Around Bezout inequalities for mixed volumes

Maud Szusterman,

Univ. Paris - Sorbonne Unversité

June 2022

Conference OLE - Geometry, Analysis and Convexity, Sevilla

Mixed volume : Minkowski's definition

Denote by $\mathcal{K}_{n}=\left\{K \subset \mathbb{R}^{n}: K\right.$ compact convex set $\}$.
Let $K, L \in \mathcal{K}_{n}$. Then $\operatorname{Vol}_{n}(\lambda K+\mu L)$ is a polynomial in (λ, μ) :

$$
\operatorname{Vol}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}
$$

where $v_{k}=V_{n}(K[k], L[n-k])=V_{n}(K, \ldots, K, L, \ldots, L)$ are called mixed volumes.

Mixed volume : Minkowski's definition

- Let $K, L \in \mathcal{K}_{n}$. Then $\operatorname{VoI}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}$
- Let $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}$. Then :

$$
\operatorname{VoI}_{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{m} K_{m}\right)=\sum_{\substack{a=\left(a_{1}, \ldots, a_{m}\right) \\|a|=n}}\binom{n}{a} v_{a} \lambda^{a}
$$

where $v_{a}=V_{n}\left(K_{1}\left[a_{1}\right], \ldots, K_{m}\left[a_{m}\right]\right)$ are called mixed volumes.

Mixed volume : one or two properties

- Let $K, L \in \mathcal{K}_{n}$. Then $\operatorname{VoI}_{n}(\lambda K+\mu L)=\sum_{k=0}^{n}\binom{n}{k} v_{k} \lambda^{k} \mu^{n-k}$
- Let $K_{1}, \ldots, K_{m} \in \mathcal{K}_{n}$. Then :

$$
\operatorname{Vol}_{n}\left(\lambda_{1} K_{1}+\cdots+\lambda_{m} K_{m}\right)=\sum_{\substack{a=\left(a_{1}, \ldots, a_{m}\right) \\|a|=n}}\binom{n}{a} v_{a} \lambda^{a}
$$

where $v_{a}=V_{n}\left(K_{1}\left[a_{1}\right], \ldots, K_{m}\left[a_{m}\right]\right)$ are called mixed volumes.

- $V_{n}: \mathcal{K}_{n}^{n} \rightarrow[0,+\infty)$ is a multilinear, continuous functional.

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine transform. Then :

$$
V_{n}\left(T K_{1}, \ldots, T K_{n}\right)=\operatorname{det}(T) V_{n}\left(K_{1}, \ldots, K_{n}\right)
$$

Bezout inequality

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties $\quad\left(X_{i}:=\left\{x \in \mathbb{R}^{n}: f_{i}(x)=0\right\}\right)$.
The Bezout inequality states that :

$$
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right)
$$

[B]

Bezout inequality

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties.
The Bezout inequality states that :

$$
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right)
$$

[B]

Denote by P_{1}, \ldots, P_{r} the Newton polytopes of f_{1}, \ldots, f_{r}

Bezout inequality

Let $f_{1}, \ldots, f_{r}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials. Denote by X_{1}, \ldots, X_{r} the associated algebraic varieties.
The Bezout inequality states that :

$$
\begin{equation*}
\operatorname{deg}\left(X_{1} \cap \ldots \cap X_{r}\right) \leq \prod \operatorname{deg}\left(X_{i}\right) \tag{B}
\end{equation*}
$$

Denote by P_{1}, \ldots, P_{r} the Newton polytopes of f_{1}, \ldots, f_{r}
We can reformulate $[B]$ within the language of mixed volumes :

$$
V\left(P_{1}, \ldots, P_{r}, \Delta[n-r]\right) V(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(P_{i}, \Delta[n-1]\right)
$$

thanks to a theorem by Bernstein, Kushnirenko and Khovanskii.

