

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Ryll-Wojtaszczyk homogeneous polynomials on strictly convex circular domains in \mathbb{C}^n

Paulina Pierzchała¹ This is a joint work with Piotr Kot

¹Faculty of Applied Mathematics AGH University of Science and Technology in Kraków, Poland

geOmetry, anaLysis & convExity, Sevilla, June 20th 2022

- History of Ryll-Wojtaszczyk homogeneous polynomials on the unit ball in \mathbb{C}^n
- Application of Ryll-Wojtaszczyk homogeneous polynomials in the construction of an inner function in the unit ball in \mathbb{C}^n
- · Homogeneous polynomials on circular, strictly convex domains
- Applications of homogeneous polynomials on circular, strictly convex domains
 - Inner functions
 - Radon inversion problem for holomorphic functions
 - Holomorphic functions with divergent series of Taylor coefficients

- $\mathbb{B}_n = \{z \in \mathbb{C}^n : ||z|| < 1\}$ the unit ball in \mathbb{C}^n
- $\mathbb{S}_n = \{z \in \mathbb{C}^n : ||z|| = 1\}$ the unit sphere in \mathbb{C}^n
- σ normed Lebesgue's measure on \mathbb{S}_n , i.e. $\sigma(\mathbb{S}_n) = 1$
- $\mathcal{O}(\mathbb{B}_d)$ space of functions holomorphic in \mathbb{B}_n

•
$$\mathcal{H}_p(\mathbb{B}_n) = \left\{ f \in \mathcal{O}(\mathbb{B}_n) \colon \sup_{0 < r < 1} \left(\int_{\mathbb{S}_n} |f(rz)|^p d\sigma(z) \right)^{\frac{1}{p}} < \infty \right\}, \ 0 < p < \infty$$

•
$$\mathcal{H}_{\infty}(\mathbb{B}_n) = \left\{ f \in \mathcal{O}(\mathbb{B}_n) : \sup_{z \in \mathbb{S}_n} |f(z)| < \infty \right\}$$

•
$$||f||_p = \left(\int_{\mathbb{S}_n} |f(z)|^p d\sigma(z)\right)^{\frac{1}{p}}, \ 1 \leq p < \infty, \quad ||f||_{\infty} = \sup_{z \in \mathbb{S}_n} |f(z)|.$$

Let $\Omega \subset \mathbb{C}^n$ be a domain with a defining function ρ of the class \mathcal{C}^2 . We say that Ω is stictly convex in $P \in \partial \Omega$, if

$$2\operatorname{Re}\left(\sum_{j,k=1}^{n}\frac{\partial^{2}\rho}{\partial z_{j}\partial z_{k}}(P)w_{j}w_{k}\right)+2\left(\sum_{j,k=1}^{n}\frac{\partial^{2}\rho}{\partial z_{j}\partial\overline{z}_{k}}(P)w_{j}\overline{w}_{k}\right)>0$$

for any
$$w\in \mathbb{C}^n$$
 such that $\sum_{j=1}^n rac{\partial
ho}{\partial z_j}(P)w_j=0.$

We say that Ω is a circular domain, if $\lambda z \in \Omega$ for any $\lambda \in \partial \mathbb{D}$ and $z \in \Omega$.

Let $f \in \mathcal{O}(\Omega)$. For $z \in \partial \Omega$ function $f_z : \mathbb{D} \ni \lambda \mapsto f(\lambda z)$ is called a slice function of f.

We say that p_m is a homogeneous polynomial of degree $m \in \mathbb{N}$, if

$$p_m(\lambda z) = \lambda^n p_m(z), \quad \lambda \in \mathbb{C}, \ z \in \mathbb{C}^n.$$

Observe that if $\mathcal{O}(\Omega) \ni f(z) = \sum_{m=0}^{\infty} p_m(z)$, then $f_z(\lambda) = \sum_{m=0}^{\infty} p_m(z)\lambda^m$, i.e. $p_m(z)$ are Taylor coefficients of the function f_z .

