Directional Curvatures of Convex Bodies in \mathbb{R}^{n}

Fátima F. Pereira
CIMA \& Department of Mathematics, University of Évora, Portugal
geOmetry, anaLysis \& convExity
Sevilla 2022

Motivation

How can we compute the curvature of a nonempty closed bounded convex set at a point on its boundary?

Introduction

In [GP] (V. Goncharov \& F. Pereira, Neighbourhood Retractions of Nonconvex Sets in a Hilbert Space via Sublinear Functionals, J. Convex Anal., 2011) we proposed some concepts related to the (local) geometric structure of a closed bounded convex set F with zero in its interior, in a Hilbert space H.
The main numerical characteristic resulting from these considerations was the curvature of F.
Before showing our definition, we need some notations.

Introduction

Let us consider a Hilbert space H with the inner product $\langle\cdot, \cdot\rangle$ and the norm $\|\cdot\|$. For a closed bounded convex set $F \subset H$ with zero in its interior, we denote:

- F° the polar set of F

$$
F^{o}=\left\{\xi^{*} \in H:\left\langle\xi, \xi^{*}\right\rangle \leq 1 \quad \forall \xi \in F\right\} ;
$$

- $\mathfrak{J}_{F}(\cdot)$ the duality mapping $\mathfrak{J}_{F}: \partial F^{\circ} \rightarrow \partial F$

$$
\mathfrak{J}_{F}\left(\xi^{*}\right)=\left\{\xi \in \partial F:\left\langle\xi, \xi^{*}\right\rangle=1\right\},
$$

where ∂F means the boundary of F;

- $\rho_{F}(\cdot)$ the Minkowski functional of F

$$
\rho_{F}(\xi)=\inf \{\lambda>0: \xi \in \lambda F\} .
$$

Introduction

Definitions ([GP])

Let $\xi \in \partial F$ and $\xi^{*} \in \partial F^{\circ}$ such that $\left\langle\xi, \xi^{*}\right\rangle=1$.

- The modulus of strict convexity of F at ξ w.r.t ξ^{*} is given by:

$$
\widehat{\mathfrak{C}}_{F}\left(r, \xi, \xi^{*}\right)=\inf \left\{\left\langle\xi-\eta, \xi^{*}\right\rangle: \eta \in \partial F,\|\xi-\eta\| \geq r\right\}, \quad r>0 .
$$

- The set F is said to be strictly convex at ξ w.r.t. ξ^{*} if $\widehat{\mathfrak{C}}_{F}\left(r, \xi, \xi^{*}\right)>0$ for all $r>0$.
- The number

$$
\hat{\varkappa}_{F}\left(\xi, \xi^{*}\right)=\liminf _{\substack{\left(r, \eta, \eta^{*}\right) \rightarrow\left(0+\xi, \xi^{*}\right) \\ \eta \in \mathfrak{J}_{F}\left(\eta^{*}\right), \eta^{*} \in \partial F^{\circ}}} \frac{2 \widehat{\mathfrak{C}}_{F}\left(r, \eta, \eta^{*}\right)}{\left\|\xi^{*}\right\| r^{2}}
$$

is said to be the curvature of F at ξ w.r.t. ξ^{*}.

Introduction

So the curvature of F shows how rotund F is near a fixed boundary point ξ looking along a normal direction ξ^{*} (notice that $\xi^{*} \in \mathfrak{J}_{F}^{-1}(\xi)=\mathbf{N}_{F}(\xi) \cap \partial F^{\circ}$).

Introduction

Some comments:

- Our definition of curvature is very useful from a theoretical point of view. It allowed us to obtain several results (see [GP] and [GP2]). For example:

Introduction

Some comments:

- Our definition of curvature is very useful from a theoretical point of view. It allowed us to obtain several results (see [GP] and [GP2]). For example:
- the curvature radius $\widehat{\mathfrak{R}}_{F}\left(\xi, \xi^{*}\right):=\frac{1}{\hat{\mathcal{A}}_{F}\left(\xi, \xi^{*}\right)}$ as the radius of the largest interior sphere that (locally) touches F only at ξ;

Introduction

Some comments:

- Our definition of curvature is very useful from a theoretical point of view. It allowed us to obtain several results (see [GP] and [GP2]). For example:
- the curvature radius $\widehat{\mathfrak{R}}_{F}\left(\xi, \xi^{*}\right):=\frac{1}{\hat{\varkappa}_{F}\left(\xi, \xi^{*}\right)}$ as the radius of the largest interior sphere that (locally) touches F only at ξ;
- a local asymmetric version of the Lindenstrauss duality theorem (which quantitatively establishes the (local) duality between strict convexity of F and smoothness of F°);