Bezout inequality (again)

Let $f_{1}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be polynomials.
Let $X=X_{2} \cap \ldots \cap X_{n}$ of dimension 1, and $Y=X_{1}(\operatorname{codim} .1)$.
Then Bezout inequality :

$$
\operatorname{deg}(X \cap Y) \leq \operatorname{deg}(X) \operatorname{deg}(Y)
$$

translates to

$$
V_{n}\left(P_{1}, \ldots, P_{n}\right) V_{n}(\Delta) \leq V_{n}\left(P_{2}, \ldots, P_{n}, \Delta\right) V_{n}\left(P_{1}, \Delta[n-1]\right)
$$

(recover previous inequality $[\mathrm{B}]$, by using $[\mathrm{B}] r-1$ times)

A direct geometric proof of $[B]$ inequality

$$
V_{n}\left(L_{1}, \ldots, L_{n}\right) V_{n}(\Delta) \leq V_{n}\left(L_{2}, \ldots, L_{n}, \Delta\right) V_{n}\left(L_{1}, \Delta[n-1]\right) .
$$

Since the inequality is invariant under replacing L_{1} with $\lambda L_{1}+x$, we may assume $L_{1} \subset \Delta$, and $r\left(\Delta, L_{1}\right)=1$, which implies $h_{L_{1}}\left(u_{j}\right)=h_{\Delta}\left(u_{j}\right)$ for all outer normals $u_{j}, j \leq n+1$, of Δ.

- In this case :

$$
V\left(L_{1}, \Delta[n-1]\right)=\frac{1}{n} \sum_{j=1}^{n+1} h_{L_{1}}\left(u_{j}\right) \operatorname{Vol}_{n-1}\left(K^{u_{j}}\right)=V_{n}(\Delta)
$$

- therefore $[B]$ follows from monotonicity of mixed volume.

More general Bezout inequality

- Let $K, L \in \mathcal{K}_{n}$. The inradius of K relative to L is $r(K, L):=\max \left\{\lambda>0: x+\lambda L \subset K, x \in \mathbb{R}^{n}\right\}$.
- A corollary of Diskant's inequality :

$$
r(K, L)^{-1} \leq n \frac{V_{1}(K, L)}{\operatorname{Vol}(K)}=n \frac{V(K[n-1], L)}{\operatorname{Vol}(K)}
$$

- Using this, J. Xiao has shown (2019) :

$$
V\left(L_{1}, \ldots, L_{n}\right) V(K) \leq n V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)
$$

for any convex bodies L_{1}, \ldots, L_{n}, and for any K.

More general Bezout inequality

- Let $K, L \in \mathcal{K}_{n}$. The inradius of K relative to L is $r(K, L):=\max \left\{\lambda>0: x+\lambda L \subset K, x \in \mathbb{R}^{n}\right\}$.
- A corollary of Diskant's inequality :

$$
r(K, L)^{-1} \leq n \frac{V_{1}(K, L)}{\operatorname{Vol}(K)}=n \frac{V(K[n-1], L)}{\operatorname{Vol}(K)}
$$

- Using this, J. Xiao has shown (2019) :

$$
V\left(L_{1}, \ldots, L_{n}\right) V(K) \leq n V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)
$$

for any convex bodies L_{1}, \ldots, L_{n}, and for any K.

- $K=[0,1]^{n}$ shows that n is sharp.

Proof of Xiao's upper bound

- Let $K, L \in \mathcal{K}_{n}$. The inradius of K relative to L is $r(K, L):=\max \left\{\lambda>0: x+\lambda L \subset K, x \in \mathbb{R}^{n}\right\}$.
- Replace L_{1} with $L^{\prime}:=r\left(K, L_{1}\right) L_{1}+x \subset K\left(L^{\prime}\right.$ maximally contained).
- $r\left(K, L_{1}\right) V\left(L_{1}, \ldots, L_{n}\right)=V\left(L^{\prime}, L_{2}, \ldots, L_{n}\right) \leq V\left(K, L_{2}, \ldots, L_{n}\right)$ (monotonicity)
- therefore:

$$
\begin{aligned}
V\left(L_{1}, \ldots, L_{n}\right) & \leq r\left(K, L_{1}\right)^{-1} \quad V\left(K, L_{2}, \ldots, L_{n}\right) \\
& \leq \frac{n V\left(K[n-1], L_{1}\right)}{V_{n}(K)} V\left(K, L_{2}, \ldots, L_{n}\right) .
\end{aligned}
$$

Bezout constants

We define :

$$
b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)} \geq 1
$$

And similarly

$$
b(K)=\max _{L_{1}, \ldots, L_{n}} \frac{V\left(L_{1}, \ldots, L_{n}\right) V(K)}{V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)} \geq 1
$$

