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Basic notation

Bn = {z ∈ Cn : ||z|| < 1} the unit ball in Cn

Sn = {z ∈ Cn : ||z|| = 1} the unit sphere in Cn

σ - normed Lebesgue’s measure on Sn, i.e. σ(Sn) = 1

O(Bd ) space of functions holomorphic in Bn

Hp(Bn) =
{

f ∈ O(Bn) : sup
0<r<1

( ∫
Sn

|f (rz)|pdσ(z)
) 1

p
< ∞

}
, 0 < p < ∞

H∞(Bn) =
{

f ∈ O(Bn) : sup
z∈Sn

|f (z)| < ∞
}

||f ||p =
( ∫

Sn

|f (z)|pdσ(z)
) 1

p
, 1 ≤ p < ∞, ||f ||∞ = sup

z∈Sn
|f (z)|.
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Basic notation cont.

Let Ω ⊂ Cn be a domain with a defining function ρ of the class C2. We say that Ω is
stictly convex in P ∈ ∂Ω, if

2Re
( n∑

j,k=1

∂2ρ

∂zj ∂zk
(P)wj wk

)
+ 2

( n∑
j,k=1

∂2ρ

∂zj ∂zk
(P)wj wk

)
> 0

for any w ∈ Cn such that
n∑

j=1

∂ρ

∂zj
(P)wj = 0.

We say that Ω is a circular domain, if λz ∈ Ω for any λ ∈ ∂D and z ∈ Ω.

Let f ∈ O(Ω). For z ∈ ∂Ω function fz : D ∋ λ 7−→ f (λz) is called a slice function of f .

We say that pm is a homogeneous polynomial of degree m ∈ N, if

pm(λz) = λnpm(z), λ ∈ C, z ∈ Cn.

Observe that if O(Ω) ∋ f (z) =
∑∞

m=0 pm(z), then fz (λ) =
∑∞

m=0 pm(z)λm, i.e.
pm(z) are Taylor coefficients of the function fz .
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Ryll-Wojtaszczyk homogeneous polynomials

We say that polynomial pm of degree m ∈ N is a Ryll-Wojtaszczyk polynomial
(RW-polynomial), if ∣∣∣∣pm

∣∣∣∣
∞

= 1 and
∣∣∣∣pm

∣∣∣∣
2

≥ 2−n√
π.

Existence of such polynomials for any m ∈ N was proved by Jerzy Ryll and
Przemysław Wojtaszczyk in 1983 in the paper
On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276
(1983), p. 107-116.

Motivation: Is the identity map id : H∞(Bn) 7−→ H1(Bn) a compact linear operator
when n > 1? Answer: No.

There are at least 3 proofs of the existence of RW-polynomials
Ryll, Wojtaszczyk, 1983 - 2 proofs
Rudin, 1985
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Inner function in Cn

Function f ∈ O(Bn) is said to be inner, if

|f ∗(z)| := lim
r→1−

|f (rz)| = 1 σ − a.e. on Sn.

By use of RW-polynomials Aleksandrov was able to construct by induction a sequence
of polynomials {Rk}k≥0 with the following properties:

1 Rk(0) = 0
2

∫
Sn

RkRl dσ = 0 for k ̸= l

3 |Rk+1| < 1 −
∣∣ ∑k

j=0 Rj
∣∣ on Sn

4
∫
Sn

|Rk+1|2dσ > 4−n
∫
Sn

(
1 −

∣∣ ∑k
j=0 Rj

∣∣)2dσ

Theorem (Wojtaszczyk, 1997)

There exists K = K(n) ∈ N and a sequence of homogeneous polynomials pm of degree
m such that

1 |pn| ≤ 2 on Sn

2 for large s ∈ N we have
∑K(s+1)−1

m=Ks |pm| ≥ 1
2 on Sn.
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Homogeneous polynomials and inner functions on circular,
strictly convex domains

From now Ω is a bounded, circular, strictly convex domain in Cn.

