AGH University of Science

 and Technology
Ryll-Wojtaszczyk homogeneous polynomials on strictly convex circular domains in \mathbb{C}^{n}

Paulina Pierzchała ${ }^{1}$
This is a joint work with Piotr Kot
${ }^{1}$ Faculty of Applied Mathematics
AGH University of Science and Technology in Kraków, Poland

geOmetry, anaLysis \& convExity, Sevilla, June 20th 2022

- History of Ryll-Wojtaszczyk homogeneous polynomials on the unit ball in \mathbb{C}^{n}
- Application of Ryll-Wojtaszczyk homogeneous polynomials in the construction of an inner function in the unit ball in \mathbb{C}^{n}
- Homogeneous polynomials on circular, strictly convex domains
- Applications of homogeneous polynomials on circular, strictly convex domains
- Inner functions
- Radon inversion problem for holomorphic functions
- Holomorphic functions with divergent series of Taylor coefficients

AGH Basic notation

- $\mathbb{B}_{n}=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$ the unit ball in \mathbb{C}^{n}
- $\mathbb{S}_{n}=\left\{z \in \mathbb{C}^{n}:\|z\|=1\right\}$ the unit sphere in \mathbb{C}^{n}
- σ - normed Lebesgue's measure on \mathbb{S}_{n}, i.e. $\sigma\left(\mathbb{S}_{n}\right)=1$
- $\mathcal{O}\left(\mathbb{B}_{d}\right)$ space of functions holomorphic in \mathbb{B}_{n}
- $\mathcal{H}_{p}\left(\mathbb{B}_{n}\right)=\left\{f \in \mathcal{O}\left(\mathbb{B}_{n}\right): \sup _{0<r<1}\left(\int_{\mathbb{S}_{n}}|f(r z)|^{p} d \sigma(z)\right)^{\frac{1}{p}}<\infty\right\}, \quad 0<p<\infty$
- $\mathcal{H}_{\infty}\left(\mathbb{B}_{n}\right)=\left\{f \in \mathcal{O}\left(\mathbb{B}_{n}\right): \sup _{z \in \mathbb{S}_{n}}|f(z)|<\infty\right\}$
- $\|f\|_{p}=\left(\int_{\mathbb{S}_{n}}|f(z)|^{p} d \sigma(z)\right)^{\frac{1}{p}}, 1 \leq p<\infty, \quad\|f\|_{\infty}=\sup _{z \in \mathbb{S}_{n}}|f(z)|$.

AGH Basic notation cont.

Let $\Omega \subset \mathbb{C}^{n}$ be a domain with a defining function ρ of the class \mathcal{C}^{2}. We say that Ω is stictly convex in $P \in \partial \Omega$, if

$$
2 \operatorname{Re}\left(\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial z_{k}}(P) w_{j} w_{k}\right)+2\left(\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{k}}(P) w_{j} \bar{w}_{k}\right)>0
$$

for any $w \in \mathbb{C}^{n}$ such that $\sum_{j=1}^{n} \frac{\partial \rho}{\partial z_{j}}(P) w_{j}=0$.

AGH Basic notation cont.

Let $\Omega \subset \mathbb{C}^{n}$ be a domain with a defining function ρ of the class \mathcal{C}^{2}. We say that Ω is stictly convex in $P \in \partial \Omega$, if

$$
2 \operatorname{Re}\left(\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial z_{k}}(P) w_{j} w_{k}\right)+2\left(\sum_{j, k=1}^{n} \frac{\partial^{2} \rho}{\partial z_{j} \partial \bar{z}_{k}}(P) w_{j} \bar{w}_{k}\right)>0
$$

for any $w \in \mathbb{C}^{n}$ such that $\sum_{j=1}^{n} \frac{\partial \rho}{\partial z_{j}}(P) w_{j}=0$.
We say that Ω is a circular domain, if $\lambda z \in \Omega$ for any $\lambda \in \partial \mathbb{D}$ and $z \in \Omega$.
Let $f \in \mathcal{O}(\Omega)$. For $z \in \partial \Omega$ function $f_{z}: \mathbb{D} \ni \lambda \longmapsto f(\lambda z)$ is called a slice function of f.

