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Preliminaries

The Brunn-Minkowski inequality ((1/n)-concave form)

Let K, L C R" be non-empty compact sets. Then, for all A € (0, 1),

vol((1 — A)K + AL)Y™ > (1 — A)vol(K)Y" 4 Avol(L)Y/".
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Preliminaries

The Brunn-Minkowski inequality ((1/n)-concave form)

Let K, L C R" be non-empty compact sets. Then, for all A € (0, 1),

vol((1 — A)K + AL)Y™ > (1 — A)vol(K)Y" 4 Avol(L)Y/".

Here vol(-) is the Lebesgue measure and A+ B ={a+b:ac A b e B}

denotes the Minkowski sum of A and B, and rA = {ra :a € A} for any
r>0.
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— It yields the isoperimetric inequality in a few lines: Among all sets
with a fixed surface area measure, Euclidean balls maximize the volume.
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The Rogers-Shephard inequality

The Rogers-Shephard inequality, originally proven in 1957, provides us
with an upper bound for the volume of K — K:

The Rogers-Shephard inequality

Let K € K" be a convex body. Then

vol(K — K) < (2:) vol(K).
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The Rogers-Shephard inequality

The Rogers-Shephard inequality, originally proven in 1957, provides us
with an upper bound for the volume of K — K:

The Rogers-Shephard inequality
Let K € K" be a convex body. Then

vol(K — K) < <2n”) vol(K).

This relation for K — K can be generalized to the Minkowski addition of
two convex bodies as follows:

Let K, L € K" be convex bodies. Then

vol(K + L)vol(K N (—L)) < <2n"> vol(K)vol(L).

J. Yepes Nicolas (jointly with D. Alonso-Gutiérrez and E. Lucas) Rogers-Shephard type inequalities for the lattice point enumerator



The Rogers-Shephard inequality

In 1958 Rogers and Shephard gave the following lower bound for the
volume of K in terms of the volumes of a projection and a maximal
section of K:

Section/Projection Rogers-Shephard's inequality
Let ke {1,...,n—1} and H € L]. Let K € K" be a convex body. Then

voln_i(Prs K)vole(K N H) < (:) vol(K).
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The Rogers-Shephard inequality

In 1958 Rogers and Shephard gave the following lower bound for the
volume of K in terms of the volumes of a projection and a maximal
section of K:

Section/Projection Rogers-Shephard's inequality
Let ke {1,...,n—1} and H € L]. Let K € K" be a convex body. Then

voln_i(Prs K)vole(K N H) < (:) vol(K).

L] denotes the set of all k-dimensional linear subspaces of R” whereas
Py K is the orthogonal projection of K onto H.
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The Rogers-Shephard inequality

In 1958 Rogers and Shephard gave the following lower bound for the
volume of K in terms of the volumes of a projection and a maximal
section of K:

Section/Projection Rogers-Shephard's inequality
Let ke {1,...,n—1} and H € L]. Let K € K" be a convex body. Then

voln_i(Prs K)vole(K N H) < (:) vol(K).

L] denotes the set of all k-dimensional linear subspaces of R” whereas
Py K is the orthogonal projection of K onto H.

The Rogers-Shephard inequality for the difference body can be derived
from the latter result for sections & projections
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A related result: Berwald's inequality

Berwald's inequality

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K)/Kf (X)dX) .
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A related result: Berwald's inequality

Berwald's inequality

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K)/Kf (X)dX) .

This result provides one with an alternative unified proof of:
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A related result: Berwald's inequality

Berwald's inequality

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

("7)

1/q 1/p
— 0/ 9(x)dx 7("-’513) P(x)dx
(vol(K)/Kf (x)d ) S (vol(K)/Kf (x)d ) '

This result provides one with an alternative unified proof of:

@ Section/Projection Rogers-Shephard’s inequality
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A related result: Berwald's inequality

Berwald's inequality

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K)/Kf (X)dX) .

