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Mixed volume : Minkowski’s definition

Denote by Kn = {K ⊂ Rn : K compact convex set}.

Let K , L ∈ Kn . Then Voln(λK + µL) is a polynomial in (λ, µ) :

Voln(λK + µL) =
n∑

k=0

(
n
k

)
vkλ

kµn−k

where vk = Vn(K [k], L[n − k]) = Vn(K , ...,K , L, ..., L) are called
mixed volumes.



Mixed volume : Minkowski’s definition

I Let K , L ∈ Kn . Then Voln(λK + µL) =
∑n

k=0
(n

k
)
vkλ

kµn−k

I Let K1, ...,Km ∈ Kn. Then :

Voln(λ1K1 + · · ·+ λmKm) =
∑

a=(a1,...,am)
|a|=n

(
n
a

)
va λa

where va = Vn(K1[a1], . . . ,Km[am]) are called mixed volumes.



Mixed volume : one or two properties

I Let K , L ∈ Kn . Then Voln(λK + µL) =
∑n

k=0
(n

k
)
vkλ

kµn−k

I Let K1, ...,Km ∈ Kn. Then :

Voln(λ1K1 + · · ·+ λmKm) =
∑

a=(a1,...,am)
|a|=n

(
n
a

)
va λa

where va = Vn(K1[a1], . . . ,Km[am]) are called mixed volumes.
I Vn : Kn

n → [0,+∞) is a multilinear, continuous functional.

Let T : Rn → Rn be an affine transform. Then :

Vn(TK1, ...,TKn) = det(T )Vn(K1, ...,Kn)



Bezout inequality

Let f1, ..., fr : Rn → R be polynomials. Denote by X1, ...,Xr the
associated algebraic varieties

.

(Xi := {x ∈ Rn : fi (x) = 0}).

The Bezout inequality states that :

deg(X1 ∩ ... ∩ Xr ) ≤
∏

deg(Xi ) [B]

Denote by P1, ...,Pr the Newton polytopes of f1, ..., fr

We can reformulate [B] within the language of mixed volumes :

V (P1, ...,Pr ,∆[n − r ])V (∆)r−1 ≤
r∏

i=1
V (Pi ,∆[n − 1])

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.
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Bezout inequality (again)

Let f1, ..., fn : Rn → R be polynomials.
Let X = X2 ∩ ... ∩ Xn of dimension 1, and Y = X1 ( codim.1) .
Then Bezout inequality :

deg(X ∩ Y ) ≤ deg(X )deg(Y ) [B]

translates to

Vn(P1, ...,Pn)Vn(∆) ≤ Vn(P2, ...,Pn,∆)Vn(P1,∆[n − 1]).

(recover previous inequality [B], by using [B] r − 1 times)



A direct geometric proof of [B] inequality

Vn(L1, ..., Ln)Vn(∆) ≤ Vn(L2, ..., Ln,∆)Vn(L1,∆[n − 1]).

Since the inequality is invariant under replacing L1 with λL1 + x ,
we may assume L1 ⊂ ∆, and r(∆, L1) = 1, which implies
hL1(uj) = h∆(uj) for all outer normals uj , j ≤ n + 1, of ∆.
I In this case :

V (L1,∆[n − 1]) = 1
n

n+1∑
j=1

hL1(uj)Voln−1(Kuj ) = Vn(∆)

I therefore [B] follows from monotonicity of mixed volume.



More general Bezout inequality

I Let K , L ∈ Kn. The inradius of K relative to L is
r(K , L) := max{λ > 0 : x + λL ⊂ K , x ∈ Rn}.

I A corollary of Diskant’s inequality :

r(K , L)−1 ≤ nV1(K , L)
Vol(K ) = nV (K [n − 1], L)

Vol(K )

I Using this, J. Xiao has shown (2019) :

V (L1, ..., Ln)V (K ) ≤ nV (L2, ..., Ln,K )V (L1,K [n − 1])

for any convex bodies L1, ..., Ln, and for any K .

I K = [0, 1]n shows that n is sharp.
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Proof of Xiao’s upper bound

I Let K , L ∈ Kn. The inradius of K relative to L is
r(K , L) := max{λ > 0 : x + λL ⊂ K , x ∈ Rn}.

I Replace L1 with L′ := r(K , L1)L1 + x ⊂ K (L′ maximally
contained).

I r(K , L1)V (L1, ..., Ln) = V (L′, L2, ..., Ln) ≤ V (K , L2, ..., Ln)
(monotonicity)

I therefore :

V (L1, ..., Ln) ≤ r(K , L1)−1 V (K , L2, ..., Ln)

≤ nV (K [n − 1], L1)
Vn(K ) V (K , L2, ..., Ln).



Bezout constants

We define :

b2(K ) = max
L1,L2

V (L1, L2,K [n − 2])V (K )
V (L1,K [n − 1])V (L2,K [n − 1]) ≥ 1

And similarly

b(K ) = max
L1,...,Ln

V (L1, ..., Ln)V (K )
V (L2, ..., Ln,K )V (L1,K [n − 1]) ≥ 1

So that :
I b2(∆) = b(∆) = 1 (by BKK theorem, or directly with MV)
I ∀K , 1 ≤ b2(K ) ≤ b(K ) ;
I by [Diskant, Xiao] : maxK b(K ) ≤ n .
I ∀K , b(TK ) = b(K ), for any (full-rank) affine T .
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Who are the minimizers ?