We say that p_{m} is a homogeneous polynomial of degree $m \in \mathbb{N}$, if

$$
p_{m}(\lambda z)=\lambda^{n} p_{m}(z), \quad \lambda \in \mathbb{C}, \quad z \in \mathbb{C}^{n}
$$

Observe that if $\mathcal{O}(\Omega) \ni f(z)=\sum_{m=0}^{\infty} p_{m}(z)$, then $f_{z}(\lambda)=\sum_{m=0}^{\infty} p_{m}(z) \lambda^{m}$, i.e. $p_{m}(z)$ are Taylor coefficients of the function f_{z}.

AGH Ryll-Wojtaszczyk homogeneous polynomials

We say that polynomial p_{m} of degree $m \in \mathbb{N}$ is a Ryll-Wojtaszczyk polynomial (RW-polynomial), if

$$
\left\|p_{m}\right\|_{\infty}=1 \text { and }\left\|p_{m}\right\|_{2} \geq 2^{-n} \sqrt{\pi}
$$

On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

AGH Ryll-Wojtaszczyk homogeneous polynomials

We say that polynomial p_{m} of degree $m \in \mathbb{N}$ is a Ryll-Wojtaszczyk polynomial (RW-polynomial), if

$$
\left\|p_{m}\right\|_{\infty}=1 \text { and }\left\|p_{m}\right\|_{2} \geq 2^{-n} \sqrt{\pi}
$$

Existence of such polynomials for any $m \in \mathbb{N}$ was proved by Jerzy Ryll and Przemysław Wojtaszczyk in 1983 in the paper On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

Motivation: Is the identity map id: $\mathcal{H}_{\infty}\left(\mathbb{B}_{n}\right) \longmapsto \mathcal{H}_{1}\left(\mathbb{B}_{n}\right)$ a compact linear operator when $n>1$?

AGH Ryll-Wojtaszczyk homogeneous polynomials

We say that polynomial p_{m} of degree $m \in \mathbb{N}$ is a Ryll-Wojtaszczyk polynomial (RW-polynomial), if

$$
\left\|p_{m}\right\|_{\infty}=1 \text { and }\left\|p_{m}\right\|_{2} \geq 2^{-n} \sqrt{\pi}
$$

Existence of such polynomials for any $m \in \mathbb{N}$ was proved by Jerzy Ryll and Przemysław Wojtaszczyk in 1983 in the paper On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

Motivation: Is the identity map id: $\mathcal{H}_{\infty}\left(\mathbb{B}_{n}\right) \longmapsto \mathcal{H}_{1}\left(\mathbb{B}_{n}\right)$ a compact linear operator when $n>1$? Answer: No.

There are at least 3 proofs of the existence of RW-polynomials

- Ryll, Wojtaszczyk, 1983-2 proofs
- Rudin, 1985

AGH Inner function in \mathbb{C}^{n}

Function $f \in \mathcal{O}\left(\mathbb{B}_{n}\right)$ is said to be inner, if

$$
\left|f^{*}(z)\right|:=\lim _{r \rightarrow 1^{-}}|f(r z)|=1 \quad \sigma-\text { a.e. on } \mathbb{S}_{n} .
$$

Theorem (Wojtaszczyk, 1997)

AGH Inner function in \mathbb{C}^{n}

Function $f \in \mathcal{O}\left(\mathbb{B}_{n}\right)$ is said to be inner, if

$$
\left|f^{*}(z)\right|:=\lim _{r \rightarrow 1^{-}}|f(r z)|=1 \quad \sigma-\text { a.e. on } \mathbb{S}_{n} .
$$

By use of RW-polynomials Aleksandrov was able to construct by induction a sequence of polynomials $\left\{R_{k}\right\}_{k \geq 0}$ with the following properties:
(1) $R_{k}(0)=0$
(2) $\int_{\mathbb{S}_{n}} R_{k} \overline{R_{l}} d \sigma=0$ for $k \neq 1$
(3) $\left|R_{k+1}\right|<1-\left|\sum_{j=0}^{k} R_{j}\right|$ on \mathbb{S}_{n}
(9) $\int_{\mathbb{S}_{n}}\left|R_{k+1}\right|^{2} d \sigma>4^{-n} \int_{\mathbb{S}_{n}}\left(1-\left|\sum_{j=0}^{k} R_{j}\right|\right)^{2} d \sigma$