This result provides one with an alternative unified proof of:

@ Section/Projection Rogers-Shephard’s inequality ~ consider the
function f : Py1 K — R>( given by

f(x):volk(Kﬂ(x—&—H))l/k
for He L}, p=k (and n" = n— k), and let g — oc.
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A related result: Berwald's inequality

Berwald's inequality

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K)/Kf (X)dX) .

This result provides one with an alternative unified proof of:

@ Section/Projection Rogers-Shephard’s inequality ~ consider the
function f : Py1 K — R>( given by

f(x) = vol, (K N (x + H))l/k
for He L}, p=k (and n" = n— k), and let g — oc.
@ Rogers-Shephard’s inequality for K — K
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A related result: Berwald's inequality

Berwald's inequality

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K)/Kf (X)dX) .

This result provides one with an alternative unified proof of:

@ Section/Projection Rogers-Shephard’s inequality ~ consider the
function f : Py1 K — R>( given by
f(x) = vol, (K N (x + H))l/k
for He L}, p=k (and n" = n— k), and let g — oc.

@ Rogers-Shephard's inequality for K — K ~> consider the function
f: K — K — Rxq defined by

F(x) = vol (K N (x + K)) /",

p =n, and let g — oo.
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Discrete versions of classical inequalities

Nowadays there is a growing interest for studying the discrete analogues
of classical (continuous) results.
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Discrete versions of classical inequalities

Nowadays there is a growing interest for studying the discrete analogues
of classical (continuous) results.

In many of such results, the lattice point enumerator G,(-) plays the role
of the volume vol(+) in the continuous setting.
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Discrete versions of classical inequalities

Nowadays there is a growing interest for studying the discrete analogues
of classical (continuous) results.

In many of such results, the lattice point enumerator G,(-) plays the role
of the volume vol(+) in the continuous setting.

Gn(:) = ’~OZ”’ .
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Discrete versions of classical inequalities

Nowadays there is a growing interest for studying the discrete analogues
of classical (continuous) results.

In many of such results, the lattice point enumerator G,(-) plays the role
of the volume vol(+) in the continuous setting.

Gn(:) = ’~OZ”’ .

Some recent versions of classical inequalities for G(-)

@ Alexander, Henk and Zvavitch (2017): Koldobsky's slicing inequality.
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In many of such results, the lattice point enumerator G,(-) plays the role
of the volume vol(+) in the continuous setting.
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Some recent versions of classical inequalities for G(-)

@ Alexander, Henk and Zvavitch (2017): Koldobsky's slicing inequality.

@ Berg's thesis (2018): Brunn's inequality.
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Discrete versions of classical inequalities

Nowadays there is a growing interest for studying the discrete analogues
of classical (continuous) results.

In many of such results, the lattice point enumerator G,(-) plays the role
of the volume vol(+) in the continuous setting.

Ga(:) == |-NZ"|

Some recent versions of classical inequalities for G(-)
@ Alexander, Henk and Zvavitch (2017): Koldobsky's slicing inequality.

@ Berg's thesis (2018): Brunn's inequality.

o Freyer and Henk (2020): Meyer's inequality, reverse Meyer's
inequality and reverse Loomis-Whitney's inequality.
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B-M type inequalities for the lattice point enumerator

The Brunn-Minkowski inequality

Let K, L C R" be non-empty compact sets. Then, for all A € (0,1),

vol((1 — A)K + AL)Y™ > (1 — A)vol(K)Y/" 4 Avol(L)Y/".

Theorem (Iglesias, Y. N., Zvavitch (2020))

Let K,L C R” be non-empty bounded sets. Then, for all A € (0,1),
Go((1 = MK + AL+ (=1, 1)) Y™ > (1 = X)Ga(K)Y"™ + AGH(L)".

The inequality is sharp.
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B-M type inequalities for the lattice point enumerator

The Brunn-Minkowski inequality

Let K, L C R" be non-empty compact sets. Then, for all A € (0,1),

vol((1 — A)K + AL)Y™ > (1 — A)vol(K)Y/" 4 Avol(L)Y/".