Introduction

Some comments:

- Our definition of curvature is very useful from a theoretical point of view. It allowed us to obtain several results (see [GP] and [GP2]). For example:
- the curvature radius $\widehat{\mathfrak{R}}_{F}\left(\xi, \xi^{*}\right):=\frac{1}{\hat{\varkappa}_{\mathcal{F}}\left(\xi, \xi^{*}\right)}$ as the radius of the largest interior sphere that (locally) touches F only at ξ;
- a local asymmetric version of the Lindenstrauss duality theorem (which quantitatively establishes the (local) duality between strict convexity of F and smoothness of F°);
- a characterization of the curvature of F in terms of the second derivative of its dual Minkowski functional $\rho_{F^{\circ}}(\cdot)$;

Introduction

Some comments:

- Our definition of curvature is very useful from a theoretical point of view. It allowed us to obtain several results (see [GP] and [GP2]). For example:
- the curvature radius $\widehat{\mathfrak{R}}_{F}\left(\xi, \xi^{*}\right):=\frac{1}{\hat{\varkappa}_{\mathcal{F}}\left(\xi, \xi^{*}\right)}$ as the radius of the largest interior sphere that (locally) touches F only at ξ;
- a local asymmetric version of the Lindenstrauss duality theorem (which quantitatively establishes the (local) duality between strict convexity of F and smoothness of F°);
- a characterization of the curvature of F in terms of the second derivative of its dual Minkowski functional $\rho_{F^{\circ}}(\cdot)$;
- the well-posedness and regularity for some time-minimum problem.

Introduction

Some comments:

- Our definition of curvature is very useful from a theoretical point of view. It allowed us to obtain several results (see [GP] and [GP2]). For example:
- the curvature radius $\widehat{\mathfrak{R}}_{F}\left(\xi, \xi^{*}\right):=\frac{1}{\hat{\varkappa}_{\mathcal{F}}\left(\xi, \xi^{*}\right)}$ as the radius of the largest interior sphere that (locally) touches F only at ξ;
- a local asymmetric version of the Lindenstrauss duality theorem (which quantitatively establishes the (local) duality between strict convexity of F and smoothness of F°);
- a characterization of the curvature of F in terms of the second derivative of its dual Minkowski functional $\rho_{F^{\circ}}(\cdot)$;
- the well-posedness and regularity for some time-minimum problem.
- But, from a practical point of view, it is very difficult to use, even in \mathbb{R}^{2}, as we can see in the next example.

Introduction

An example

Consider the nonempty compact convex set

$$
F:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{2}\right| \leq 1-x_{1}^{4},-1 \leq x_{1} \leq 1\right\} .
$$

Fix $\xi:=\left(\xi_{1}, \xi_{2}\right) \in \partial F$, with $\xi_{1}, \xi_{2}>0$, and (the unique) $\xi^{*} \in F^{\circ}$ such that $\left\langle\xi, \xi^{*}\right\rangle=1$, which is given by

$$
\xi^{*}=\frac{1}{1+3 \xi_{1}^{4}}\left(4 \xi_{1}^{3}, 1\right) .
$$

Even after a hard work we couldn't determine the exact value of the curvature, we only got

$$
\frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}} \Sigma\left(\xi_{1}\right)} \leq \hat{\varkappa}_{F}\left(\xi, \xi^{*}\right) \leq \frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}}},
$$

where $\Sigma\left(\xi_{1}\right):=1+\left(\sum_{k=0}^{3}\left|\xi_{1}\right|^{k}\right)^{2}$.

So we started thinking about how we could get an easy formula to calculate the curvature. But Vladimir Goncharov died and the work stopped. After some time I came back to this idea, and I will present here what I got. So far I have only worked on $\mathbb{R}^{n}, n \geq 2$. (This work is dedicated to Vladimir's memory.)

Directional curvature

In everything that follows we consider a compact convex set $F \subset \mathbb{R}^{n}, n \geq 2$, with $\mathbf{0} \in \operatorname{int} F$. We fix $\xi \in \partial F$ for which there are $\delta>0$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class \mathcal{C}^{2} at $\xi+\delta \mathbf{B}\left(\mathbf{B} \subset \mathbb{R}^{n}\right.$ represents the open unit ball), such that

$$
F \subset\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}, \quad\langle\xi, \nabla f(\xi)\rangle>0
$$

and such that for $x \in \xi+\delta \mathbf{B}$ we have $x \in \partial F$ if and only if $f(x)=0$.