Theorem (Wojtaszczyk, 1997)

AGH Inner function in \mathbb{C}^{n}

Function $f \in \mathcal{O}\left(\mathbb{B}_{n}\right)$ is said to be inner, if

$$
\left|f^{*}(z)\right|:=\lim _{r \rightarrow 1^{-}}|f(r z)|=1 \quad \sigma-\text { a.e. on } \mathbb{S}_{n} .
$$

By use of RW-polynomials Aleksandrov was able to construct by induction a sequence of polynomials $\left\{R_{k}\right\}_{k \geq 0}$ with the following properties:
(1) $R_{k}(0)=0$
(2) $\int_{\mathbb{S}_{n}} R_{k} \overline{R_{l}} d \sigma=0$ for $k \neq 1$
(3) $\left|R_{k+1}\right|<1-\left|\sum_{j=0}^{k} R_{j}\right|$ on \mathbb{S}_{n}
(9) $\int_{\mathbb{S}_{n}}\left|R_{k+1}\right|^{2} d \sigma>4^{-n} \int_{\mathbb{S}_{n}}\left(1-\left|\sum_{j=0}^{k} R_{j}\right|\right)^{2} d \sigma$

Theorem (Wojtaszczyk, 1997)

There exists $K=K(n) \in \mathbb{N}$ and a sequence of homogeneous polynomials p_{m} of degree m such that
(1) $\left|p_{n}\right| \leq 2$ on \mathbb{S}_{n}
(2) for large $s \in \mathbb{N}$ we have $\sum_{m=K s}^{K(s+1)-1}\left|p_{m}\right| \geq \frac{1}{2}$ on \mathbb{S}_{n}.

Homogeneous polynomials and inner functions on circular, AGH strictly convex domains

From now Ω is a bounded, circular, strictly convex domain in \mathbb{C}^{n}.

Theorem (Kot, 2009)

There exists $K=K(\partial \Omega) \in \mathbb{N}$ such that there exists $N_{0} \in \mathbb{N}$ such that for all integers $N \geq N_{0}$ and $n_{1}, \ldots, n_{K} \in \mathbb{N}$ with $N \leq n_{1} \leq \cdots \leq n_{K} \leq 2 N$ there exist homogeneous polynomials u_{1}, \ldots, u_{K} of degrees n_{1}, \ldots, n_{K}, respectively, such that $\frac{1}{2}<\max _{1 \leq j \leq K}\left|u_{j}(z)\right|<1$ for all $z \in \partial \Omega$.

From now Ω is a bounded, circular, strictly convex domain in \mathbb{C}^{n}.

Theorem (Kot, 2009)

There exists $K=K(\partial \Omega) \in \mathbb{N}$ such that there exists $N_{0} \in \mathbb{N}$ such that for all integers $N \geq N_{0}$ and $n_{1}, \ldots, n_{K} \in \mathbb{N}$ with $N \leq n_{1} \leq \cdots \leq n_{K} \leq 2 N$ there exist homogeneous polynomials u_{1}, \ldots, u_{K} of degrees n_{1}, \ldots, n_{K}, respectively, such that
$\frac{1}{2}<\max _{1 \leq j \leq K}\left|u_{j}(z)\right|<1$ for all $z \in \partial \Omega$.

Theorem (Kot, 2017)

There exists an inner function $f \in \mathcal{O}(\Omega)$ such that for all $z \in \partial \Omega$ we have the following properties:
(1) $\left|f_{z}^{*}\right|=1$ a.e. on $\partial \mathbb{D}$
(2) f_{z} has a series of Taylor coefficients divergent with every power $s \in[0,2)$, i.e. if $f_{z}(\lambda)=\sum_{n=1}^{\infty} p_{n}(z) \lambda^{n}$, then $\sum_{n=1}^{\infty}\left|p_{n}(z)\right|^{s}=\infty$ for $s<2$.

In above theorem 1 may be replaced with any strictly positive lower semi-continuous function on $\partial \Omega$.