Let $\Omega \subset \mathbb{C}^n$ be a domain with a defining function ρ of the class \mathcal{C}^2 . We say that Ω is stictly convex in $P \in \partial \Omega$, if

$$2\operatorname{Re}\left(\sum_{j,k=1}^{n}\frac{\partial^{2}\rho}{\partial z_{j}\partial z_{k}}(P)w_{j}w_{k}\right)+2\left(\sum_{j,k=1}^{n}\frac{\partial^{2}\rho}{\partial z_{j}\partial\overline{z}_{k}}(P)w_{j}\overline{w}_{k}\right)>0$$

for any
$$w\in \mathbb{C}^n$$
 such that $\sum_{j=1}^n rac{\partial
ho}{\partial z_j}(P) w_j=0.$

We say that Ω is a circular domain, if $\lambda z \in \Omega$ for any $\lambda \in \partial \mathbb{D}$ and $z \in \Omega$.

Let $f \in \mathcal{O}(\Omega)$. For $z \in \partial \Omega$ function $f_z : \mathbb{D} \ni \lambda \mapsto f(\lambda z)$ is called a slice function of f.

We say that p_m is a homogeneous polynomial of degree $m \in \mathbb{N}$, if

$$p_m(\lambda z) = \lambda^n p_m(z), \quad \lambda \in \mathbb{C}, \ z \in \mathbb{C}^n.$$

Observe that if $\mathcal{O}(\Omega) \ni f(z) = \sum_{m=0}^{\infty} p_m(z)$, then $f_z(\lambda) = \sum_{m=0}^{\infty} p_m(z)\lambda^m$, i.e. $p_m(z)$ are Taylor coefficients of the function f_z .

We say that polynomial p_m of degree $m \in \mathbb{N}$ is a *Ryll-Wojtaszczyk polynomial* (RW-polynomial), if

$$\left|\left|p_{m}\right|\right|_{\infty}=1$$
 and $\left|\left|p_{m}\right|\right|_{2}\geq2^{-n}\sqrt{\pi}.$

Existence of such polynomials for any $m \in \mathbb{N}$ was proved by Jerzy Ryll and Przemysław Wojtaszczyk in 1983 in the paper *On homogeneous polynomials on a complex ball*, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

Motivation: Is the identity map $id: \mathcal{H}_{\infty}(\mathbb{B}_n) \longmapsto \mathcal{H}_1(\mathbb{B}_n)$ a compact linear operator when n > 1? Answer: No.

There are at least 3 proofs of the existence of RW-polynomials

- Ryll, Wojtaszczyk, 1983 2 proofs
- Rudin, 1985

We say that polynomial p_m of degree $m \in \mathbb{N}$ is a *Ryll-Wojtaszczyk polynomial* (RW-polynomial), if

$$\left|\left|p_{m}\right|\right|_{\infty}=1 \text{ and } \left|\left|p_{m}\right|\right|_{2}\geq 2^{-n}\sqrt{\pi}.$$

Existence of such polynomials for any $m \in \mathbb{N}$ was proved by Jerzy Ryll and Przemysław Wojtaszczyk in 1983 in the paper

On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

Motivation: Is the identity map $id: \mathcal{H}_{\infty}(\mathbb{B}_n) \mapsto \mathcal{H}_1(\mathbb{B}_n)$ a compact linear operator when n > 1? Answer: No.

There are at least 3 proofs of the existence of RW-polynomials

- Ryll, Wojtaszczyk, 1983 2 proofs
- Rudin, 1985

We say that polynomial p_m of degree $m \in \mathbb{N}$ is a *Ryll-Wojtaszczyk polynomial* (RW-polynomial), if

$$\left|\left|p_{m}\right|\right|_{\infty}=1 \text{ and } \left|\left|p_{m}\right|\right|_{2}\geq 2^{-n}\sqrt{\pi}.$$

Existence of such polynomials for any $m \in \mathbb{N}$ was proved by Jerzy Ryll and Przemysław Wojtaszczyk in 1983 in the paper

On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

Motivation: Is the identity map $id: \mathcal{H}_{\infty}(\mathbb{B}_n) \mapsto \mathcal{H}_1(\mathbb{B}_n)$ a compact linear operator when n > 1? Answer: No.

