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Modulus of continuity of inverse maps

Mappings of finite distortion

A homeomorphism f : C→ C is a map of finite distortion if:

f ∈W 1,1
loc

det(Df ) = J(·, f ) ∈ L1
loc

There exists a measurable function K : C→ [1,+∞) such that
|Df (z)|2 ≤ K(z , f ) · J(z , f ) at almost every z .

Modulus of continuity (Assumption f (0) = 0)

(AHLFORS) f K -QC: |f (z)| ≥ 1
cK
|z |K ; K = ‖K‖∞.

(HERRON-KOSKELA) eK(·,f ) ∈ Lploc (p > 0):

|f (z)| ≥ e
−

cf ,p
p

log2( 1
|z| ).

(KOSKELA-TAKKINEN) K ∈ Lploc (p > 1): |f (z)| ≥ e−cf ,p |z|
− 2

p
.
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Rotational properties of planar maps

Given f : C→ C with f (0) = 0 and f (1) = 1, we are interested in the
growth of | arg(f (r))| as r → 0.

This growth represents the number of times the image f ([r , 1]) winds
around the origin as r → 0.

Astala-Iwaniec-Prause-Saksman (2014)

If f is K -quasiconformal, then

| arg(f (r))| ≤ 1

2

(
K − 1

K

)
log

(
1

r

)
+ cK , ∀r ∈ (0, 1).
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Rotational properties of planar maps

Hitruhin (2018)

If eK(·,f ) ∈ Lploc for some p > 0, then

| arg(f (z))| ≤ c

p
log2

(
1

|z |

)
, for |z | small enough.

When K(·, f ) ∈ Lploc for some p > 1,

| arg(f (z))| ≤ c

|z |
2
p

.

If K(·, f ) ∈ L1
loc , then

lim sup
|z|→0

|z |2 | arg(f (z))| = 0.
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Euler equation in the plane
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Planar Euler equation in vorticity form

Euler equation

EE :


ωt + v · ∇ω = 0,

ω(0, ·) = ω0,

v = K ∗ ω

v(t, ·) : R2 → R2 velocity field

ω(t, ·) : R2 → R vorticity

K= Convolution Kernel

K (z) = K (x , y) =
iz

2π|z |2
≡ 1

2π

(−y , x)

x2 + y2

Biot-Savart Law

v = K ∗ ω ⇐⇒

{
div(v) = 0

curl(v) = ω
⇐⇒ ∂zv =

iω

2
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Euler Flows are Hölder

Yudovich (1963)

If ω0 ∈ L∞c , then there exists an unique solution ω ∈ L∞(0,T ; L∞).

If ω is an Yudovich solution, then ω(t, ·) ∈ L∞

⇒ ∂zv =
iω

2
∈ L∞

⇒ ∂z̄v ∈ BMO

⇒ v is Zygmund

⇒ v is Lip − Log

⇒ v has flow Xt ∈ Cα(t)

Bahouri-Chemin (1993)

α(t) ≤ e−t ‖ω0‖∞
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Euler Flows are Sobolev

Clop-Jylhä (2019)

If ω ∈ L∞(L∞) is an Yudovich solution, and v = K ∗ ω, then

Xt ∈W 1,p
loc

for 1 < p <
2

t‖ω0‖∞
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Improved rotation
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Motivation for improving Hitruhin’s result

For small times t > 0, Euler flows Xt are mappings of finite distortion
with Lploc distortion.

Corollary: The curve Xt0([ 1
n , 1]) cannot wind around Xt0(0) more than

a multiple of
n2t0‖ω0‖∞

times.