AGH K-summing polynomials and lacunary K-summing polynomials

Let $K \in \mathbb{N}$. We say that $Q=\sum_{j=1}^{K} u_{j}$, where $\operatorname{deg}\left(u_{j}\right)=n_{j} \in \mathbb{N}, \quad j=1,2, \ldots, K$, is a K-summing polynomial, if it possesses the following properties:
i) $\max _{1 \leq j \leq K}\left|u_{j}(z)\right| \leq 1 \quad$ for $\quad z \in \partial \Omega$
ii) $\frac{1}{2} \operatorname{deg}(Q) \leq n_{1}<n_{2}<\cdots<n_{K}=\operatorname{deg}(Q)$.

We say that Q is a lacunary K-summing polynomial, if it is a K-summing polynomial and the following conditions hold:
iii) $\max _{1 \leq j \leq K}\left|u_{j}(z)\right| \geq \frac{1}{2} \quad$ for $\quad z \in \partial \Omega$
iv) $\sqrt[K]{2}<\frac{n_{j+1}}{n_{j}}<2, \quad j=1,2, \ldots, K-1$.

Theorem (Kot, 2009)

AGH K-summing polynomials and lacunary K-summing polynomials

Let $K \in \mathbb{N}$. We say that $Q=\sum_{j=1}^{K} u_{j}$, where $\operatorname{deg}\left(u_{j}\right)=n_{j} \in \mathbb{N}, \quad j=1,2, \ldots, K$, is a K-summing polynomial, if it possesses the following properties:
i) $\max _{1 \leq j \leq K}\left|u_{j}(z)\right| \leq 1 \quad$ for $\quad z \in \partial \Omega$
ii) $\frac{1}{2} \operatorname{deg}(Q) \leq n_{1}<n_{2}<\cdots<n_{K}=\operatorname{deg}(Q)$.

We say that Q is a lacunary K-summing polynomial, if it is a K-summing polynomial and the following conditions hold:
iii) $\max _{1 \leq j \leq K}\left|u_{j}(z)\right| \geq \frac{1}{2} \quad$ for $\quad z \in \partial \Omega$
iv) $\sqrt[K]{2}<\frac{n_{j+1}}{n_{j}}<2, \quad j=1,2, \ldots, K-1$.

Theorem (Kot, 2009)

There exists $K=K(\partial \Omega) \in \mathbb{N}$ for which there exists $N_{0} \in \mathbb{N}$ such that for $N \geq N_{0}$ and $n_{1}, \ldots, n_{K} \in \mathbb{N}$ such that $N \leq n_{1} \leq \cdots \leq n_{K} \leq 2 N$ there exist homogeneous polynomials u_{1}, \ldots, u_{K} of degrees n_{1}, \ldots, n_{K}, respectively, such that
$\frac{1}{2}<\max _{1 \leq j \leq K}\left|u_{j}(z)\right|<1$ for all $z \in \partial \Omega$.

AGH Operators $\mathcal{R}^{p} \mathbf{i} \mathcal{S}^{p}$

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded, balanced, strictly convex domain with the boundary of the class \mathcal{C}^{2}. Fix $p>0$. For a holomorphic function $f \in \mathcal{O}(\Omega)$ we may consider the integral operator \mathcal{R}^{p} defined as follows

$$
\mathcal{R}^{p}(f)(z):=\int_{0}^{1}|f(z t)|^{p} d t, \quad z \in \partial \Omega
$$

and called Radon operator. Then for a given strictly positive, continuous function $\Phi: \partial \Omega \longmapsto \mathbb{R}_{+}$we look for a function $f \in \mathcal{O}(\Omega)$ such that

$$
\mathcal{R}^{p}(f)=\Phi \quad \text { on } \quad \partial \Omega .
$$

AGH Operators $\mathcal{R}^{p} \mathbf{i} \mathcal{S}^{p}$

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded, balanced, strictly convex domain with the boundary of the class \mathcal{C}^{2}. Fix $p>0$. For a holomorphic function $f \in \mathcal{O}(\Omega)$ we may consider the integral operator \mathcal{R}^{p} defined as follows

