Affine Minkowski valuations

Jakob Henkel, based on a joint work with Thomas Wannerer

Friedrich-Schiller-Universität Jena

23.06.2022

Outline

- 1 Notation and background
- **2** Examples of SL(V) equivariant Minkowski valuations
- 3 Main result
- 4 Sketch of the proof
- 5 New examples

Notation & Definition

- $V = \mathbb{R}^n$, W real vector space
- $\operatorname{MVal}(V, W)$ space of continuous translation invariant Minkowski valuations $\mathcal{K}(V) \to \mathcal{K}(W)$

Definition (Ludwig '05)

 $Z \colon \mathcal{K}(V) \to \mathcal{K}(W)$ is called *Minkowski valuation* if

$$Z(K) + Z(L) = Z(K \cap L) + Z(K \cup L),$$

whenever $K, L, K \cup L \in \mathcal{K}(V)$.

Z is

- translation invariant if Z(K + t) = Z(K)
- even if Z(K) = Z(-K)
- homogeneous of degree k if $Z(\lambda K) = \lambda^k Z(K)$, $\lambda \ge 0$

Representations of SL(V)

- If SL(V) acts on W linearly, we say W is a representation of SL(V).
- W is *irreducible* if there is no nontrivial proper SL(V) invariant subspace.
- lacksquare Z is $\mathrm{SL}(V)$ equivariant if

$$Z(\phi \cdot K) = \phi \cdot Z(K)$$

Examples: SL(V) acts on

- $V \text{ by } g \cdot v := g(v).$
- $V^* \text{ by } g \cdot \xi := \xi \circ g^{-1}.$
- \blacksquare \mathbb{R} by $g \cdot v := v$.

Exterior and Symmetric Power

 $\mathrm{SL}(V)$ acts on $V^{\otimes k}$ by

$$g\cdot (v_1\otimes \cdots \otimes v_k):=g(v_1)\otimes \cdots \otimes g(v_k).$$

 $\wedge^k V$, $\operatorname{Sym}^k V \subset V^{\otimes k}$ irreducible subspaces.

 $\wedge^k V := \langle v_1 \wedge \cdots \wedge v_k : v_i \in V \rangle$, where

$$v_1 \wedge \cdots \wedge v_k := \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \cdot v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$$

■ $\operatorname{Sym}^k V := \langle v_1 \odot \cdots \odot v_k : v_i \in V \rangle$, where

$$v_1 \odot \cdots \odot v_k := \frac{1}{k!} \sum_{\sigma \in S_k} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}.$$

Examples

■ For fixed closed intervals $I_1, I_2 \subset \mathbb{R}$ we have

$$J \colon \mathcal{K}(V) \to \mathcal{K}(\mathbb{R}), \quad K \mapsto I_1 + \text{vol}(K) \cdot I_2.$$

Difference body

$$D: \mathcal{K}(V) \to \mathcal{K}(V), \quad K \mapsto K + (-K).$$

■ Projection body $\Pi \colon \mathcal{K}(V) \to \mathcal{K}(V^*)$ defined by the support function

$$h_{\Pi K}(u) = \frac{n}{2} V_n(K[n-1], [-u, u]),$$

where V_n denotes the mixed volume. Or equivalently, if V^* is identified with V via the euclidean structure:

$$h_{\Pi K}(u) = \text{vol}_{n-1}(\pi_{u^{\perp}}(K)), \quad u \in S^{n-1}.$$

All these examples are continuous, $\mathrm{SL}(V)$ equivariant, translation invariant Minkowski valuations.

Difference body vs. Projection body

and

Via
$$V^*= \wedge^{n-1}V$$
:
$$\Pi\colon \mathcal{K}(V)\to \mathcal{K}(\wedge^{n-1}V).$$
 Via $V= \wedge^1V$:
$$D\colon \mathcal{K}(V)\to \mathcal{K}(\wedge^1V)$$

What about k-th projection bodies $\mathcal{K}(V) \to \mathcal{K}(\wedge^k V)$ for 1 < k < n-1?

