Discretization of geometric inequalities via the lattice point enumerator

geOmetry, anaLysis \& convExity
June 20-24, 2022

Eduardo Lucas Marín ${ }^{1}$
Joint work with David Alonso-Gutiérrez², María A. Hernández Cifre³, David Iglesias ${ }^{4}$ and Jesús Yepes Nicolás ${ }^{5}$

1, 3, 4, 5 Departamento de Matemáticas, Universidad de Murcia.
2 Departamento de Matemáticas, Universidad de Zaragoza.

Brunn-Minkowski inequality

Theorem

Given $K, L \in \mathcal{K}^{n}$ we have $\operatorname{vol}(K+L)^{1 / n} \geq \operatorname{vol}(K)^{1 / n}+\operatorname{vol}(L)^{1 / n}$.

Brunn-Minkowski inequality

Theorem

Given $K, L \in \mathcal{K}^{n}$ we have $\operatorname{vol}(K+L)^{1 / n} \geq \operatorname{vol}(K)^{1 / n}+\operatorname{vol}(L)^{1 / n}$.
Naturally, due to the homogeneity of vol of degree n, for any $\lambda, \mu \geq 0$

$$
\operatorname{vol}(\lambda K+\mu \mathrm{L})^{1 / n} \geq \lambda \operatorname{vol}(K)^{1 / n}+\mu \operatorname{vol}(L)^{1 / n} .
$$

Brunn-Minkowski inequality

Theorem

Given $K, L \in \mathcal{K}^{n}$ we have $\operatorname{vol}(K+L)^{1 / n} \geq \operatorname{vol}(K)^{1 / n}+\operatorname{vol}(L)^{1 / n}$.

Naturally, due to the homogeneity of vol of degree n, for any $\lambda, \mu \geq 0$

$$
\operatorname{vol}(\lambda K+\mu \mathrm{L})^{1 / n} \geq \lambda \operatorname{vol}(K)^{1 / n}+\mu \operatorname{vol}(L)^{1 / n}
$$

As a consequence of the (weighed) arithmetic and geometric means inequality, we can obtain:

Corollary

Given $K, L \in \mathcal{K}^{n}$ we have $\operatorname{vol}((1-\lambda) K+\lambda L) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}$ for any $\mathrm{o} \leq \lambda \leq 1$

Brunn-Minkowski inequality

Theorem

Given $K, L \in \mathcal{K}^{n}$ we have $\operatorname{vol}(K+L)^{1 / n} \geq \operatorname{vol}(K)^{1 / n}+\operatorname{vol}(L)^{1 / n}$.
Naturally, due to the homogeneity of vol of degree n, for any $\lambda, \mu \geq 0$

$$
\operatorname{vol}(\lambda K+\mu \mathrm{L})^{1 / n} \geq \lambda \operatorname{vol}(K)^{1 / n}+\mu \operatorname{vol}(L)^{1 / n}
$$

As a consequence of the (weighed) arithmetic and geometric means inequality, we can obtain:

Corollary

Given $K, L \in \mathcal{K}^{n}$ we have $\operatorname{vol}((1-\lambda) K+\lambda L) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}$ for any $0 \leq \lambda \leq 1$

Note: The inequality can be extended to arbitrary non-empty compact sets, and even to more general measurable families.

Related inequalities

Functional counterpart:

Theorem: Prékopa-Leindler inequality

Let $0 \leq \lambda \leq 1$ and let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be Lebesgue integrable functions verifying

$$
h((1-\lambda) x+\lambda y) \geq f(x)^{1-\lambda} g(y)^{\lambda}
$$

for all $x, y \in \mathbb{R}^{n}$.