Wolibner 1933: Euler flows have Hölder continuous inverse.
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Improved rotation for Euler flows

Clop-Hitruhin-S. 2021

Let p, α > 1. If

f : C→ C homeomorphism of finite distortion with K(·, f ) ∈ Lploc
f (0) = 0, f (1) = 1

|f (x)− f (y)| ≥ |x − y |α, whenever |x − y | is small

then

| arg (f (z)) | ≤ C
√
α|z |−

1
p log

1
2

(
1

|z |

)
.
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Improved rotation for Euler flows

Corollary

Given ω0 ∈ L∞(C;C), let Xt be Euler flow. Then there is a constant
C > 0 such that∣∣∣∣arg

(
Xt(z)− Xt(0)

Xt(1)− Xt(0)

)∣∣∣∣ ≤ C log
1
2

(
1

|z |

)
|z |−t‖ω0‖∞ exp (Ct‖ω0‖∞)

if both |z | and t > 0 are small enough.

The curve Xt0([ 1
n , 1]) cannot wind around Xt0(0) more than a multiple of

nt0‖ω0‖∞ (log n)
1
2 eCt0‖ω0‖∞

times.
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Optimal result

Theorem

Given an increasing, onto homeomorphism h : [0,+∞)→ [0,+∞), and a
real number p > 1,
there exists a homeomorphism g : C→ C
with the following properties:

g homeomorphism of finite distortion with K(·, g) ∈ Lploc
g(0) = 0, g(1) = 1

If α > 3p
p−1 , then |g(x)− g(y)| ≥ C |x − y |α whenever |x − y | < 1

There exists a decreasing sequence {rn}, with limit rn → 0+ as
n→∞, for which

| arg(g(rn))| ≥ r
− 1

p
n log

1
2

(
1

rn

)
h(rn).
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Borderline case

Hitruhin-S. 2021

Let α ≥ 1. If

f : C→ C homeomorphism of finite distortion with K(·, f ) ∈ L1
loc

f (0) = 0, f (1) = 1

|f (x)− f (y)| ≥ |x − y |α, whenever |x − y | is small

then

lim sup
|z|→0

|z |√
log
(

1
|z|

) | arg(f (z))| = 0.

Banhirup Sengupta (UAB) Geometry, Analysis, Convexity (Sevilla 2022) June 23, 2022 16 / 20



Optimality

Theorem

Given an increasing, onto homeomorphism h : [0,+∞)→ [0,+∞), there
exists a homeomorphism g : C→ C with the following properties:

g homeomorphism of finite distortion with K(·, g) ∈ L1
loc

g(0) = 0, g(1) = 1

If α > 6, then |g(x)− g(y)| ≥ C |x − y |α whenever |x − y | < 1

There exists a decreasing sequence {rn}, with limit rn → 0+ as
n→∞, for which

| arg(g(rn))| ≥ h(rn)

rn
log

1
2

(
1

rn

)
.

Remark: The method used in the proof of this result certainly improves
the lower bound of α in the optimal result for p > 1 case from 3p/(p − 1)
to 3(p + 1)/p.
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Growth condition

Hitruhin-S. 2021

Let f : C→ C be a homeomorphism of finite distortion such that
f (0) = 0, f (1) = 1, and assume that K(·, f ) ∈ Lploc ; p > 1. Then

|arg (f (z))| ≤ C |z |−
1
p log

1
2

 1

min
|ω|=|z|

|f (ω)|

 when |z | is small.

Furthermore, if we assume that K(·, f ) ∈ L1
loc , then

lim sup
|z|→0

|z |√√√√log

(
1

min
|ω|=|z|

|f (ω)|

) | arg(f (z))| = 0.
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Optimality result

Theorem

Given ϕ radially increasing homeomorphism with K(·, ϕ) ∈ Lploc , p ≥ 1,
such that, when |z | is small,

e−mϕ,p(|z|)|z|−
2
p ≤ |ϕ(z)| < |z |4,

where mϕ,p : R→ R increasing continuous with m(r)→ 0 as r → 0, and
h : [0,+∞)→ [0,+∞), we can find a radial homeomorphism g : C→ C;

g homeomorphism with K(·, g) ∈ Lploc ; g(0) = 0, g(1) = 1.

There exists a decreasing sequence {rn}, such that

|g(rn)| = |ϕ(rn)|

and

|arg (g(rn))| ≥ r
− 1

p
n log

1
2

(
1

|g(rn)|

)
h(rn).
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Thanks for your attention
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