There are at least 3 proofs of the existence of RW-polynomials

- Ryll, Wojtaszczyk, 1983 2 proofs
- Rudin, 1985

Function $f \in \mathcal{O}(\mathbb{B}_n)$ is said to be inner, if

$$|f^*(z)| := \lim_{r \to 1^-} |f(rz)| = 1$$
 σ – a.e. on \mathbb{S}_n

By use of RW-polynomials Aleksandrov was able to construct by induction a sequence of polynomials $\{R_k\}_{k>0}$ with the following properties:

•
$$R_k(0) = 0$$

• $\int_{\mathbb{S}_n} R_k \overline{R_l} d\sigma = 0$ for $k \neq l$
• $|R_{k+1}| < 1 - \left| \sum_{j=0}^k R_j \right|$ on \mathbb{S}_n
• $\int_{\mathbb{S}_n} |R_{k+1}|^2 d\sigma > 4^{-n} \int_{\mathbb{S}_n} \left(1 - \left| \sum_{j=0}^k R_j \right| \right)^2 d\sigma$

Theorem (Wojtaszczyk, 1997)

There exists $K=K(n)\in\mathbb{N}$ and a sequence of homogeneous polynomials p_m of degree m such that

$$|p_n| \leq 2 \text{ on } \mathbb{S}_n$$

② for large
$$s\in\mathbb{N}$$
 we have $\sum_{m=Ks}^{K(s+1)-1}|\mathsf{p}_m|\geqrac{1}{2}$ on $\mathbb{S}_n.$

Function $f \in \mathcal{O}(\mathbb{B}_n)$ is said to be inner, if

$$|f^*(z)| := \lim_{r \to 1^-} |f(rz)| = 1$$
 σ – a.e. on \mathbb{S}_n

By use of RW-polynomials Aleksandrov was able to construct by induction a sequence of polynomials $\{R_k\}_{k>0}$ with the following properties:

$$\begin{array}{l} \bullet \quad R_k(0) = 0 \\ \bullet \quad \int_{\mathbb{S}_n} R_k \overline{R_l} d\sigma = 0 \text{ for } k \neq l \\ \bullet \quad |R_{k+1}| < 1 - \left| \sum_{j=0}^k R_j \right| \text{ on } \mathbb{S}_n \\ \bullet \quad \int_{\mathbb{S}_n} |R_{k+1}|^2 d\sigma > 4^{-n} \int_{\mathbb{S}_n} \left(1 - \left| \sum_{j=0}^k R_j \right| \right)^2 d\sigma \end{array}$$

Theorem (Wojtaszczyk, 1997)

There exists $K = K(n) \in \mathbb{N}$ and a sequence of homogeneous polynomials p_m of degree m such that

$$|p_n| \leq 2 \text{ on } \mathbb{S}_n$$

② for large
$$s\in\mathbb{N}$$
 we have $\sum_{m=Ks}^{K(s+1)-1}|\mathsf{p}_m|\geqrac{1}{2}$ on $\mathbb{S}_n.$

Function $f \in \mathcal{O}(\mathbb{B}_n)$ is said to be inner, if

$$|f^*(z)|:=\lim_{r
ightarrow 1^-}|f(rz)|=1$$
 σ – a.e. on \mathbb{S}_n

By use of RW-polynomials Aleksandrov was able to construct by induction a sequence of polynomials $\{R_k\}_{k>0}$ with the following properties:

$$\begin{array}{l} \bullet \quad R_k(0) = 0 \\ \bullet \quad \int_{\mathbb{S}_n} R_k \overline{R_l} d\sigma = 0 \text{ for } k \neq l \\ \bullet \quad |R_{k+1}| < 1 - \left| \sum_{j=0}^k R_j \right| \text{ on } \mathbb{S}_n \\ \bullet \quad \int_{\mathbb{S}_n} |R_{k+1}|^2 d\sigma > 4^{-n} \int_{\mathbb{S}_n} \left(1 - \left| \sum_{j=0}^k R_j \right| \right)^2 d\sigma \end{array}$$

Theorem (Wojtaszczyk, 1997)

There exists $K=K(n)\in\mathbb{N}$ and a sequence of homogeneous polynomials p_m of degree m such that

$$|p_n| \le 2 \text{ on } \mathbb{S}_n$$

2) for large
$$s \in \mathbb{N}$$
 we have $\sum_{m=Ks}^{K(s+1)-1} |p_m| \geq rac{1}{2}$ on \mathbb{S}_n .

Homogeneous polynomials and inner functions on circular, strictly convex domains

From now Ω is a bounded, circular, strictly convex domain in \mathbb{C}^n .