- Then there is $0<\delta^{\prime} \leq \delta$, such that for any $\eta \in \partial F \cap\left(\xi+\delta^{\prime} \mathbf{B}\right)$ we have

$$
\nabla f(\eta) \neq \mathbf{0} \text { and } \mathbf{N}_{F}(\eta)=\bigcup_{\lambda \geq 0} \lambda \nabla f(\eta)
$$

Directional curvature

In everything that follows we consider a compact convex set $F \subset \mathbb{R}^{n}, n \geq 2$, with $\mathbf{0} \in \operatorname{int} F$. We fix $\xi \in \partial F$ for which there are $\delta>0$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class \mathcal{C}^{2} at $\xi+\delta \mathbf{B}\left(\mathbf{B} \subset \mathbb{R}^{n}\right.$ represents the open unit ball), such that

$$
F \subset\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}, \quad\langle\xi, \nabla f(\xi)\rangle>0
$$

and such that for $x \in \xi+\delta \mathbf{B}$ we have $x \in \partial F$ if and only if $f(x)=0$.

- Then there is $0<\delta^{\prime} \leq \delta$, such that for any $\eta \in \partial F \cap\left(\xi+\delta^{\prime} \mathbf{B}\right)$ we have

$$
\nabla f(\eta) \neq \mathbf{0} \text { and } \mathbf{N}_{F}(\eta)=\bigcup_{\lambda \geq 0} \lambda \nabla f(\eta)
$$

- Consequently:

Directional curvature

In everything that follows we consider a compact convex set $F \subset \mathbb{R}^{n}, n \geq 2$, with $\mathbf{0} \in \operatorname{int} F$. We fix $\xi \in \partial F$ for which there are $\delta>0$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class \mathcal{C}^{2} at $\xi+\delta \mathbf{B}\left(\mathbf{B} \subset \mathbb{R}^{n}\right.$ represents the open unit ball), such that

$$
F \subset\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}, \quad\langle\xi, \nabla f(\xi)\rangle>0
$$

and such that for $x \in \xi+\delta \mathbf{B}$ we have $x \in \partial F$ if and only if $f(x)=0$.

- Then there is $0<\delta^{\prime} \leq \delta$, such that for any $\eta \in \partial F \cap\left(\xi+\delta^{\prime} \mathbf{B}\right)$ we have

$$
\nabla f(\eta) \neq \mathbf{0} \text { and } \mathbf{N}_{F}(\eta)=\bigcup_{\lambda \geq 0} \lambda \nabla f(\eta)
$$

- Consequently:
- $\nabla f(\eta) \neq \mathbf{0}$ implies that there is a first $i \in I:=\{1, \ldots, n\}$ such that

$$
f_{x_{i}}(\eta):=\frac{\partial f}{\partial x_{i}}(\eta) \neq 0
$$

Directional curvature

In everything that follows we consider a compact convex set $F \subset \mathbb{R}^{n}, n \geq 2$, with $\mathbf{0} \in \operatorname{int} F$. We fix $\xi \in \partial F$ for which there are $\delta>0$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class \mathcal{C}^{2} at $\xi+\delta \mathbf{B}\left(\mathbf{B} \subset \mathbb{R}^{n}\right.$ represents the open unit ball), such that

$$
F \subset\left\{x \in \mathbb{R}^{n}: f(x) \leq 0\right\}, \quad\langle\xi, \nabla f(\xi)\rangle>0,
$$

and such that for $x \in \xi+\delta \mathbf{B}$ we have $x \in \partial F$ if and only if $f(x)=0$.

- Then there is $0<\delta^{\prime} \leq \delta$, such that for any $\eta \in \partial F \cap\left(\xi+\delta^{\prime} \mathbf{B}\right)$ we have

$$
\nabla f(\eta) \neq \mathbf{0} \text { and } \mathbf{N}_{F}(\eta)=\bigcup_{\lambda \geq 0} \lambda \nabla f(\eta)
$$

- Consequently:
- $\nabla f(\eta) \neq \mathbf{0}$ implies that there is a first $i \in I:=\{1, \ldots, n\}$ such that

$$
f_{x_{i}}(\eta):=\frac{\partial f}{\partial x_{i}}(\eta) \neq 0,
$$

- and the unique $\eta^{*} \in \mathbf{N}_{F}(\eta)$ such that $\left\langle\eta, \eta^{*}\right\rangle=1$ is given by

$$
\eta^{*}:=\frac{1}{\langle\eta, \nabla f(\eta)\rangle} \nabla f(\eta)
$$

Directional curvature

Fixed such i, the tangent hyperplane to F at η is given by

$$
\begin{aligned}
\mathbf{T}_{F}(\eta) & =\left\{v \in \mathbb{R}^{n}:\langle v, \nabla f(\eta)\rangle=0\right\} \\
& =\left\{\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}: v_{i}=-\sum_{j=1, j \neq i}^{n} \frac{f_{x_{j}}(\eta)}{f_{x_{i}}(\eta)} v_{j}\right\} .
\end{aligned}
$$