Related inequalities

Functional counterpart:

Theorem: Prékopa-Leindler inequality

Let $0 \leq \lambda \leq 1$ and let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be Lebesgue integrable functions verifying

$$
h((1-\lambda) x+\lambda y) \geq f(x)^{1-\lambda} g(y)^{\lambda}
$$

for all $x, y \in \mathbb{R}^{n}$. Then

$$
\int_{\mathbb{R}^{n}} h(x) d x \geq\left(\int_{\mathbb{R}^{n}} f(x) d x\right)^{1-\lambda}\left(\int_{\mathbb{R}^{n}} g(x) d x\right)^{\lambda}
$$

Related inequalities

Generalization of Prékopa-Leindler:

Theorem: Borell-Brascamp-Lieb inequality

Let $0 \leq \lambda \leq 1$, let $-1 / n \leq p \leq \infty$ and let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be Lebesgue integrable functions verifying

$$
h((1-\lambda) x+\lambda y) \geq \mathcal{M}_{p}^{\lambda}(f(x), g(y))
$$

for all $x, y \in \mathbb{R}^{n}$.

Related inequalities

Generalization of Prékopa-Leindler:
Theorem: Borell-Brascamp-Lieb inequality
Let $0 \leq \lambda \leq 1$, let $-1 / n \leq p \leq \infty$ and let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be Lebesgue integrable functions verifying

$$
h((1-\lambda) x+\lambda y) \geq \mathcal{M}_{p}^{\lambda}(f(x), g(y))
$$

for all $x, y \in \mathbb{R}^{n}$. Then

$$
\int_{\mathbb{R}^{n}} h(x) d x \geq \mathcal{M}_{\frac{1}{n p+1}}^{\lambda}\left(\int_{\mathbb{R}^{n}} f(x) d x, \int_{\mathbb{R}^{n}} g(x) d x\right) .
$$

Brunn-Minkowski generalizations

In general $h_{K+L}=h_{K}+h_{L}$.

Definition (Firey (1962))

Let $p \geq 1$ and $K, L \in \mathcal{K}^{n}$ containing the origin in their interior. Then the p-sum $K+{ }_{p} L$ is the unique convex body such that

$$
h_{K+p L}=\left(h_{K}^{p}+h_{L}^{p}\right)^{1 / p}
$$

Brunn-Minkowski generalizations

In general $h_{K+L}=h_{K}+h_{L}$.

Definition (Firey (1962))

Let $p \geq 1$ and $K, L \in \mathcal{K}^{n}$ containing the origin in their interior. Then the p-sum $K+{ }_{p} L$ is the unique convex body such that

$$
h_{K+p L}=\left(h_{K}^{p}+h_{L}^{p}\right)^{1 / p}
$$

Definition (Lutwak, Yang, Zhang (2012))

Let $K, L \subset \mathbb{R}^{n}$ be non-empty bounded sets and let $p \geq 1$. Then

$$
K+{ }_{p} L=\left\{(1-\mu)^{1 / q^{x}}+\mu^{1 / q} y: x \in K, y \in L, \mu \in[0,1]\right\}
$$

where $q \in[1,+\infty]$ is the Hölder conjugate of p, i.e., such that $1 / p+1 / q=1$.

Brunn-Minkowski generalizations

- $p=1: K+{ }_{1} L=K+L$ (Minkowski addition).
- $p=\infty: K+\infty L=\operatorname{conv}(K \cup L)$ (convex hull).
- If $p \leq q$ then:
- $K+{ }_{q} L \subset K+{ }_{p} L$.
- $(1-\lambda) \cdot K+{ }_{p} \lambda \cdot L \subset(1-\lambda) \cdot K+{ }_{q} \lambda \cdot L$.

Brunn-Minkowski generalizations

- $p=1: K+{ }_{1} L=K+L$ (Minkowski addition).
- $p=\infty: K+{ }_{\infty} L=\operatorname{conv}(K \cup L)($ convex hull).
- If $p \leq q$ then:
- $K+{ }_{q} L \subset K+{ }_{p} L$.
- $(1-\lambda) \cdot K+_{p} \lambda \cdot L \subset(1-\lambda) \cdot K+{ }_{q} \lambda \cdot L$.

