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Preliminaries

The Brunn-Minkowski inequality ((1/n)-concave form)

Let K , L ⊂ Rn be non-empty compact sets. Then, for all λ ∈ (0, 1),

vol((1− λ)K + λL)1/n ≥ (1− λ)vol(K )1/n + λvol(L)1/n.

Here vol(·) is the Lebesgue measure and A + B =
{
a + b : a ∈ A, b ∈ B

}
denotes the Minkowski sum of A and B, and rA =

{
ra : a ∈ A} for any

r ≥ 0.
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→ It yields the isoperimetric inequality in a few lines: Among all sets
with a fixed surface area measure, Euclidean balls maximize the volume.
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The Rogers-Shephard inequality

The Rogers-Shephard inequality, originally proven in 1957, provides us
with an upper bound for the volume of K − K :

The Rogers-Shephard inequality

Let K ∈ Kn be a convex body. Then

vol(K − K ) ≤
(

2n

n

)
vol(K ).

This relation for K − K can be generalized to the Minkowski addition of
two convex bodies as follows:

Let K , L ∈ Kn be convex bodies. Then

vol(K + L)vol
(
K ∩ (−L)

)
≤
(

2n

n

)
vol(K )vol(L).
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The Rogers-Shephard inequality

In 1958 Rogers and Shephard gave the following lower bound for the
volume of K in terms of the volumes of a projection and a maximal
section of K :

Section/Projection Rogers-Shephard’s inequality

Let k ∈ {1, . . . , n− 1} and H ∈ Ln
k . Let K ∈ Kn be a convex body. Then

voln−k(PH⊥K )volk(K ∩ H) ≤
(
n

k

)
vol(K ).

Ln
k denotes the set of all k-dimensional linear subspaces of Rn whereas

PH⊥K is the orthogonal projection of K onto H.

The Rogers-Shephard inequality for the difference body can be derived
from the latter result for sections & projections
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A related result: Berwald’s inequality

Berwald’s inequality

Let K ∈ Kn be a convex body with dimK = n and let f : K −→ R≥0 be
a concave function. Then, for any 0 < p < q,( (

n+q
n

)
vol(K )

∫
K

f q(x)dx

)1/q

≤

( (
n+p
n

)
vol(K )

∫
K

f p(x)dx

)1/p

.

This result provides one with an alternative unified proof of:

Section/Projection Rogers-Shephard’s inequality

 consider the
function f : PH⊥K −→ R≥0 given by

f (x) = volk
(
K ∩ (x + H

))1/k

for H ∈ Ln
k , p = k (and n′ = n − k), and let q →∞.

Rogers-Shephard’s inequality for K − K

 consider the function
f : K − K −→ R≥0 defined by

f (x) = vol
(
K ∩ (x + K )

)1/n
,

p = n, and let q →∞.
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Discrete versions of classical inequalities

Nowadays there is a growing interest for studying the discrete analogues
of classical (continuous) results.

In many of such results, the lattice point enumerator Gn(·) plays the role
of the volume vol(·) in the continuous setting.

Gn(·) :=
∣∣· ∩Zn

∣∣

Some recent versions of classical inequalities for Gn(·)

Alexander, Henk and Zvavitch (2017): Koldobsky’s slicing inequality.

Berg’s thesis (2018): Brunn’s inequality.

Freyer and Henk (2020): Meyer’s inequality, reverse Meyer’s
inequality and reverse Loomis-Whitney’s inequality.
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B-M type inequalities for the lattice point enumerator

The Brunn-Minkowski inequality

Let K , L ⊂ Rn be non-empty compact sets. Then, for all λ ∈ (0, 1),

vol((1− λ)K + λL)1/n ≥ (1− λ)vol(K )1/n + λvol(L)1/n.

Theorem (Iglesias, Y. N., Zvavitch (2020))

Let K , L ⊂ Rn be non-empty bounded sets. Then, for all λ ∈ (0, 1),

Gn

(
(1− λ)K + λL + (−1, 1)n

)1/n ≥ (1− λ)Gn(K )1/n + λGn(L)1/n.

The inequality is sharp.

Jointly with Iglesias and Lucas (2022), and exploiting a functional
approach, the latter result can be extended to the case of arbitrary
t, s ≥ 0 (instead of 1− λ and λ) by replacing (−1, 1)n by
(−1, dt + se)n.
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B-M type inequalities for the lattice point enumerator

Theorem (Halikias, Klartag, Slomka (2020))

Let K , L ⊂ Rn be non-empty bounded sets. Then

Gn

(
K + L

2
+ [0, 1]n

)
≥
√
Gn(K )Gn(L).

Theorem (Iglesias, Y. N., Zvavitch (2020))

Let K , L ⊂ Rn be non-empty bounded sets. Then

Gn

(
K + L

2
+ [0, 1]n

)1/n

≥ Gn(K )1/n + Gn(L)1/n

2
.

Theorem (Iglesias, Y. N., Zvavitch (2020))

Let K , L ⊂ Rn be non-empty bounded sets. Then

Gn

(
K + L

2
+

[
−1

2
,

1

2

]n)1/n

≥ Gn(K )1/n + Gn(L)1/n

2
.
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R-S type inequalities for the lattice point enumerator?