$$
\mathcal{R}^{p}(f)(z):=\int_{0}^{1}|f(z t)|^{p} d t, \quad z \in \partial \Omega
$$

and called Radon operator. Then for a given strictly positive, continuous function $\Phi: \partial \Omega \longmapsto \mathbb{R}_{+}$we look for a function $f \in \mathcal{O}(\Omega)$ such that

$$
\mathcal{R}^{p}(f)=\Phi \quad \text { on } \quad \partial \Omega .
$$

For a sequence $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ of homogeneous polynomials of degree $n_{k} \in \mathbb{N}$ respectively, we may define the operator \mathcal{S}^{p} as follows

$$
\mathcal{S}^{p}: \mathcal{O}(\Omega) \ni \sum_{k=1}^{\infty} u_{k} \longmapsto \sum_{k=1}^{\infty} \frac{u_{k}}{\sqrt[p]{p n_{k}+1}} \in \mathcal{O}(\Omega)
$$

AGH Operators $\mathcal{R}^{p} \mathbf{i} \mathcal{S}^{p}$

Let $\Omega \subset \mathbb{C}^{n}$ be a bounded, balanced, strictly convex domain with the boundary of the class \mathcal{C}^{2}. Fix $p>0$. For a holomorphic function $f \in \mathcal{O}(\Omega)$ we may consider the integral operator \mathcal{R}^{p} defined as follows

$$
\mathcal{R}^{p}(f)(z):=\int_{0}^{1}|f(z t)|^{p} d t, \quad z \in \partial \Omega
$$

and called Radon operator. Then for a given strictly positive, continuous function $\Phi: \partial \Omega \longmapsto \mathbb{R}_{+}$we look for a function $f \in \mathcal{O}(\Omega)$ such that

$$
\mathcal{R}^{p}(f)=\Phi \quad \text { on } \quad \partial \Omega .
$$

For a sequence $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ of homogeneous polynomials of degree $n_{k} \in \mathbb{N}$ respectively, we may define the operator \mathcal{S}^{p} as follows

$$
\mathcal{S}^{p}: \mathcal{O}(\Omega) \ni \sum_{k=1}^{\infty} u_{k} \longmapsto \sum_{k=1}^{\infty} \frac{u_{k}}{\sqrt[p]{p n_{k}+1}} \in \mathcal{O}(\Omega)
$$

Notice that if $f=\sum_{k=1}^{\infty} u_{k}$, then $\mathcal{S}^{p}(f)_{z}(\lambda)=\sum_{k=1}^{\infty} \frac{u_{k}(z)}{\sqrt[p]{p n_{k}+1}} \lambda^{n_{k}}$, so $\frac{u_{k}(z)}{\sqrt[p]{p n_{k}+1}}$ are
Taylor coefficients of slice functions of $\mathcal{S}^{p}(f)$.

AGH Properties of lacunary K-summing polynomials

There exists $N \in \mathbb{N}$ large enough such that for any lacunary K-summing polynomial Q of degree greater than N, bounded continuous functions f, g and $\varepsilon \in(0,1)$ the following conditions hold on $\partial \Omega$

- $\left|\mathcal{R}^{p}(\operatorname{deg}(Q) f Q+g)-\mathcal{R}^{p}(\operatorname{deg}(Q) f Q)-\mathcal{R}^{p}(g)\right|<\varepsilon$
- $\left|\mathcal{R}^{p}(\operatorname{deg}(Q) f Q)-|f|^{p} \mathcal{R}^{p}(\operatorname{deg}(Q) Q)\right|<\varepsilon$
- $\left|\mathcal{S}^{p}(\sqrt[p]{p \operatorname{deg}(Q)} f Q)-f \mathcal{S}^{p}(\sqrt[p]{p \operatorname{deg}(Q)} Q)\right|<\varepsilon, \quad f$-polynomial
- $\left|\mathcal{S}^{p}(\sqrt[p]{p \operatorname{deg}(Q)} Q)\right|<K \sqrt[p]{2}$
- there exist constants c_{K}, C_{K} such that

$$
c_{K} \leq \int_{0}^{1} p \operatorname{deg}(Q)|Q(z t)|^{p} d t \leq C_{K}, \quad z \in \partial \Omega
$$

AGH Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let $p>0$ and Φ be a strictly positive, continuous function on $\partial \Omega$. There exists a function $G \in \mathcal{O}(\Omega)$ such that $\mathcal{R}^{p}(G)(z)=\Phi(z)$ for $z \in \partial \Omega$ and $\mathcal{S}^{p}(G) \in \mathcal{C}(\Omega)$.