Bezout constants

We define :

$$
b_{2}(K)=\max _{L_{1}, L_{2}} \frac{V\left(L_{1}, L_{2}, K[n-2]\right) V(K)}{V\left(L_{1}, K[n-1]\right) V\left(L_{2}, K[n-1]\right)} \geq 1
$$

And similarly

$$
b(K)=\max _{L_{1}, \ldots, L_{n}} \frac{V\left(L_{1}, \ldots, L_{n}\right) V(K)}{V\left(L_{2}, \ldots, L_{n}, K\right) V\left(L_{1}, K[n-1]\right)} \geq 1
$$

So that:

- $b_{2}(\Delta)=b(\Delta)=1$ (by BKK theorem, or directly with MV)
- $\forall K, 1 \leq b_{2}(K) \leq b(K)$;
- by [Diskant, Xiao] : $\max _{K} b(K) \leq n$.
- $\forall K, b(T K)=b(K)$, for any (full-rank) affine T.

Who are the minimizers ?

Question [SZ '15]
For which bodies do we have $b_{2}(K)=1$?

Question [SSZ '18]
For which bodies do we have $b(K)=1$?

SZ '15 \rightarrow [Soprunov, Zvavitch] (2015)
SSZ '18 \rightarrow [Saroglou, Soprunov, Zvavitch] (2018)

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

Question [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

Question [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.
- this doesn't close former question, since $b_{2}(K) \leq b(K)$.
- ... open whether $\exists K \in \mathcal{K}_{n}$ with $b_{2}(K)<b(K)$.

Who are the minimizers?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

Who are the minimizers?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Theorem[SSZ '18] Let P be an n-polytope. If $b_{2}(P)=1$, then $P=\Delta$.

Who are the minimizers?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Theorem[SSZ '18]

If $b_{2}(P)=1$, then $P=\Delta$.

- Prop[SZ '15] if $b_{2}(K)=1$, then $K \neq A+B \quad$ (with $A \not \equiv B$) (K cannot be decomposable)

A definition (by Saroglou, Soprunov and Zvavitch)

- Dfn: K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$. (equivalently: $\exists A, B \in \mathcal{K}_{n}, A \not \equiv B$, such that $K=A+B$.)

A definition (by Saroglou, Soprunov and Zvavitch)

- Dfn: K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.
- Dfn : K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}$, $L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.

A definition (by Saroglou, Soprunov and Zvavitch)

- Dfn: K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.
- Dfn : K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}$, $L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.
- example : if $K=A+B$ is decomposable, then it is weakly decomposable (take $L=A$).

A definition (by Saroglou, Soprunov and Zvavitch)

- Dfn: K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.
- Dfn : K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}$, $L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.
- example : if $K=A+B$ is decomposable, then it is weakly decomposable.
- example : if P is a polytope, $P \neq \Delta$, then P is weakly decomposable.

A definition (by Saroglou, Soprunov and Zvavitch)

- Dfn: K is called decomposable if $\exists A, B \in \mathcal{K}_{n}, A \not \equiv K$, such that $K=A+B$.
- Dfn : K is called weakly decomposable if there exists $L \in \mathcal{K}_{n}$, $L \not \equiv K$, such that $S_{K+L} \ll S_{K}$.
- example : if $K=A+B$ is decomposable, then it is weakly decomposable.
- example : if P is a polytope, $P \neq \Delta$, then P is weakly decomposable.
- example: if ∂K is somewhere locally smooth, then K is weakly decomposable. (\rightarrow Wulff shape argument)

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in \mathbf{P o l y}_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right)$

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in$ Poly $_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable ($\rightarrow K \notin \mathcal{W}_{n}$)
\rightarrow excludes bodies with (somewhere) smooth boundary.

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm [SSZ '18] Let $P \in \mathbf{P o l y}_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right)$
\longrightarrow recovers characterization among polytopes, since Poly $_{n} \cap \mathcal{W}_{n}=$ Poly $_{n} \backslash\{\Delta\}$.

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in \mathbf{P o l y}_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right)$
- ... some more restrictions, eg : at most finitely many facets.

Question [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.

Who are the minimizers ?

Question [SZ '15] For which K, do we have $b_{2}(K)=1$?

- Thm[SSZ '18] Let $P \in \mathbf{P o l y}_{n}$. Then $b_{2}(P)=1 \Rightarrow P=\Delta$.
- Thm['15, '18] if $b_{2}(K)=1$, then K cannot be weakly decomposable $\left(\rightarrow K \notin \mathcal{W}_{n}\right)$
- ... some more restrictions, eg : at most finitely many facets.