Theorem (Kot, 2009)

There exists K = K(∂Ω) ∈ N such that there exists N0 ∈ N such that for all integers
N ≥ N0 and n1, . . . , nK ∈ N with N ≤ n1 ≤ · · · ≤ nK ≤ 2N there exist homogeneous
polynomials u1, . . . , uK of degrees n1, . . . , nK , respectively, such that
1
2

< max
1≤j≤K

|uj (z)| < 1 for all z ∈ ∂Ω.

Theorem (Kot, 2017)

There exists an inner function f ∈ O(Ω) such that for all z ∈ ∂Ω we have the
following properties:

1 |f ∗
z | = 1 a.e. on ∂D

2 fz has a series of Taylor coefficients divergent with every power s ∈ [0, 2), i.e. if
fz (λ) =

∑∞
n=1 pn(z)λn, then

∑∞
n=1 |pn(z)|s = ∞ for s < 2.

In above theorem 1 may be replaced with any strictly positive lower semi-continuous
function on ∂Ω.
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K -summing polynomials and lacunary K -summing polynomials

Let K ∈ N. We say that Q =
∑K

j=1 uj , where deg(uj ) = nj ∈ N, j = 1, 2, . . . , K , is a
K -summing polynomial, if it possesses the following properties:

i) max
1≤j≤K

|uj (z)| ≤ 1 for z ∈ ∂Ω

ii) 1
2 deg(Q) ≤ n1 < n2 < · · · < nK = deg(Q).

We say that Q is a lacunary K -summing polynomial, if it is a K -summing polynomial
and the following conditions hold:

iii) max
1≤j≤K

|uj (z)| ≥
1
2

for z ∈ ∂Ω

iv) K√2 <
nj+1

nj
< 2, j = 1, 2, . . . , K − 1.

Theorem (Kot, 2009)
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n1, . . . , nK ∈ N such that N ≤ n1 ≤ · · · ≤ nK ≤ 2N there exist homogeneous
polynomials u1, . . . , uK of degrees n1, . . . , nK , respectively, such that
1
2

< max
1≤j≤K

|uj (z)| < 1 for all z ∈ ∂Ω.

8/14



K -summing polynomials and lacunary K -summing polynomials

Let K ∈ N. We say that Q =
∑K

j=1 uj , where deg(uj ) = nj ∈ N, j = 1, 2, . . . , K , is a
K -summing polynomial, if it possesses the following properties:

i) max
1≤j≤K

|uj (z)| ≤ 1 for z ∈ ∂Ω

ii) 1
2 deg(Q) ≤ n1 < n2 < · · · < nK = deg(Q).

We say that Q is a lacunary K -summing polynomial, if it is a K -summing polynomial
and the following conditions hold:

iii) max
1≤j≤K

|uj (z)| ≥
1
2

for z ∈ ∂Ω

iv) K√2 <
nj+1

nj
< 2, j = 1, 2, . . . , K − 1.

Theorem (Kot, 2009)

There exists K = K(∂Ω) ∈ N for which there exists N0 ∈ N such that for N ≥ N0 and
n1, . . . , nK ∈ N such that N ≤ n1 ≤ · · · ≤ nK ≤ 2N there exist homogeneous
polynomials u1, . . . , uK of degrees n1, . . . , nK , respectively, such that
1
2

< max
1≤j≤K

|uj (z)| < 1 for all z ∈ ∂Ω.

8/14



Operators Rp i Sp

Let Ω ⊂ Cn be a bounded, balanced, strictly convex domain with the boundary of the
class C2. Fix p > 0. For a holomorphic function f ∈ O(Ω) we may consider the
integral operator Rp defined as follows

Rp(f )(z) :=
∫ 1

0
|f (zt)|pdt, z ∈ ∂Ω

and called Radon operator. Then for a given strictly positive, continuous function
Φ: ∂Ω 7−→ R+ we look for a function f ∈ O(Ω) such that

Rp(f ) = Φ on ∂Ω.