 $h_{DK}(u) = 2 \cdot \text{vol}_1(\pi_{\langle u \rangle}(K)).$

Question

Question

Are there more continuous, $\mathrm{SL}(V)$ equivariant Minkowski valuations?

What is already known?

Theorem (Ludwig '05)

Let $n \ge 2$. If $Z \in \mathrm{MVal}(V, V)$ (resp. $Z \in \mathrm{MVal}(V, V^*)$) is $\mathrm{SL}(V)$ equivariant, then Z is a multiple of the difference body (resp. projection body).

Main result

Theorem (H.-Wannerer '22+)

Let W be an irreducible representation of $\mathrm{SL}(V)$ (of finite dimension). If $Z \in \mathrm{MVal}(V,W)$ is non-trivial and $\mathrm{SL}(V)$ equivariant, then W is isomorphic (as representation) to either V,V^* or \mathbb{R} .

Klain function

 $\operatorname{Val}_k^{(+)}(V)$ space of continuous translation invariant (even) valuations $\mathcal{K}(V) \to \mathbb{R}$ homogeneous of degree k.

Theorem (Hadwiger '57)

 $\varphi \in \operatorname{Val}_n(V)$ is a multiple of the volume.

Let $E \in Gr_k(V)$. Hadwiger implies

$$\varphi \in \operatorname{Val}_k \Rightarrow \varphi|_{\mathcal{K}(E)} = c_E \cdot \operatorname{vol}_k.$$

The map

$$\mathrm{Kl}_{\varphi}\colon \mathrm{Gr}_k(V)\to \mathbb{R},\quad E\mapsto c_E$$

is called Klain function.

Theorem (Klain '99)

 $\varphi \in \operatorname{Val}_k^+(V)$ is uniquely determined by its Klain function.

Sketch of the proof

■ It is enough to consider $Z \in MVal_k^+(V, W)$, where $k \in \{0, ..., n\}$.

Theorem

If $Z \in \mathrm{MVal}_k^+(V, W)$ is $\mathrm{SL}(V)$ equivariant it is uniquely determined by a convex body $\mathrm{Kl}_Z \subset W$. Moreover $\mathrm{Kl}_Z = Z(K)$, where K is any convex body in $\mathbb{R}^k \subset V$ with $\mathrm{vol}_k(K) = 1$.

Proof uses construction of the Klain function (Hadwiger) and injectivity of the Klain embedding (Klain).

■ Kl_Z is invariant under

$$\begin{pmatrix} 1 & * & * \\ & \ddots & * \\ & & 1 \end{pmatrix}$$
 .

Sketch of the proof

- Using the theory of highest weights Kl_Z is a line segment in the highest weight space.
- Let

$$\begin{pmatrix} a_1 & & \\ & \ddots & \\ & & a_n \end{pmatrix} \in \mathrm{SL}(V)$$

act on Kl_Z to compute the highest weight of W and find $W = \wedge^k V$.

■ To show $k \in \{0, 1, n-1, n\}$ use that the Klain embedding is a proper subset of $C(Gr_k(n))$ if 1 < k < n-1 (Alesker–Bernstein).

Omitting translation invariance: New examples

1 For $p \in \mathbb{N}$ define $M^p : \mathcal{K}(V) \to \mathcal{K}(\operatorname{Sym}^p V)$ by

$$h_{M^pK}: (\operatorname{Sym}^p(V))^* \to \mathbb{R}, \quad u \mapsto \int\limits_K |\langle u, x^{\odot p} \rangle| dx.$$

For p = 1 this is known as the moment body.

2 For $p, q \in \mathbb{N}$ define

$$G_{p,q} \colon \mathcal{K}_{(o)}(V) \to \mathcal{K}(\operatorname{Sym}^p V \otimes \operatorname{Sym}^q V^*)$$

by

$$h_{G_{p,q}K}(u) = \int_{\mathbb{R}^{n}} |\langle u, x^{\odot p} \otimes y^{\odot q} \rangle| \langle x, y \rangle^{-q} i_{x} \text{vol.}$$

Thank you!