Theorem (Kot, 2009)

There exists $K = K(\partial \Omega) \in \mathbb{N}$ such that there exists $N_0 \in \mathbb{N}$ such that for all integers $N \ge N_0$ and $n_1, \ldots, n_K \in \mathbb{N}$ with $N \le n_1 \le \cdots \le n_K \le 2N$ there exist homogeneous polynomials u_1, \ldots, u_K of degrees n_1, \ldots, n_K , respectively, such that $\frac{1}{2} < \max_{1 \le j \le K} |u_j(z)| < 1$ for all $z \in \partial \Omega$.

Theorem (Kot, 2017)

There exists an inner function $f \in \mathcal{O}(\Omega)$ such that for all $z \in \partial \Omega$ we have the following properties:

$$lacksymbol{0}$$
 $|f_z^*|=1$ a.e. on $\partial \mathbb{D}$

(a) f_z has a series of Taylor coefficients divergent with every power $s \in [0, 2)$, i.e. if $f_z(\lambda) = \sum_{n=1}^{\infty} p_n(z)\lambda^n$, then $\sum_{n=1}^{\infty} |p_n(z)|^s = \infty$ for s < 2.

In above theorem 1 may be replaced with any strictly positive lower semi-continuous function on $\partial\Omega.$

Homogeneous polynomials and inner functions on circular, strictly convex domains

From now Ω is a bounded, circular, strictly convex domain in \mathbb{C}^n .

Theorem (Kot, 2009)

There exists $K = K(\partial \Omega) \in \mathbb{N}$ such that there exists $N_0 \in \mathbb{N}$ such that for all integers $N \ge N_0$ and $n_1, \ldots, n_K \in \mathbb{N}$ with $N \le n_1 \le \cdots \le n_K \le 2N$ there exist homogeneous polynomials u_1, \ldots, u_K of degrees n_1, \ldots, n_K , respectively, such that $\frac{1}{2} < \max_{1 \le j \le K} |u_j(z)| < 1$ for all $z \in \partial \Omega$.

Theorem (Kot, 2017)

There exists an inner function $f \in \mathcal{O}(\Omega)$ such that for all $z \in \partial \Omega$ we have the following properties:

$$|f_z^*| = 1 \text{ a.e. on } \partial \mathbb{D}$$

② *f_z* has a series of Taylor coefficients divergent with every power s ∈ [0, 2), *i.e.* if $f_z(\lambda) = \sum_{n=1}^{\infty} p_n(z)\lambda^n$, then $\sum_{n=1}^{\infty} |p_n(z)|^s = \infty$ for *s* < 2.

In above theorem 1 may be replaced with any strictly positive lower semi-continuous function on $\partial\Omega.$

AGH K-summing polynomials and lacunary K-summing polynomials

Let $K \in \mathbb{N}$. We say that $Q = \sum_{j=1}^{K} u_j$, where $\deg(u_j) = n_j \in \mathbb{N}$, j = 1, 2, ..., K, is a *K*-summing polynomial, if it possesses the following properties:

- i) $\max_{1 \leq j \leq K} |u_j(z)| \leq 1$ for $z \in \partial \Omega$
- ii) $\frac{1}{2} \deg(Q) \le n_1 < n_2 < \cdots < n_K = \deg(Q).$

We say that Q is a lacunary K-summing polynomial, if it is a K-summing polynomial and the following conditions hold:

$$\begin{array}{ll} \mbox{iii)} & \max_{1 \leq j \leq K} |u_j(z)| \geq \frac{1}{2} & \mbox{for } z \in \partial\Omega \\ \mbox{iv)} & \sqrt[K]{2} < \frac{n_{j+1}}{n_j} < 2, \quad j = 1, 2, \dots, K-1. \end{array}$$

Theorem (Kot, 2009)

There exists $K = K(\partial \Omega) \in \mathbb{N}$ for which there exists $N_0 \in \mathbb{N}$ such that for $N \ge N_0$ and $n_1, \ldots, n_K \in \mathbb{N}$ such that $N \le n_1 \le \cdots \le n_K \le 2N$ there exist homogeneous polynomials u_1, \ldots, u_K of degrees n_1, \ldots, n_K , respectively, such that $\frac{1}{2} < \max_{1 \le j \le K} |u_j(z)| < 1$ for all $z \in \partial \Omega$.