For any $j \in \Lambda\{i\}$ we define (the principal directions)

$$
u^{j}(\eta):=(\underbrace{-\frac{f_{x_{j}}(\eta)}{f_{x_{i}}(\eta)}}_{\text {ith coordinate }}, \underbrace{1}_{\text {jth }}, 0, \ldots, 0) \in \mathbb{R}^{n}
$$

and

$$
P\left(\eta, u^{j}(\eta)\right):=\operatorname{span}\left\{\nabla f(\eta), u^{j}(\eta)\right\}+\eta,
$$

where span $\left\{\nabla f(\eta), \psi^{j}(\eta)\right\}$ means the space generated by the (linearly independent) vectors $\nabla f(\eta)$ and $u^{j}(\eta)$. So $P\left(\eta, \mu^{j}(\eta)\right)$ is, in fact, a 2-dimensional plane in \mathbb{R}^{n} (it will simply be called a plane).

Directional curvature: definitions

Now I will present some directional notions, based on those presented at the beginning. To simplify the notation, we don't refer the unique (normal vector) ξ^{*}.

Definitions

- The 2-dimensional modulus of strict convexity of F at ξ in the direction of $u^{j}(\xi)$ is given by $\widehat{\mathfrak{C}}_{F}\left(r, \xi, u^{j}(\xi)\right)=\inf \left\{\left\langle\xi-\eta, \xi^{*}\right\rangle: \eta \in F \cap P\left(\xi, u^{j}(\xi)\right),\|\xi-\eta\| \geq r\right\}, r>0$.

Directional curvature: definitions

Now I will present some directional notions, based on those presented at the beginning. To simplify the notation, we don't refer the unique (normal vector) ξ^{*}.

Definitions

- The 2-dimensional modulus of strict convexity of F at ξ in the direction of $u^{j}(\xi)$ is given by $\widehat{\mathfrak{C}}_{F}\left(r, \xi, u^{j}(\xi)\right)=\inf \left\{\left\langle\xi-\eta, \xi^{*}\right\rangle: \eta \in F \cap P\left(\xi, u^{j}(\xi)\right),\|\xi-\eta\| \geq r\right\}, r>0$.
- The set F is said to be strictly convex at ξ in the direction of $u^{j}(\xi)$ if $\widehat{\mathfrak{C}}_{F}\left(r, \xi, u^{j}(\xi)\right)>0$ for all $r>0$.

Directional curvature: definitions

Now I will present some directional notions, based on those presented at the beginning. To simplify the notation, we don't refer the unique (normal vector) ξ^{*}.

Definitions

- The 2-dimensional modulus of strict convexity of F at ξ in the direction of $u^{j}(\xi)$ is given by

$$
\widehat{\mathfrak{C}}_{F}\left(r, \xi, u^{j}(\xi)\right)=\inf \left\{\left\langle\xi-\eta, \xi^{*}\right\rangle: \eta \in F \cap P\left(\xi, u^{j}(\xi)\right),\|\xi-\eta\| \geq r\right\}, r>0 .
$$

- The set F is said to be strictly convex at ξ in the direction of $u^{j}(\xi)$ if $\widehat{\mathfrak{C}}_{F}\left(r, \xi, u^{j}(\xi)\right)>0$ for all $r>0$.
- The 2-dimensional curvature of F at ξ in the direction of $u^{j}(\xi)$ is given by

$$
\hat{\varkappa}_{F}\left(\xi, u^{j}(\xi)\right)=\liminf _{\substack{(r, \eta) \rightarrow\left(0^{+}, \xi\right) \\ \eta \in \partial F}} \frac{2 \widehat{\mathfrak{C}}_{F}\left(r, \eta, u^{j}(\eta)\right)}{\left\|\xi^{*}\right\| r^{2}} .
$$

Directional curvature: results

Proposition Denoting by $\hat{\varkappa}_{F}(\xi)$ our initial curvature, $\hat{\varkappa}_{F}\left(\xi, \xi^{*}\right)$, we have

$$
\begin{equation*}
\hat{\varkappa}_{F}(\xi, u(\xi)) \geq \hat{\varkappa}_{F}(\xi), \quad \forall u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{\mathbf{0}\} . \tag{1}
\end{equation*}
$$

Furthermore,
(i) if $\hat{\varkappa}_{F}(\xi, u(\xi))=0$ for some $u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{\mathbf{0}\}$, then $\hat{\varkappa}_{F}(\xi)=0$;
(ii) the equality holds at (1) when $n=2$.