Theorem (Iglesias, Y. N., Zvavitch (2020))

Let K,L C R” be non-empty bounded sets. Then, for all A € (0,1),
Go((1 = MK + AL+ (=1, 1)) Y™ > (1 = X)Ga(K)Y"™ + AGH(L)".

The inequality is sharp.

o Jointly with Iglesias and Lucas (2022), and exploiting a functional
approach, the latter result can be extended to the case of arbitrary
t,s > 0 (instead of 1 — X and \) by replacing (—1,1)" by
(-1, Tt +s])".
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B-M type inequalities for the lattice point enumerator

Theorem (Halikias, Klartag, Slomka (2020))

Let K, L C R” be non-empty bounded sets. Then

G, <K2“ ‘o, 1]”) > \/Ga(K)Gn (D).
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B-M type inequalities for the lattice point enumerator

Theorem (Halikias, Klartag, Slomka (2020))

Let K, L C R” be non-empty bounded sets. Then

G, <K2“ ‘o, 1]”) > \/Ga(K)Gn (D).

Theorem (Iglesias, Y. N., Zvavitch (2020))

Let K,L C R" be non-empty bounded sets. Then

1/n 1/n 1/n
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B-M type inequalities for the lattice point enumerator

Theorem (Halikias, Klartag, Slomka (2020))

Let K, L C R” be non-empty bounded sets. Then

G <K2+L +0, 1]”) > /Gn(K)Gn(L).

Theorem (Iglesias, Y. N., Zvavitch (2020))
Let K,L C R" be non-empty bounded sets. Then

1/n 1/n 1/n
GH<K+L+[O’1]H> _ GalK)Y/" + Gy(L/

2 2

Theorem (lglesias, Y. N., Zvavitch (2020))
Let K, L C R" be non-empty bounded sets. Then

2’2

ny\ 1/n 1/n 1/n
Gn<K+L { 1 1}) ZG"(K) + Gn(L) .

2 2
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R-S type inequalities for the lattice point enumerator?

Taking into account the strong connection between the Brunn-Minkowski
inequality and the Rogers-Shephard inequality, it is natural to wonder
about getting a discrete version of the latter, for G,(-).
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R-S type inequalities for the lattice point enumerator?

Taking into account the strong connection between the Brunn-Minkowski
inequality and the Rogers-Shephard inequality, it is natural to wonder
about getting a discrete version of the latter, for G,(-).

Theorem (Gardner, Gronchi (2001))

Let P C R? be a convex polygon with integer vertices. Then
G2(P — P) < 6G2(P) — b(P) — 5, (1)

where b(P) denotes the number of integer points in the boundary of P.
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R-S type inequalities for the lattice point enumerator?

Taking into account the strong connection between the Brunn-Minkowski
inequality and the Rogers-Shephard inequality, it is natural to wonder
about getting a discrete version of the latter, for G,(-).

Theorem (Gardner, Gronchi (2001))

Let P C R? be a convex polygon with integer vertices. Then
G2(P — P) < 6G2(P) — b(P) — 5, (1)

where b(P) denotes the number of integer points in the boundary of P.

However, for an arbitrary convex body K € K", one cannot expect to get

2”) Ga(K).

n

GalK - K) < (

J. Yepes Nicolas (jointly with D. Alonso-Gutiérrez and E. Lucas) Rogers-Shephard type inequalities for the lattice point enumerator



R-S type inequalities for the lattice point enumerator?

Taking into account the strong connection between the Brunn-Minkowski
inequality and the Rogers-Shephard inequality, it is natural to wonder
about getting a discrete version of the latter, for G,(-).

Theorem (Gardner, Gronchi (2001))

Let P C R? be a convex polygon with integer vertices. Then
G2(P — P) < 6G2(P) — b(P) — 5, (1)

where b(P) denotes the number of integer points in the boundary of P.