AGH K-summing polynomials and lacunary K-summing polynomials

Let $K \in \mathbb{N}$. We say that $Q = \sum_{j=1}^{K} u_j$, where $\deg(u_j) = n_j \in \mathbb{N}$, j = 1, 2, ..., K, is a *K*-summing polynomial, if it possesses the following properties:

- i) $\max_{1 \leq j \leq K} |u_j(z)| \leq 1$ for $z \in \partial \Omega$
- ii) $\frac{1}{2} \deg(Q) \le n_1 < n_2 < \cdots < n_K = \deg(Q).$

We say that Q is a lacunary K-summing polynomial, if it is a K-summing polynomial and the following conditions hold:

iii)
$$\max_{1 \le j \le K} |u_j(z)| \ge \frac{1}{2}$$
 for $z \in \partial \Omega$

iv)
$$\sqrt[K]{2} < \frac{n_{j+1}}{n_j} < 2, \quad j = 1, 2, \dots, K-1.$$

Theorem (Kot, 2009)

There exists $K = K(\partial \Omega) \in \mathbb{N}$ for which there exists $N_0 \in \mathbb{N}$ such that for $N \ge N_0$ and $n_1, \ldots, n_K \in \mathbb{N}$ such that $N \le n_1 \le \cdots \le n_K \le 2N$ there exist homogeneous polynomials u_1, \ldots, u_K of degrees n_1, \ldots, n_K , respectively, such that $\frac{1}{2} < \max_{1 \le j \le K} |u_j(z)| < 1$ for all $z \in \partial \Omega$.

AGH Operators \mathcal{R}^p i \mathcal{S}^p

Let $\Omega \subset \mathbb{C}^n$ be a bounded, balanced, strictly convex domain with the boundary of the class C^2 . Fix p > 0. For a holomorphic function $f \in \mathcal{O}(\Omega)$ we may consider the integral operator \mathcal{R}^p defined as follows

$$\mathcal{R}^p(f)(z) := \int_0^1 |f(zt)|^p dt, \quad z \in \partial \Omega$$

and called *Radon operator*. Then for a given strictly positive, continuous function $\Phi : \partial\Omega \longmapsto \mathbb{R}_+$ we look for a function $f \in \mathcal{O}(\Omega)$ such that

$$\mathcal{R}^p(f) = \Phi$$
 on $\partial \Omega$.

For a sequence $\{u_k\}_{k\in\mathbb{N}}$ of homogeneous polynomials of degree $n_k\in\mathbb{N}$ respectively, we may define the operator S^p as follows

$$\mathcal{S}^{p}\colon \mathcal{O}(\Omega) \ni \sum_{k=1}^{\infty} u_{k} \longmapsto \sum_{k=1}^{\infty} \frac{u_{k}}{\sqrt[p]{pn_{k}+1}} \in \mathcal{O}(\Omega).$$

Notice that if $f = \sum_{k=1}^{\infty} u_k$, then $S^p(f)_z(\lambda) = \sum_{k=1}^{\infty} \frac{u_k(z)}{\sqrt[p]{pn_k+1}} \lambda^{n_k}$, so $\frac{u_k(z)}{\sqrt[p]{pn_k+1}}$ are Taylor coefficients of slice functions of $S^p(f)$.

AGH

H Operators \mathcal{R}^p i \mathcal{S}^p

Let $\Omega \subset \mathbb{C}^n$ be a bounded, balanced, strictly convex domain with the boundary of the class C^2 . Fix p > 0. For a holomorphic function $f \in \mathcal{O}(\Omega)$ we may consider the integral operator \mathcal{R}^p defined as follows

$$\mathcal{R}^p(f)(z) := \int_0^1 |f(zt)|^p dt, \quad z \in \partial \Omega$$

and called *Radon operator*. Then for a given strictly positive, continuous function $\Phi : \partial\Omega \longmapsto \mathbb{R}_+$ we look for a function $f \in \mathcal{O}(\Omega)$ such that

$$\mathcal{R}^p(f) = \Phi$$
 on $\partial \Omega$.