Directional curvature: results

Theorem (The main result)

We have

$$
\begin{equation*}
\hat{\varkappa}_{F}\left(\xi, u^{j}(\xi)\right)=\frac{1}{\|\nabla f(\xi)\|\left\|u^{j}(\xi)\right\|^{2}}\left\langle\nabla^{2} f(\xi) \mu^{j}(\xi), \psi^{j}(\xi)\right\rangle, \quad j \in \Lambda\{i\}, \tag{2}
\end{equation*}
$$

where $\nabla^{2} f(\xi)$ means the Hessian matrix, i.e., $\left(\nabla^{2} f(\xi)\right)_{r, s}=\frac{\partial^{2} f}{\partial x_{r} \partial x_{s}}(\xi), r, s \in I$.
Corollary (1)
We have (2) for all $u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{\mathbf{0}\}$.

Directional curvature: results

Corollary (2)

We have

$$
\hat{\varkappa}_{F}\left(\xi, u^{j}(\xi)\right)=\frac{f_{x_{i} x_{i}}(\xi) f_{x_{j}}^{2}(\xi)-2 f_{x_{i}}(\xi) f_{x_{j}}(\xi) f_{x_{i} x_{j}}(\xi)+f_{x_{x_{i}} x_{j}}(\xi) f_{x_{i}}^{2}(\xi)}{\|\nabla f(\xi)\|\left(f_{x_{i}}^{2}(\xi)+f_{x_{j}}^{2}(\xi)\right)}
$$

Then I will compare the previous formula with the existing ones for curves in \mathbb{R}^{n} generated by the intersection of $n-1$ implicit hypersurfaces.

Relation with the usual curvature formula for implicit space curves ($\mathrm{n}=2$)

Near $\xi \in \partial F$, and fixed $u(\xi) \in \mathbf{T}_{F}(\xi)=\operatorname{span}\left\{\left(-f_{x_{2}}(\xi), f_{x_{1}}(\xi)\right)\right\}$ with $u(\xi) \neq \mathbf{0}$, the curve $\partial F \cap P(\xi, u(\xi))$ is defined by the equation $f(\eta)=0$. Therefore, by [G] (R. Goldman, Curvature Formulas for Implicit Curves and Surfaces, 2005),

$$
\begin{aligned}
& k_{G}(\xi):=\frac{\left|\operatorname{Tan}(F)(\xi) * \nabla(\operatorname{Tan}(F))(\xi) * \nabla(F)(\xi)^{\top}\right|}{\|\nabla(F)\|^{3}} \\
& =\frac{\left|\left[\begin{array}{ll}
-f_{x_{2}}(\xi) & f_{x_{1}}(\xi)
\end{array}\right]\left[\begin{array}{cc}
f_{x_{1} x_{1}}(\xi) & f_{x_{2} x_{1}}(\xi) \\
f_{x_{1} x_{2}}(\xi) & f_{x_{2} x_{2}}(\xi)
\end{array}\right]\left[\begin{array}{c}
-f_{x_{2}}(\xi) \\
f_{x_{1}}(\xi)
\end{array}\right]\right|}{\left(f_{x_{1}}^{2}(\xi)+f_{x_{2}}^{2}(\xi)\right)^{\frac{3}{2}}} \\
& =\frac{\left|f_{x_{1}}^{2}(\xi) f_{x_{2} x_{2}}(\xi)-2 f_{x_{2}}(\xi) f_{x_{1}}(\xi) f_{x_{1} x_{2}}(\xi)+f_{x_{2}}^{2}(\xi) f_{x_{1} x_{1}}(\xi)\right|}{\left(f_{x_{1}}^{2}(\xi)+f_{x_{2}}^{2}(\xi)\right)^{\frac{3}{2}}} \\
& =\hat{\varkappa}_{F}(\xi, u(\xi)) .
\end{aligned}
$$

Relation with the usual curvature formula for implicit space curves ($n \geq 3$)