However, for an arbitrary convex body K € K", one cannot expect to get

Go(K — K) < (2:) Go(K).

Indeed, just considering K = [—~1/2,1/2]" one would obtain 3" < (*7),
which is false for n =1, 2,3, 4.
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R-S type inequalities for the lattice point enumerator?

Taking into account the strong connection between the Brunn-Minkowski
inequality and the Rogers-Shephard inequality, it is natural to wonder
about getting a discrete version of the latter, for G,(-).

Theorem (Gardner, Gronchi (2001))

Let P C R? be a convex polygon with integer vertices. Then
G2(P — P) < 6G2(P) — b(P) — 5, (1)

where b(P) denotes the number of integer points in the boundary of P.

However, for an arbitrary convex body K € K", one cannot expect to get

Go(K — K) < (2:) Go(K).

Indeed, just considering K = [—~1/2,1/2]" one would obtain 3" < (*7),
which is false for n =1, 2,3, 4.
Furthermore, as pointed out by Freyer&Henk (2021), there is neither a

possible extension of (1) in dimension n > 3 nor even a hope to obtain
Gp(K = K) < ¢,G,(K) for some constant ¢, > 0, for n > 3.
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R-S type inequalities for the lattice point enumerator

vol(K + L)vol(K N (—L)) < <2n”> vol(K)vol(L). J
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R-S type inequalities for the lattice point enumerator

vol(K + L)vol(K N (—L)) < <2n”> vol(K)vol(L).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K,L C R" be non-empty convex bounded sets. Then

Ga(K + L)Ga(K N (=L)) < (2,1”) G (K + (=1,1)")Gn(L + (=1,1)").
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R-S type inequalities for the lattice point enumerator

vol(K — K) < <2n”) vol(K).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))
Let K C R" be a non-empty convex bounded set. Then

a0 (o) (£2)).

vol(K + L)vol (K N (—L)) < <2n”> vol(K)vol(L).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))
Let K,L C R" be non-empty convex bounded sets. Then

Ga(K + L)Ga(K N (=L)) < (2n”) G (K + (=1,1)")Gn(L + (=1,1)").
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R-S type inequalities for the lattice point enumerator

Section/Projection Rogers-Shephard’s inequality
Let k€ {1,...,n—1} and H € L}. Let K € K" be a convex body. Then

voly_i(Pys K)vola(K N H) < (:) vol(K).

J. Yepes Nicolas (jointly with D. Alonso-Gutiérrez and E. Lucas) Rogers-Shephard type inequalities for the lattice point enumerator



R-S type inequalities for the lattice point enumerator

Section/Projection Rogers-Shephard’s inequality
Let ke {1,...,n—1} and H € L]. Let K € K" be a convex body. Then

voly_i(Pys K)vola(K N H) < (:) vol(K).

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let ke {1,...,n—1} and H =lin{es,...,ex} € L]. Let K CR" be a
non-empty convex bounded set. Then

Gn_k(PHL K)Gk(K N H) < <Z) Gn(K+ (*1,1)").
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A Berwald type inequality for the lattice point enumerator

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

5 o N N
(V()I(K)/Kf (x)dx) < <VO1(K) Kf (x)dx) .
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A Berwald type inequality for the lattice point enumerator

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K) f (x)dx) .

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K C R" be a convex bounded set containing the origin and let
f : K — R>q be a concave function with f(0) = |f|~. Then, for any
0<p<aq,

1/p

1/a (n+P)
f%x)) < [ L ) ()
XG;Z" Gn(K) x€(K+ 21: ")mZ"( )
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A Berwald type inequality for the lattice point enumerator

Let K € K" be a convex body with dim K = n and let f : K — R>( be
a concave function. Then, for any 0 < p < q,

) i) () T o)
(V()I(K)/Kf (x)dx) < (VOI(K) f (x)dx) .