For a sequence $\{u_k\}_{k\in\mathbb{N}}$ of homogeneous polynomials of degree $n_k\in\mathbb{N}$ respectively, we may define the operator S^p as follows

$$\mathcal{S}^p\colon \ \mathcal{O}(\Omega) \ni \sum_{k=1}^{\infty} u_k \longmapsto \sum_{k=1}^{\infty} \frac{u_k}{\sqrt[p]{pn_k+1}} \in \mathcal{O}(\Omega).$$

Notice that if $f = \sum_{k=1}^{\infty} u_k$, then $S^p(f)_z(\lambda) = \sum_{k=1}^{\infty} \frac{u_k(z)}{\sqrt[p]{pn_k+1}} \lambda^{n_k}$, so $\frac{u_k(z)}{\sqrt[p]{pn_k+1}}$ are Taylor coefficients of slice functions of $S^p(f)$.

Notice Taylor

AGH Operators \mathcal{R}^p i \mathcal{S}^p

Let $\Omega \subset \mathbb{C}^n$ be a bounded, balanced, strictly convex domain with the boundary of the class C^2 . Fix p > 0. For a holomorphic function $f \in \mathcal{O}(\Omega)$ we may consider the integral operator \mathcal{R}^p defined as follows

$$\mathcal{R}^p(f)(z) := \int_0^1 |f(zt)|^p dt, \quad z \in \partial \Omega$$

and called *Radon operator*. Then for a given strictly positive, continuous function $\Phi : \partial\Omega \longmapsto \mathbb{R}_+$ we look for a function $f \in \mathcal{O}(\Omega)$ such that

$$\mathcal{R}^p(f) = \Phi$$
 on $\partial \Omega$.

For a sequence $\{u_k\}_{k\in\mathbb{N}}$ of homogeneous polynomials of degree $n_k\in\mathbb{N}$ respectively, we may define the operator S^p as follows

$$S^{p}: \mathcal{O}(\Omega) \ni \sum_{k=1}^{\infty} u_{k} \longmapsto \sum_{k=1}^{\infty} \frac{u_{k}}{\sqrt[p]{pn_{k}+1}} \in \mathcal{O}(\Omega).$$

that if $f = \sum_{k=1}^{\infty} u_{k}$, then $S^{p}(f)_{z}(\lambda) = \sum_{k=1}^{\infty} \frac{u_{k}(z)}{\sqrt[p]{pn_{k}+1}} \lambda^{n_{k}}$, so $\frac{u_{k}(z)}{\sqrt[p]{pn_{k}+1}}$ are coefficients of slice functions of $S^{p}(f)$.

AGH Properties of lacunary *K*-summing polynomials

There exists $N \in \mathbb{N}$ large enough such that for any lacunary K-summing polynomial Q of degree greater than N, bounded continuous functions f, g and $\varepsilon \in (0, 1)$ the following conditions hold on $\partial\Omega$

•
$$\left| \mathcal{R}^{p} \left(\deg(Q) fQ + g \right) - \mathcal{R}^{p} \left(\deg(Q) fQ \right) - \mathcal{R}^{p}(g) \right| < \varepsilon$$

• $\left| \mathcal{R}^{p} \left(\deg(Q) fQ \right) - |f|^{p} \mathcal{R}^{p} (\deg(Q) Q) \right| < \varepsilon$
• $\left| \mathcal{S}^{p} \left(\sqrt[p]{p} \deg(Q) fQ \right) - f \mathcal{S}^{p} \left(\sqrt[p]{p} \deg(Q) Q \right) \right| < \varepsilon, f$ -polynomial
• $\left| \mathcal{S}^{p} \left(\sqrt[p]{p} \deg(Q) Q \right) \right| < K \sqrt[p]{2}$

• there exist constants c_K, C_K such that

$$c_{K} \leq \int_{0}^{1} p \deg(Q) |Q(zt)|^{p} dt \leq C_{K}, \ z \in \partial \Omega$$

Theorem (Kot, P., 2022)

Let p > 0 and Φ be a strictly positive, continuous function on $\partial\Omega$. There exists a function $G \in \mathcal{O}(\Omega)$ such that $\mathcal{R}^p(G)(z) = \Phi(z)$ for $z \in \partial\Omega$ and $\mathcal{S}^p(G) \in \mathcal{C}(\overline{\Omega})$.