AGH Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let $p>0$ and Φ be a strictly positive, continuous function on $\partial \Omega$. There exists a function $G \in \mathcal{O}(\Omega)$ such that $\mathcal{R}^{p}(G)(z)=\Phi(z)$ for $z \in \partial \Omega$ and $\mathcal{S}^{p}(G) \in \mathcal{C}(\bar{\Omega})$.

Sketch of the proof
(1) There exist $\delta \in(0,1)$ and $\gamma>0$ such that if φ is a strictly positive, continuous function on $\partial \Omega$ and ε, then there exists a polynomial $F:=\sum_{m=1}^{N} c_{m} f_{m} Q_{m}$, where Q_{m} are lacunary K-summing polynomials, f_{m} are polynomials such that $\frac{\psi}{2 N}<f_{m}<\frac{\psi}{N}$ on $\partial \Omega$ and c_{m}-constants, with the following properties:
(c1) $\delta \Psi<\mathcal{R}^{p}(F)<\Psi$ on $\partial \Omega$
(c2) $\left|\mathcal{R}^{p}(g+F)-\mathcal{R}^{p}(g)-\mathcal{R}^{p}(F)\right|<\varepsilon$ for any bounded and continuous g
(c3) $\left|\mathcal{S}^{p}(F)\right|<\gamma(\Psi)^{\frac{1}{p}}$ on $\partial \Omega$.

AGH Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let $p>0$ and Φ be a strictly positive, continuous function on $\partial \Omega$. There exists a function $G \in \mathcal{O}(\Omega)$ such that $\mathcal{R}^{p}(G)(z)=\Phi(z)$ for $z \in \partial \Omega$ and $\mathcal{S}^{p}(G) \in \mathcal{C}(\bar{\Omega})$.

Sketch of the proof
(1) There exist $\delta \in(0,1)$ and $\gamma>0$ such that if φ is a strictly positive, continuous function on $\partial \Omega$ and ε, then there exists a polynomial $F:=\sum_{m=1}^{N} c_{m} f_{m} Q_{m}$, where Q_{m} are lacunary K-summing polynomials, f_{m} are polynomials such that $\frac{\psi}{2 N}<f_{m}<\frac{\psi}{N}$ on $\partial \Omega$ and c_{m}-constants, with the following properties:
(c1) $\delta \Psi<\mathcal{R}^{p}(F)<\Psi$ on $\partial \Omega$
(c2) $\left|\mathcal{R}^{p}(g+F)-\mathcal{R}^{p}(g)-\mathcal{R}^{p}(F)\right|<\varepsilon$ for any bounded and continuous g
(c3) $\left|\mathcal{S}^{p}(F)\right|<\gamma(\Psi)^{\frac{1}{p}}$ on $\partial \Omega$.
(2) Construct by induction a sequence of polynomials $\left\{F_{j}\right\}_{j \geq 0}$ such that on $\partial \Omega$

- $\left(1-\frac{\delta}{2}\right)\left(\Phi-\mathcal{R}^{p}\left(\sum_{i=0}^{j-1} F_{i}\right)\right)>\Phi-\mathcal{R}^{p}\left(\sum_{i=0}^{j} F_{i}\right)>0$
- $\left|\mathcal{S}^{p}\left(F_{j}\right)\right|<\gamma\left(1-\frac{\delta}{2}\right)^{\frac{j}{p}}\|\Phi\|_{\partial \Omega}^{\frac{1}{p}}$
(3) $G:=\sum_{j=0}^{\infty} F_{j}$ satisfies the Theorem.