Near $\xi \in \partial F$, for a fixed $u^{j}(\xi)$ with $j \in I \backslash\{i\}$, the curve $\partial F \cap P\left(\xi, u^{j}(\xi)\right)$ is defined by the $n-1$ equations:

$$
f(\eta)=0, \quad p_{k_{1} \xi}(\eta)=0, \ldots, p_{k_{n-2} \xi}(\eta)=0,
$$

$k_{1}, \ldots, k_{n-2} \in \Lambda \backslash\{i, j\}$, where, for $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbb{R}^{n}$,

$$
p_{k \xi}(\eta):=\eta_{k}-\xi_{k}+a_{k i}(\xi)\left(\eta_{i}-\xi_{i}\right)+a_{k j}(\xi)\left(\eta_{j}-\xi_{j}\right)
$$

and

$$
a_{k l}(\xi):=-\frac{f_{x_{l}}(\xi) f_{x_{k}}(\xi)}{f_{x_{i}}^{2}(\xi)+f_{x_{j}}^{2}(\xi)}, \quad l \in\{i, j\} .
$$

Relation with the usual curvature formula for implicit space curves ($n \geq 3$)

From [G], and after many calculations, we get:

$$
\begin{aligned}
k_{G}(\xi) & :=\frac{\|(\operatorname{Tan}(F)(\xi) * \nabla(\operatorname{Tan}(F))(\xi)) \wedge \operatorname{Tan}(F)(\xi)\|}{\|\operatorname{Tan}(F)(\xi)\|^{3}} \\
& =\frac{\left|f_{x_{i} x_{i}}(\xi) f_{x_{j}}^{2}(\xi)-2 f_{x_{i}}(\xi) f_{x_{j}}(\xi) f_{x_{i} x_{j}}(\xi)+f_{x_{j} x_{j}}(\xi) f_{x_{i}}^{2}(\xi)\right|}{\|\nabla f(\xi)\|\left(f_{x_{i}}^{2}(\xi)+f_{x_{j}}^{2}(\xi)\right)} \\
& =\hat{\varkappa}_{F}\left(\xi, u^{j}(\xi)\right) .
\end{aligned}
$$

(Where $\operatorname{Tan}(F)(\xi)$ means the row matrix $\operatorname{Tan}\left(f, p_{k_{1} \xi}, \ldots, p_{k_{n-2} \xi}\right)(\xi):=\left\lvert\, \begin{gathered}e \\ \nabla f(\xi) \\ \nabla p_{k_{1} \xi}(\xi) \\ \vdots \\ \nabla p_{k_{n-2} \xi}(\xi)\end{gathered}\right.$ and \wedge the generalization to the cross product from \mathbb{R}^{3} to \mathbb{R}^{n})

Directional curvature: conclusions

Given a convex body $F \subset \mathbb{R}^{n}, n \geq 2$, and a point $\xi \in \partial F$ both checking our conditions.
(1) For any $u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{0\}$ the directional curvature $\hat{\varkappa}_{F}(\xi, u(\xi))$ can be easily calculated using the formula:

$$
\hat{\varkappa}_{F}(\xi, u(\xi))=\frac{1}{\|\nabla f(\xi)\|\|u(\xi)\|^{2}}\left\langle\nabla^{2} f(\xi) u(\xi), u(\xi)\right\rangle .
$$

Directional curvature: conclusions

Given a convex body $F \subset \mathbb{R}^{n}, n \geq 2$, and a point $\xi \in \partial F$ both checking our conditions.
(1) For any $u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{\mathbf{0}\}$ the directional curvature $\hat{\varkappa}_{F}(\xi, u(\xi))$ can be easily calculated using the formula:

$$
\hat{\varkappa}_{F}(\xi, u(\xi))=\frac{1}{\|\nabla f(\xi)\|\|u(\xi)\|^{2}}\left\langle\nabla^{2} f(\xi) u(\xi), u(\xi)\right\rangle
$$

(2) For the principal directions $u^{j}(\xi), j \in \Lambda\{i\}$, the directional curvature $\hat{\varkappa}_{F}\left(\xi, \mu^{j}(\xi)\right)$ can also be calculated using Goldman's formula $k_{G}(\xi)$, but it takes more work.