For a sequence {uk}k∈N of homogeneous polynomials of degree nk ∈ N respectively,
we may define the operator Sp as follows

Sp : O(Ω) ∋
∞∑

k=1

uk 7−→
∞∑

k=1

uk
p√pnk + 1

∈ O(Ω).

Notice that if f =
∑∞

k=1 uk , then Sp(f )z (λ) =
∑∞

k=1
uk (z)

p√pnk +1
λnk , so uk (z)

p√pnk +1
are

Taylor coefficients of slice functions of Sp(f ).
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Properties of lacunary K−summing polynomials

There exists N ∈ N large enough such that for any lacunary K -summing polynomial Q
of degree greater than N, bounded continuous functions f , g and ε ∈ (0, 1) the
following conditions hold on ∂Ω∣∣Rp

(
deg(Q)fQ + g

)
− Rp

(
deg(Q)fQ

)
− Rp(g)

∣∣ < ε∣∣Rp
(

deg(Q)fQ
)

− |f |pRp(deg(Q)Q)
∣∣ < ε∣∣Sp

(
p
√

p deg(Q)fQ
)

− f Sp
(

p
√

p deg(Q)Q
)∣∣ < ε, f -polynomial∣∣∣Sp

(
p
√

p deg(Q)Q
)∣∣∣ < K p√2

there exist constants cK , CK such that

cK ≤
∫ 1

0
p deg(Q)

∣∣Q(zt)
∣∣pdt ≤ CK , z ∈ ∂Ω
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Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let p > 0 and Φ be a strictly positive, continuous function on ∂Ω. There exists a
function G ∈ O(Ω) such that Rp(G)(z) = Φ(z) for z ∈ ∂Ω and Sp(G) ∈ C(Ω).

Sketch of the proof
1 There exist δ ∈ (0, 1) and γ > 0 such that if φ is a strictly positive, continuous

function on ∂Ω and ε, then there exists a polynomial F :=
∑N

m=1 cmfmQm,
where Qm are lacunary K−summing polynomials, fm are polynomials such that
ψ
2N < fm < ψ

N on ∂Ω and cm-constants, with the following properties:
(c1) δΨ < Rp(F ) < Ψ on ∂Ω
(c2)

∣∣Rp(g + F ) − Rp(g) − Rp(F )
∣∣ < ε for any bounded and continuous g

(c3)
∣∣Sp(F )

∣∣ < γ(Ψ)
1
p on ∂Ω.

2 Construct by induction a sequence of polynomials
{

Fj
}

j≥0
such that on ∂Ω(

1 − δ
2

)(
Φ − Rp

(∑j−1
i=0

Fi
))

> Φ − Rp
(∑j

i=0
Fi

)
> 0∣∣Sp(Fj )

∣∣ < γ
(

1 − δ
2

) j
p ||Φ||

1
p
∂Ω

3 G :=
∑∞

j=0 Fj satisfies the Theorem.
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Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on ∂Ω. There exists a holomorphic

function f =
∞∑

n=0

pn, where pn are homogeneous polynomials, such that

1 Rp(f ) = Φ on ∂Ω
2 every slice function of Sp(f ) has a divergent series of Taylor coefficients with

every exponent s < min{1, p}, i.e.
∞∑

n=0

( |pn(z)|
p√pn + 1

)s
= ∞, s < min{1, p}, z ∈ ∂Ω

3 if p ≤ 1, then Sp(f ) ∈ C(Ω)
4 if p ∈ (1, 2], then Sp(f ) ∈ L2(z∂D), z ∈ ∂Ω.

Due to orthogonality of pn the condition 2 holds also for p = 2.
Conditions 1 − 2 are satisfied also when Φ is lower semi-continuous.
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