Taking into account the strong connection between the Brunn-Minkowski
inequality and the Rogers-Shephard inequality, it is natural to wonder
about getting a discrete version of the latter, for Gn(·).

Theorem (Gardner, Gronchi (2001))

Let P ⊂ R2 be a convex polygon with integer vertices. Then

G2(P − P) ≤ 6G2(P)− b(P)− 5, (1)

where b(P) denotes the number of integer points in the boundary of P.

However, for an arbitrary convex body K ∈ Kn, one cannot expect to get

Gn(K − K ) ≤
(

2n

n

)
Gn(K ).

Indeed, just considering K = [−1/2, 1/2]n one would obtain 3n ≤
(

2n
n

)
,

which is false for n = 1, 2, 3, 4.

Furthermore, as pointed out by Freyer&Henk (2021), there is neither a
possible extension of (1) in dimension n ≥ 3 nor even a hope to obtain
Gn(K − K ) ≤ cnGn(K ) for some constant cn > 0, for n ≥ 3.
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R-S type inequalities for the lattice point enumerator

vol(K − K ) ≤
(

2n

n

)
vol(K ).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K ⊂ Rn be a non-empty convex bounded set. Then

Gn(K − K ) ≤
(

2n

n

)
Gn

(
K +

(
−3

4
,

3

4

)n)
.

vol(K + L)vol
(
K ∩ (−L)

)
≤
(

2n

n

)
vol(K )vol(L).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K , L ⊂ Rn be non-empty convex bounded sets. Then

Gn(K + L)Gn

(
K ∩ (−L)

)
≤
(

2n

n

)
Gn

(
K + (−1, 1)n

)
Gn

(
L + (−1, 1)n

)
.
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R-S type inequalities for the lattice point enumerator

Section/Projection Rogers-Shephard’s inequality

Let k ∈ {1, . . . , n− 1} and H ∈ Ln
k . Let K ∈ Kn be a convex body. Then

voln−k(PH⊥K )volk(K ∩ H) ≤
(
n

k

)
vol(K ).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let k ∈ {1, . . . , n − 1} and H = lin{e1, . . . , ek} ∈ Ln
k . Let K ⊂ Rn be a

non-empty convex bounded set. Then

Gn−k(PH⊥K )Gk(K ∩ H) ≤
(
n

k

)
Gn

(
K + (−1, 1)n

)
.
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A Berwald type inequality for the lattice point enumerator

Let K ∈ Kn be a convex body with dimK = n and let f : K −→ R≥0 be
a concave function. Then, for any 0 < p < q,( (

n+q
n

)
vol(K )

∫
K

f q(x)dx

)1/q

≤

( (
n+p
n

)
vol(K )

∫
K

f p(x)dx

)1/p

.

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K ⊂ Rn be a convex bounded set containing the origin and let
f : K −→ R≥0 be a concave function with f (0) = |f |∞. Then, for any
0 < p < q,

( (
n+q
n

)
Gn(K )

∑
x∈K∩Zn

f q(x)

)1/q

≤

 (
n+p
n

)
Gn(K )

∑
x∈(K+(−1,1)n)∩Zn

(
f �
)p

(x)

1/p

.

For a function φ defined on K we denote by φ� := φ ? χ
(−1,1)n

, where

φ(x) :=

{
φ(x) if x ∈ K ,

0 otherwise.
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Other R-S type inequalities for the lattice point enumerator
From this, arguing as in the continuous setting (for the above-mentioned
functions and values of p, and letting q →∞), we get the following:

Corollary (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K ⊂ Rn be a convex bounded set containing the origin. Then

Gn(K−K )vol(K ) ≤
(

2n

n

) ∑
x∈(K−K+(−1,1)n)∩Zn

sup
z∈(−1,1)n

vol
(
K∩

(
(x+z)+K

))
.

Gn(K+L)vol
(
K∩(−L)

)
≤
(

2n

n

) ∑
x∈(K+L+(−1,1)n)∩Zn

sup
z∈(−1,1)n

vol
(
K∩
(
(x+z)−L

))
.

Corollary (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let k ∈ {1, . . . , n − 1} and H ∈ Ln
k . Let K ⊂ Rn be a convex bounded set

containing the origin. Then

Gn−k(PH⊥K )volk(K∩H)≤
(
n

k

) ∑
x∈(P

H⊥K+C
H⊥ )∩Zn

sup
z∈C

H⊥

volk

(
K∩
(
(x+z)+H

))
.
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Discrete vs Continuous

Here we also prove that these new discrete analogues for Gn(·) imply the
corresponding results involving the volume vol(·).

I For the R-S type inequalities, it can be easily seen by means of the
following well-known fact:

lim
r→∞

Gn(rK )

vol(rK )
= 1.

I For the Berwald type inequalities, we exploit the following:

Given K ∈ Kn and a concave function f : K −→ R≥0, we have

lim
r→∞

 1

rn

∑
x∈(rK)∩Zn

f
(x
r

) =

∫
K

f (x)dx .

This is due to the fact that f is Riemann integrable (because it is
concave on the convex set K , whose boundary has null measure).
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