AGH Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on $\partial \Omega$. There exists a holomorphic function $f=\sum_{n=0}^{\infty} p_{n}$, where p_{n} are homogeneous polynomials, such that
(1) $\mathcal{R}^{p}(f)=\Phi$ on $\partial \Omega$
(2) every slice function of $\mathcal{S}^{p}(f)$ has a divergent series of Taylor coefficients with every exponent $s<\min \{1, p\}$, i.e.

$$
\sum_{n=0}^{\infty}\left(\frac{\left|p_{n}(z)\right|}{\sqrt[p]{p n+1}}\right)^{s}=\infty, \quad s<\min \{1, p\}, \quad z \in \partial \Omega
$$

(3) if $p \leq 1$, then $\mathcal{S}^{p}(f) \in \mathcal{C}(\bar{\Omega})$
(9) if $p \in(1,2]$, then $\mathcal{S}^{p}(f) \in L^{2}(z \partial \mathbb{D}), z \in \partial \Omega$.

AGH Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on $\partial \Omega$. There exists a holomorphic function $f=\sum_{n=0}^{\infty} p_{n}$, where p_{n} are homogeneous polynomials, such that
(1) $\mathcal{R}^{p}(f)=\Phi$ on $\partial \Omega$
(2) every slice function of $\mathcal{S}^{p}(f)$ has a divergent series of Taylor coefficients with every exponent $s<\min \{1, p\}$, i.e.

$$
\sum_{n=0}^{\infty}\left(\frac{\left|p_{n}(z)\right|}{\sqrt[p]{p n+1}}\right)^{s}=\infty, \quad s<\min \{1, p\}, \quad z \in \partial \Omega
$$

(3) if $p \leq 1$, then $\mathcal{S}^{p}(f) \in \mathcal{C}(\bar{\Omega})$
(1) if $p \in(1,2]$, then $\mathcal{S}^{p}(f) \in L^{2}(z \partial \mathbb{D}), z \in \partial \Omega$.

Due to orthogonality of p_{n} the condition 2 holds also for $p=2$.

AGH Radon inversion problem on circular, strictly convex domains

Theorem (Kot, P., 2022)

Let Φ be a strictly positive continuous function on $\partial \Omega$. There exists a holomorphic function $f=\sum_{n=0}^{\infty} p_{n}$, where p_{n} are homogeneous polynomials, such that
(1) $\mathcal{R}^{p}(f)=\Phi$ on $\partial \Omega$
(2) every slice function of $\mathcal{S}^{p}(f)$ has a divergent series of Taylor coefficients with every exponent $s<\min \{1, p\}$, i.e.

$$
\sum_{n=0}^{\infty}\left(\frac{\left|p_{n}(z)\right|}{\sqrt[p]{p n+1}}\right)^{s}=\infty, \quad s<\min \{1, p\}, \quad z \in \partial \Omega
$$

(3) if $p \leq 1$, then $\mathcal{S}^{p}(f) \in \mathcal{C}(\bar{\Omega})$
(1) if $p \in(1,2]$, then $\mathcal{S}^{p}(f) \in L^{2}(z \partial \mathbb{D}), z \in \partial \Omega$.

Due to orthogonality of p_{n} the condition 2 holds also for $p=2$.
Conditions $1-2$ are satisfied also when Φ is lower semi-continuous.

AGH References

三
Aleksandrov A. B., Inner functions on compact spaces, Functional Anal. Appl. 18(1984), p. 87-98.
\square Kot P., On Analytic Functions with Divergent Series of Taylor Coefficients, Complex Anal. Oper. Theory (2017).

Kot P., Homogeneous polynomials on strictly convex domains, Proc. Amer. Math. Soc. 135 (2007), p. 3895-3903.

Pierzchała, P., Kot, P., Radon Inversion Problem for Holomorphic Functions on Circular, Strictly Convex Domains, Complex Anal. Oper. Theory 15, 80 (2021).Ryll J., Wojtaszczyk P, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), p. 107-116.

Rudin W., The Ryll-Wojtaszczyk polynomials, Annales Polonici Mathematici 46(1)(1985), p. 291-294.

Wojtaszczyk P., On functions in the ball algebra, Proc. Am. Math. Soc. 85(2)(1982), p. 184-186.

Wojtaszczyk P., On highly nonintegrable functions and homogeneous polynomials, Ann. Pol. Math. 65(1997), p. 245-251.

Muchas gracias!