Directional derivative

Theorem

Let $u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{\mathbf{0}\}$. Assume that $\widehat{\mathfrak{C}}_{F}(r, \xi, u(\xi))>0$, for all $r>0$. Then the directional derivative of $\rho_{F^{\circ}}(\cdot)$ at ξ^{*} in the direction of $u(\xi)$ exists and is given by

$$
\rho_{F^{\circ}}^{\prime}\left(\xi^{*}, u(\xi)\right)=\langle\xi, u(\xi)\rangle .
$$

Note In [GP] we showed that:

$$
\widehat{\mathfrak{C}}_{F}\left(r, \xi, \xi^{*}\right)>0 \text { for all } r>0 \Longrightarrow \nabla \rho_{F^{\circ}}\left(\xi^{*}\right)=\xi .
$$

Example 1

$$
F=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{2}\right| \leq 1-x_{1}^{4},-1 \leq x_{1} \leq 1\right\}
$$

Fix $\xi=\left(\xi_{1}, \xi_{2}\right) \in \partial F$

- if $\xi_{1}, \xi_{2}>0$ we have $\mathbf{T}_{F}(\xi)=\operatorname{span}\left\{\left(1,-4 \xi_{1}^{3}\right)\right\}$,

$$
\hat{\varkappa}_{F}(\xi)=\hat{\varkappa}_{F}(\xi, u(\xi))=\frac{12 \xi_{1}^{2}}{\left(16 \xi_{1}^{6}+1\right)^{\frac{3}{2}}}, \quad u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{(0,0)\},
$$

whereas in [GP] we had only obtained the inequalities

$$
\frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}} \Sigma\left(\xi_{1}\right)} \leq \hat{\varkappa}_{F}(\xi) \leq \frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}}}, \quad \Sigma\left(\xi_{1}\right):=1+\left(\sum_{k=0}^{3}\left|\xi_{1}\right|^{k}\right)^{2} ;
$$

Example 1

$$
F=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{2}\right| \leq 1-x_{1}^{4},-1 \leq x_{1} \leq 1\right\} .
$$

Fix $\xi=\left(\xi_{1}, \xi_{2}\right) \in \partial F$

- if $\xi_{1}, \xi_{2}>0$ we have $\mathbf{T}_{F}(\xi)=\operatorname{span}\left\{\left(1,-4 \xi_{1}^{3}\right)\right\}$,

$$
\hat{\varkappa}_{F}(\xi)=\hat{\varkappa}_{F}(\xi, u(\xi))=\frac{12 \xi_{1}^{2}}{\left(16 \xi_{1}^{6}+1\right)^{\frac{3}{2}}}, \quad u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{(0,0)\},
$$

whereas in [GP] we had only obtained the inequalities

$$
\frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}} \Sigma\left(\xi_{1}\right)} \leq \hat{\varkappa}_{F}(\xi) \leq \frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}}}, \quad \Sigma\left(\xi_{1}\right):=1+\left(\sum_{k=0}^{3}\left|\xi_{1}\right|^{k}\right)^{2} ;
$$

- if $\xi=(0, \pm 1)$ we have $\hat{\varkappa}_{F}(\xi)=\hat{\varkappa}_{F}(\xi, u(\xi))=0$;

Example 1

$$
F=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left|x_{2}\right| \leq 1-x_{1}^{4},-1 \leq x_{1} \leq 1\right\} .
$$

Fix $\xi=\left(\xi_{1}, \xi_{2}\right) \in \partial F$

- if $\xi_{1}, \xi_{2}>0$ we have $\mathbf{T}_{F}(\xi)=\operatorname{span}\left\{\left(1,-4 \xi_{1}^{3}\right)\right\}$,

$$
\hat{\varkappa}_{F}(\xi)=\hat{\varkappa}_{F}(\xi, u(\xi))=\frac{12 \xi_{1}^{2}}{\left(16 \xi_{1}^{6}+1\right)^{\frac{3}{2}}}, \quad u(\xi) \in \mathbf{T}_{F}(\xi) \backslash\{(0,0)\},
$$

whereas in [GP] we had only obtained the inequalities

$$
\frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}} \Sigma\left(\xi_{1}\right)} \leq \hat{\varkappa}_{F}(\xi) \leq \frac{12 \xi_{1}^{2}}{\sqrt{1+16 \xi_{1}^{6}}}, \quad \Sigma\left(\xi_{1}\right):=1+\left(\sum_{k=0}^{3}\left|\xi_{1}\right|^{k}\right)^{2} ;
$$

- if $\xi=(0, \pm 1)$ we have $\hat{\varkappa}_{F}(\xi)=\hat{\varkappa}_{F}(\xi, u(\xi))=0$;
- if $\xi=(\pm 1,0)$ we can't calculate the directional curvature because there isn't a \mathcal{C}^{2} function f checking our conditions.