Theorem (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K C R" be a convex bounded set containing the origin and let
f : K — R>q be a concave function with f(0) = |f|~. Then, for any
0<p<aq,

("+9) 1/q ("+0)

n fq(X) S n
6.k, 2=, G:(K)
For a function ¢ defined on K we denote by ¢° := ¢ x x_, ., where

— . [ ox) ifxeK,
9(x) = { 0 otherwise.

1/p

xE€(K+(—1,1)")nz"
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Other R-S type inequalities for the lattice point enumerator

From this, arguing as in the continuous setting (for the above-mentioned
functions and values of p, and letting g — 00), we get the following:
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Other R-S type inequalities for the lattice point enumerator

From this, arguing as in the continuous setting (for the above-mentioned
functions and values of p, and letting g — 00), we get the following:

Corollary (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K C R” be a convex bounded set containing the origin. Then

Gh(K—=K)vol(K) < <2nn) Z sup Vol(Kﬂ((x—i—z)—i—K)).
x€(

K—K+(—1,1)1)nzn 2€(=1,1)"
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Other R-S type inequalities for the lattice point enumerator

From this, arguing as in the continuous setting (for the above-mentioned
functions and values of p, and letting g — 00), we get the following:

Corollary (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K C R” be a convex bounded set containing the origin. Then

Gh(K—=K)vol(K) < <2n) Z sup Vol(Kﬂ((x—i—z)—i—K)).
x€(

n _
K—K+(—1,1)1)nzn 2€(=1,1)"

n —_ n
x€(K+L+(—1,1)")NzZr ze(—1,1)
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Other R-S type inequalities for the lattice point enumerator

From this, arguing as in the continuous setting (for the above-mentioned
functions and values of p, and letting g — 00), we get the following:

Corollary (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let K C R” be a convex bounded set containing the origin. Then

Gh(K—=K)vol(K) < <2nn) Z sup Vol(Kﬁ((x—i—z)—i—K)).
x€(

K—K+(—1,1)1)nzn 2€(=1,1)"

Corollary (Alonso-Gutiérrez, Lucas, Y. N. (2022+))

Let ke {1,...,n—1} and H € L]. Let K C R” be a convex bounded set
containing the origin. Then

G i(Pye K)vol (KNH) < (Z) 3 sup vol (Km ((x—l—z)+H)) :
x€(Py K+C,, )nzn ZSCnL
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Discrete vs Continuous

Here we also prove that these new discrete analogues for G,(-) imply the
corresponding results involving the volume vol(-).

J. Yepes Nicolas (jointly with D. Alonso-Gutiérrez and E. Lucas) Rogers-Shephard type inequalities for the lattice point enumerator



Discrete vs Continuous

Here we also prove that these new discrete analogues for G,(-) imply the
corresponding results involving the volume vol(-).

» For the R-S type inequalities, it can be easily seen by means of the
following well-known fact:
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Discrete vs Continuous

Here we also prove that these new discrete analogues for G,(-) imply the
corresponding results involving the volume vol(-).

» For the R-S type inequalities, it can be easily seen by means of the
following well-known fact:

lim L"(rK)

=1
r—o0 vol(rK)

» For the Berwald type inequalities, we exploit the following:

Given K € K" and a concave function f : K — R>(, we have

i 3 f(5)| = ) e

x€(rK)NZn
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Discrete vs Continuous

Here we also prove that these new discrete analogues for G,(-) imply the
corresponding results involving the volume vol(-).

» For the R-S type inequalities, it can be easily seen by means of the
following well-known fact:

lim L"(rK)

=1
r—o0 vol(rK)

» For the Berwald type inequalities, we exploit the following:

Given K € K" and a concave function f : K — R>(, we have

i 3 f(5)| = ) e

x€(rK)NZn

This is due to the fact that f is Riemann integrable (because it is
concave on the convex set K, whose boundary has null measure).
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Thank you very much!!

J. Yepes Nicolas (jointly with Alonso-Gutiérrez and cas) Rogers-Shephard type inequalities for the lattice point enumerator