Sketch of the proof

• There exist $\delta \in (0,1)$ and $\gamma > 0$ such that if φ is a strictly positive, continuous function on $\partial\Omega$ and ε , then there exists a polynomial $F := \sum_{m=1}^{N} c_m f_m Q_m$, where Q_m are lacunary K-summing polynomials, f_m are polynomials such that $\frac{\psi}{2N} < f_m < \frac{\psi}{N}$ on $\partial\Omega$ and c_m -constants, with the following properties: (c1) $\delta\Psi < \mathcal{R}^{\rho}(F) < \Psi$ on $\partial\Omega$

$$(c2) \quad \left| \mathcal{R}^p(g+F) - \mathcal{R}^p(g) - \mathcal{R}^p(F) \right| < \varepsilon \text{ for any bounded and continuous } g$$

(c3)
$$\left| S^{p}(F) \right| < \gamma(\Psi)^{\frac{1}{p}}$$
 on $\partial \Omega$

(a) Construct by induction a sequence of polynomials $\{F_j\}_{j>0}$ such that on $\partial \Omega$

•
$$\left(1-\frac{\delta}{2}\right)\left(\Phi-\mathcal{R}^{p}\left(\sum_{i=0}^{j-1}F_{i}\right)\right) > \Phi-\mathcal{R}^{p}\left(\sum_{i=0}^{j}F_{i}\right) > 0$$

• $\left|S^{p}(F_{j})\right| < \gamma\left(1-\frac{\delta}{2}\right)^{\frac{1}{p}}||\Phi||_{\partial\Omega}^{\frac{1}{p}}$

•
$$G := \sum_{j=0}^{\infty} F_j$$
 satisfies the Theorem.

Theorem (Kot, P., 2022)

Let p > 0 and Φ be a strictly positive, continuous function on $\partial\Omega$. There exists a function $G \in \mathcal{O}(\Omega)$ such that $\mathcal{R}^p(G)(z) = \Phi(z)$ for $z \in \partial\Omega$ and $\mathcal{S}^p(G) \in \mathcal{C}(\overline{\Omega})$.

Sketch of the proof

● There exist δ ∈ (0, 1) and γ > 0 such that if φ is a strictly positive, continuous function on ∂Ω and ε, then there exists a polynomial F := ∑^N_{m=1} c_mf_mQ_m, where Q_m are lacunary K-summing polynomials, f_m are polynomials such that ^ψ/_{2N} < f_m < ^ψ/_N on ∂Ω and c_m-constants, with the following properties: (c1) δΨ < R^p(F) < Ψ on ∂Ω (c2) |R^p(g + F) - R^p(g) - R^p(F)| < ε for any bounded and continuous g (c3) |S^p(F)| < γ(Ψ)^{1/p} on ∂Ω.

(a) Construct by induction a sequence of polynomials $\left\{F_{j}\right\}_{j>0}$ such that on $\partial\Omega$

•
$$\left(1-\frac{\delta}{2}\right)\left(\Phi-\mathcal{R}^{p}\left(\sum_{i=0}^{j-1}F_{i}\right)\right) > \Phi-\mathcal{R}^{p}\left(\sum_{i=0}^{j}F_{i}\right) > 0$$

3
$$G := \sum_{j=0}^{\infty} F_j$$
 satisfies the Theorem.

Theorem (Kot, P., 2022)

Let p > 0 and Φ be a strictly positive, continuous function on $\partial\Omega$. There exists a function $G \in \mathcal{O}(\Omega)$ such that $\mathcal{R}^p(G)(z) = \Phi(z)$ for $z \in \partial\Omega$ and $\mathcal{S}^p(G) \in \mathcal{C}(\overline{\Omega})$.

Sketch of the proof

There exist δ ∈ (0, 1) and γ > 0 such that if φ is a strictly positive, continuous function on ∂Ω and ε, then there exists a polynomial F := ∑_{m=1}^N c_mf_mQ_m, where Q_m are lacunary K-summing polynomials, f_m are polynomials such that ^ψ/_{2N} < f_m < ^ψ/_N on ∂Ω and c_m-constants, with the following properties: (c1) δΨ < R^p(F) < Ψ on ∂Ω (c2) |R^p(g + F) - R^p(g) - R^p(F)| < ε for any bounded and continuous g (c3) |S^p(F)| < γ(Ψ)^{1/p} on ∂Ω.
Construct by induction a sequence of polynomials {F_j}_{j≥0} such that on ∂Ω • (1 - ^δ/₂)(Φ - R^p(∑^{j-1}_{i=0} F_i)) > Φ - R^p(∑^j_{i=0} F_i) > 0

•
$$\left| \mathcal{S}^{p}(F_{j}) \right| < \gamma \left(1 - \frac{\delta}{2} \right)^{\frac{j}{p}} ||\Phi||_{\partial\Omega}^{\frac{1}{p}}$$

• $G := \sum_{j=0}^{\infty} F_j$ satisfies the Theorem.