Example 2

$$
F_{a, b}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{3}^{2} \leq a^{2},\left|x_{2}\right| \leq b\right\}, \quad a, b \in \mathbb{R}^{+} .
$$

Fix $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \partial F_{a, b}$

- if $\xi_{1}^{2}+\xi_{3}^{2}=a^{2}$ and $\left|\xi_{2}\right|<b$ we have $\mathbf{T}_{F_{a, b}}(\xi)=\operatorname{span}\{\underbrace{(0,1,0)}_{u^{2}(\xi)}, \underbrace{\left(-\xi_{3}, 0, \xi_{1}\right)}_{w^{(\xi)}, j \in\{1,3\} \backslash\{i\}}\}$
and

$$
\hat{\varkappa}_{E_{a, b}}(\xi, u(\xi))=\frac{\beta^{2} a}{a^{2} \beta^{2}+\xi_{1}^{2} \alpha^{2}} \in\left[0, \frac{1}{a}\right]
$$

for every $u(\xi)=\alpha u^{2}(\xi)+\beta u^{j}(\xi)$, with $\alpha, \beta \in \mathbb{R}$ not simultaneously null;

Example 2

$$
F_{a, b}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{3}^{2} \leq a^{2},\left|x_{2}\right| \leq b\right\}, \quad a, b \in \mathbb{R}^{+} .
$$

Fix $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \partial F_{a, b}$

- if $\xi_{1}^{2}+\xi_{3}^{2}=a^{2}$ and $\left|\xi_{2}\right|<b$ we have $\mathbf{T}_{F_{a, b}}(\xi)=\operatorname{span}\{\underbrace{(0,1,0)}_{u^{2}(\xi)}, \underbrace{\left(-\xi_{3}, 0, \xi_{1}\right)}_{\omega^{(\xi)}, j \in\{1,3\} \backslash\{i\}}\}$
and

$$
\hat{\chi}_{F_{a}, b}(\xi, u(\xi))=\frac{\beta^{2} a}{a^{2} \beta^{2}+\xi_{1}^{2} \alpha^{2}} \in\left[0, \frac{1}{a}\right]
$$

for every $u(\xi)=\alpha u^{2}(\xi)+\beta u^{j}(\xi)$, with $\alpha, \beta \in \mathbb{R}$ not simultaneously null;

- if $\xi_{1}^{2}+\xi_{3}^{2}<a^{2}$ and $\xi_{2}=b$ (the case $\xi_{2}=-b$ is analogous) we have

$$
\hat{\boldsymbol{A}}_{F_{a, b}}(\xi, u(\xi))=0,
$$

for every $u(\xi) \in \mathbf{T}_{F_{a, b}}(\xi)=\operatorname{span}\{(1,0,0),(0,0,1)\}$, with $u(\xi) \neq(0,0,0)$.

Example 3

$$
F=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{t=1}^{n} x_{t}^{2} \leq R^{2}\right\}, R>0
$$

Near any $\xi \in \partial F$ we have $f(x)=\sum_{t=1}^{n} x_{t}^{2}-R^{2}$. Consequently, fixed the first $i \in I$ such that $f_{x_{i}}(\xi)=2 \xi_{i} \neq 0$, we have

$$
\mathbf{T}_{F}(\xi)=\operatorname{span}\left\{\bigcup_{j \in \backslash\{i\}} u^{j}(\xi)\right\},
$$

where $u^{j}(\xi)$ is the vector with 1 in the j th coordinate, $\frac{\xi_{j}}{\xi_{i}}$ in the i th coordinate and 0 in the others. Therefore

$$
\hat{\varkappa}_{F}\left(\xi, u^{j}(\xi)\right)=\frac{\left(\left(\frac{\xi_{j}}{\xi_{i}}\right)^{2}+1\right)^{2}}{\|\xi\|\left\|u^{j}(\xi)\right\|^{2}}=\frac{1}{R}
$$

as we expected.

References

[G] R. Goldman, Curvature formulas for implicit curves and surfaces, Computer Aided Geometric Design 22 (2005), 632-658.
[GP] V.V. Goncharov, F.F. Pereira, Neighbourhood retractions of nonconvex sets in a Hilbert space via sublinear functionals, J. Convex Anal. 18 (1) (2011), 1-36.
[GP2] V.V. Goncharov, F.F. Pereira, Geometric conditions for regularity in a time-minimum problem with constant dynamics, J. Convex Anal. 19 (3) (2012), 631-669.
[P] F.F. Pereira, A directional curvature formula for convex bodies in \mathbb{R}^{n}, J. Math. Anal. Appl. 506 (1) (2022) 125656.
[P2] F.F. Pereira, Some notes on directional curvature of a convex body in \mathbb{R}^{n}, Optimization (2022) (online).

This talk has been partially supported by Centro de Investigação em Matemática e Aplicações (CIMA), through the Project UIDB/04674/2020 of FCT-Fundação para a Ciência e a Tecnologia, Portugal.

Thank you very much!