Question [SZ ’15]

For which bodies do we have b2(K ) = 1?

Question [SSZ ’18]

For which bodies do we have b(K ) = 1 ?

SZ ’15 → [Soprunov, Zvavitch] (2015)
SSZ ’18 → [Saroglou, Soprunov, Zvavitch] (2018)



Who are the minimizers ?

Question [SZ ’15] For which K , do we have b2(K ) = 1?

Question [SSZ ’18] For which K do we have b(K ) = 1 ?

I Theorem[ SSZ ’18] If b(K ) = 1, then K = ∆.

I this doesn’t close former question, since b2(K ) ≤ b(K ).
I ... open whether ∃K ∈ Kn with b2(K ) < b(K ).
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A definition (by Saroglou, Soprunov and Zvavitch)

I Dfn : K is called decomposable if
∃A,B ∈ Kn, A 6≡ K , such that K = A + B.

(equivalently : ∃A,B ∈ Kn, A 6≡ B, such that K = A + B.)

I Dfn : K is called weakly decomposable if there exists L ∈ Kn,
L 6≡ K , such that SK+L << SK .

I example : if K = A + B is decomposable, then it is weakly
decomposable

. (take L = A).

I example : if P is a polytope, P 6= ∆, then P is weakly
decomposable.

I example : if ∂K is somewhere locally smooth, then K is
weakly decomposable. (→ Wulff shape argument)
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Who are the minimizers ?

Question [SZ ’15] For which K , do we have b2(K ) = 1?

I Thm[ SSZ ’18] Let P ∈ Polyn.Then b2(P) = 1⇒ P = ∆.
I Thm[’15, ’18] if b2(K ) = 1, then K cannot be weakly

decomposable ( → K /∈ Wn)

→ excludes bodies with (somewhere) smooth boundary.
−→ recovers characterization among polytopes,
since Polyn ∩Wn = Polyn \ {∆}.

I ... some more restrictions, eg : at most finitely many facets.

Question [SSZ ’18] For which K do we have b(K ) = 1 ?

I Theorem[ SSZ ’18] If b(K ) = 1, then K = ∆.

→ proof uses Wulff shape bodies, a pointwise Aleksandrov
differentiation lemma, and builds on above restrictions.
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Some other necessary condition

Let K be a convex body, denote Ω = supp(SK ) ⊂ Sn−1. Let
Ω = ∪n−1

d=0Ωd , where Ωd = {u ∈ Ω : Ku is d-dimensional}.

I Theorem [S. 2022+]
Assume SK (Ωn−2) > 0. Then b2(K ) > 1.

I Corollary : in R3, the simplex is the only minimizer of b2(K ).

I (this was already known, as a by-product in [SSZ18])
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An isoperimetric condition

Let L ∈ Kn be a k-dimensional. Denote :

Iso(L) := 1
k

Volk−1(∂L)
Volk(L) =: 1

k
|∂L|
|L|

Thm[S. 2022] If b2(K ) = 1, then :

For any facet F of K : Iso(F ) ≤ Iso(K ).

(that is to say : for all F ∈ Fn−1(K ) : |∂F |
|F | ≤

n−1
n
|∂K |
|K | .)

→ recovers the “at most finitely many facets” restriction.
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An isoperimetric condition

→ recovers the “at most finitely many facets” restriction.

Indeed, if K has infinitely many facets, then many will satisfy
Iso(F ) > Iso(K ).

By the isoperimetric inequality :

Iso(L) = 1
d
|∂L|
|L| = 1

d
|∂L|
|L|

d−1
d

1
|L|1/d ≥

|Bd
2 |1/d

|L|1/d

thus if (Fk) is a sequence of facets with Voln−1(Fk)→ 0, then
Iso(Fk)→ +∞.
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Let L ∈ Kn be a k-dimensional. Denote :

Iso(L) := 1
k
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Volk(L) =: 1

k
|∂L|
|L|

Thm[S. 2022] If b2(K ) = 1, then, for any affine transform T :

For any facet F of K : Iso(TF ) ≤ Iso(TK ).

(since b2(K ) is affine invariant, while maxF
Iso(F )
Iso(K) , is not)

I Example : the unit cube. It satisfies Iso(Cn) = 2, and so does
any of its facets. Thus the criteria only allows to conclude
b2(Cn) > 1, after using an affine transform T .
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An isoperimetric condition

Let L ∈ Kn be a k-dimensional. Denote :

Iso(L) := 1
k

Volk−1(∂L)
Volk(L) =: 1

k
|∂L|
|L|

Thm[S. 2022] If b2(K ) = 1, then, for any affine transform T :

For any facet F of K : Iso(TF ) ≤ Iso(TK ).

I Question : if P 6= ∆, does there always exist

an affine transform T s.t. max
F

Iso(TF )
Iso(TP) > 1 ?



... any questions ? ( ... or answers ?)

Thank you for your attention !!