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on $\partial\Omega$. There exists a holomorphic function $f = \sum_{n=0}^{\infty} p_n$, where p_n are homogeneous polynomials, such that **4** $\mathcal{R}^p(f) = \Phi$ on $\partial\Omega$ **4** every slice function of $\mathcal{S}^p(f)$ has a divergent series of Taylor coefficients with every exponent $s < \min\{1, p\}$, i.e. $\sum_{n=0}^{\infty} \left(\frac{|p_n(z)|}{\sqrt[p]{pn+1}}\right)^s = \infty, \ s < \min\{1, p\}, \ z \in \partial\Omega$ **4** if $p \le 1$, then $\mathcal{S}^p(f) \in \mathcal{C}(\overline{\Omega})$ **5** if $p \in (1, 2]$, then $\mathcal{S}^p(f) \in L^2(z\partial\mathbb{D}), \ z \in \partial\Omega$.

Due to orthogonality of p_n the condition 2 holds also for p = 2. Conditions 1 - 2 are satisfied also when Φ is lower semi-continuous.

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on $\partial\Omega$. There exists a holomorphic function $f = \sum_{n=0}^{\infty} p_n$, where p_n are homogeneous polynomials, such that **(a)** $\mathcal{R}^p(f) = \Phi$ on $\partial\Omega$ **(a)** every slice function of $\mathcal{S}^p(f)$ has a divergent series of Taylor coefficients with every exponent $s < \min\{1, p\}$, i.e. $\sum_{n=0}^{\infty} \left(\frac{|p_n(z)|}{\sqrt[p]{pn+1}}\right)^s = \infty, \ s < \min\{1, p\}, \ z \in \partial\Omega$ **(a)** if $p \le 1$, then $\mathcal{S}^p(f) \in \mathcal{C}(\overline{\Omega})$ **(c)** if $p \in (1, 2]$, then $\mathcal{S}^p(f) \in L^2(z\partial\mathbb{D}), \ z \in \partial\Omega$.

Due to orthogonality of p_n the condition 2 holds also for p = 2. Conditions 1-2 are satisfied also when Φ is lower semi-continuous.

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on $\partial \Omega$. There exists a holomorphic function $f = \sum p_n$, where p_n are homogeneous polynomials, such that **Q** every slice function of $S^{p}(f)$ has a divergent series of Taylor coefficients with every exponent $s < \min\{1, p\}$, i.e. $\sum_{s} \left(\frac{|p_n(z)|}{\sqrt[p]{pn+1}} \right)^s = \infty, \ s < \min\{1, p\}, \ z \in \partial \Omega$ (a) if p < 1, then $S^p(f) \in \mathcal{C}(\overline{\Omega})$ • if $p \in (1, 2]$, then $S^p(f) \in L^2(z\partial \mathbb{D})$, $z \in \partial \Omega$.

Due to orthogonality of p_n the condition 2 holds also for p = 2. Conditions 1 - 2 are satisfied also when Φ is lower semi-continuous.

H References

- Aleksandrov A. B., Inner functions on compact spaces, Functional Anal. Appl. 18(1984), p. 87–98.
- Kot P., On Analytic Functions with Divergent Series of Taylor Coefficients, Complex Anal. Oper. Theory (2017).
- Kot P., *Homogeneous polynomials on strictly convex domains*, Proc. Amer. Math. Soc. 135 (2007), p. 3895-3903.
- Pierzchała, P., Kot, P., Radon Inversion Problem for Holomorphic Functions on Circular, Strictly Convex Domains, Complex Anal. Oper. Theory 15, 80 (2021).
- Ryll J., Wojtaszczyk P, *On homogeneous polynomials on a complex ball*, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.
- Rudin W., *The Ryll-Wojtaszczyk polynomials*, Annales Polonici Mathematici 46(1)(1985), p. 291-294.

Wojtaszczyk P., *On functions in the ball algebra*, Proc. Am. Math. Soc. 85(2)(1982), p. 184–186.

Wojtaszczyk P., On highly nonintegrable functions and homogeneous polynomials, Ann. Pol. Math. 65(1997), p. 245-251.

Muchas gracias!