Question [SSZ '18] For which K do we have $b(K)=1$?

- Theorem[SSZ '18] If $b(K)=1$, then $K=\Delta$.
\rightarrow proof uses Wulff shape bodies, a pointwise Aleksandrov differentiation lemma, and builds on above restrictions.

Some other necessary condition

Let K be a convex body, denote $\Omega=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Let $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where $\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

- Theorem [S. 2022+] Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

Some other necessary condition

Let K be a convex body, denote $\Omega=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Let $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where $\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

- Theorem [S. 2022+]

Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.

- Corollary: in \mathbb{R}^{3}, the simplex is the only minimizer of $b_{2}(K)$.

Some other necessary condition

Let K be a convex body, denote $\Omega=\operatorname{supp}\left(S_{K}\right) \subset \mathbb{S}^{n-1}$. Let $\Omega=\cup_{d=0}^{n-1} \Omega_{d}$, where $\Omega_{d}=\left\{u \in \Omega: K^{u}\right.$ is d-dimensional $\}$.

- Theorem [S. 2022+] Assume $S_{K}\left(\Omega_{n-2}\right)>0$. Then $b_{2}(K)>1$.
- Corollary: in \mathbb{R}^{3}, the simplex is the only minimizer of $b_{2}(K)$.
- (this was already known, as a by-product in [SSZ18])

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then :
For any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then :
For any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.
(that is to say: for all $F \in \mathcal{F}_{n-1}(K): \frac{|\partial F|}{|F|} \leq \frac{n-1}{n} \frac{|\partial K|}{|K|}$.)

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then :
For any facet F of $K: \operatorname{Iso}(F) \leq \operatorname{Iso}(K)$.
\rightarrow recovers the "at most finitely many facets" restriction.

An isoperimetric condition

\rightarrow recovers the "at most finitely many facets" restriction.

Indeed, if K has infinitely many facets, then many will satisfy $I s o(F)>\operatorname{lso}(K)$.
By the isoperimetric inequality :

$$
\operatorname{Iso}(L)=\frac{1}{d} \frac{|\partial L|}{|L|}=\frac{1}{d} \frac{|\partial L|}{|L|^{\frac{d-1}{d}}} \frac{1}{|L|^{1 / d}} \geq \frac{\left|B_{2}^{d}\right|^{1 / d}}{|L|^{1 / d}}
$$

thus if $\left(F_{k}\right)$ is a sequence of facets with $\operatorname{Vol}_{n-1}\left(F_{k}\right) \rightarrow 0$, then Iso $\left(F_{k}\right) \rightarrow+\infty$.

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then, for any affine transform T :
For any facet F of $K: \operatorname{Iso}(T F) \leq \operatorname{Iso}(T K)$.
(since $b_{2}(K)$ is affine invariant, while $\max _{F} \frac{I s o(F)}{\operatorname{lso}(K)}$, is not)

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{VoI}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm [S. 2022] If $b_{2}(K)=1$, then, for any affine transform T :

$$
\text { For any facet } F \text { of } K: \operatorname{Iso}(T F) \leq \operatorname{Iso}(T K) .
$$

- Example : the unit cube. It satisfies $\operatorname{Iso}\left(C_{n}\right)=2$, and so does any of its facets. Thus the criteria only allows to conclude $b_{2}\left(C_{n}\right)>1$, after using an affine transform T.

An isoperimetric condition

Let $L \in \mathcal{K}_{n}$ be a k-dimensional. Denote :

$$
\operatorname{Iso}(L):=\frac{1}{k} \frac{\operatorname{Vol}_{k-1}(\partial L)}{\operatorname{Vol}_{k}(L)}=: \frac{1}{k} \frac{|\partial L|}{|L|}
$$

Thm[S. 2022] If $b_{2}(K)=1$, then, for any affine transform T :
For any facet F of $K: I s o(T F) \leq I s o(T K)$.

- Question : if $P \neq \Delta$, does there always exist

$$
\text { an affine transform } T \text { s.t. } \max _{F} \frac{\operatorname{lso}(T F)}{\operatorname{lso}(T P)}>1 \text { ? }
$$

Thank you for your attention !!

