-brightness of a symmetric K is

dr, k(r0) B
e T —hn, k(0).



Polarized Covariogram
If K is symmetric, then one sees that K N (K + x) is not
symmetric, but (K — x/2) N (K + x/2) is symmetric.
The polarized p covariogram of symmetric K:
fuk (X) = p((K = x/2) N (K + x/2))
and obtain that the the polarized p-brightness of a symmetric K is
dr, k(r0)
— =—h 0).
dr =0 H”K( )

Can obtain the two Zhang-type inequalities shown (with r, k in
place of g, k).

E.g. the following Polarized Zhang's Inequality for the Gaussian
Measure for a radially non-decreasing measure v :

(3o k) < v (mati0 ).