Theorem (Firey (1962), Lutwak, Yang, Zhang (2012))

Let $K, L \subset \mathbb{R}^{n}$ be non-empty bounded sets, and let $p \geq 1$. Then

$$
\operatorname{vol}(K+p L)^{p / n} \geq \operatorname{vol}(K)^{p / n}+\operatorname{vol}(L)^{p / n}
$$

Brunn-Minkowski generalizations

Definition

Let $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}^{n}$, the Wulff shape of f is

$$
W(f)=\bigcap_{u \in \mathbb{S}^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq f(u)\right\}
$$

Brunn-Minkowski generalizations

Definition

Let $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}^{n}$, the Wulff shape of f is

$$
W(f)=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq f(u)\right\}
$$

Then, for any $K \in \mathcal{K}^{n}$ containing the origin, $K=W\left(h_{K}\right)$. Thus, for any $K, L \in \mathcal{K}^{n}$ containing the origin and any $p \geq 1$,

$$
(1-\lambda) \cdot K+p \lambda \cdot L=W\left(\left((1-\lambda) h_{K}^{p}+\lambda h_{L}^{p}\right)^{1 / p}\right)
$$

Brunn-Minkowski generalizations

Definition

Let $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}^{n}$, the Wulff shape of f is

$$
W(f)=\bigcap_{u \in S^{n-1}}\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq f(u)\right\}
$$

Then, for any $K \in \mathcal{K}^{n}$ containing the origin, $K=W\left(h_{K}\right)$. Thus, for any $K, L \in \mathcal{K}^{n}$ containing the origin and any $p \geq 1$,

$$
(1-\lambda) \cdot K+p \lambda \cdot L=W\left(\left((1-\lambda) h_{K}^{p}+\lambda h_{L}^{p}\right)^{1 / p}\right)
$$

This definition can now be extended to $0 \leq p<1$, in particular,

$$
(1-\lambda) \cdot K+{ }_{o} \lambda \cdot L=W\left(h_{K}^{1-\lambda} h_{L}^{\lambda}\right)
$$

Brunn-Minkowski generalizations

Böröczky, Lutwak, Yang and Zhang conjectured:

Conjecture - The log-Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be centrally symmetric convex bodies, and let $\lambda \in(0,1)$. Then

$$
\begin{equation*}
\operatorname{vol}\left((1-\lambda) \cdot K+_{o} \lambda \cdot L\right) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda} . \tag{1}
\end{equation*}
$$

Brunn-Minkowski generalizations

Böröczky, Lutwak, Yang and Zhang conjectured:

Conjecture - The log-Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be centrally symmetric convex bodies, and let $\lambda \in(0,1)$. Then

$$
\begin{equation*}
\operatorname{vol}\left((1-\lambda) \cdot K+_{o} \lambda \cdot L\right) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda} . \tag{1}
\end{equation*}
$$

- $n=2$ (Böröczky, Lutwak, Yang, Zhang, 2012)
- Unconditional bodies for $p=0$ (Saroglou, 2015)
- Unconditional bodies for $0<p<1$ (Marsiglietti, 2015)
- Symmetric w.r.t. n independent hyperplanes (Böröczky, Kalantzopoulos, 2020)

Discretization preliminaries

Definition

A lattice \mathcal{L} in \mathbb{R}^{n} is a discrete additive subgroup of \mathbb{R}^{n}. Sometimes we will further require non-degeneracy (i.e. full dimensionality).

Discretization preliminaries

Definition

A lattice \mathcal{L} in \mathbb{R}^{n} is a discrete additive subgroup of \mathbb{R}^{n}. Sometimes we will further require non-degeneracy (i.e. full dimensionality).

Proposition

Every lattice \mathcal{L} can be expressed as $A \mathbb{Z}^{n}$ for some $A \in G L_{n}(\mathbb{R})$.

Discretization preliminaries

Definition

A lattice \mathcal{L} in \mathbb{R}^{n} is a discrete additive subgroup of \mathbb{R}^{n}. Sometimes we will further require non-degeneracy (i.e. full dimensionality).

Proposition

Every lattice \mathcal{L} can be expressed as $A \mathbb{Z}^{n}$ for some $A \in G L_{n}(\mathbb{R})$.

The objects of study in this setting can be

- Discrete sets $A \subset \mathcal{L} \longrightarrow$ Cardinality $|A|$.
- Convex bodies $K \subset \mathcal{K}^{n} \longrightarrow$ Lattice point enumerator

$$
G(K)=|K \cap \mathcal{L}| .
$$

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

- For $A, B \subset \mathbb{Z}^{n}$ finite: $|A+B| \geq|A|+|B|-1$.

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

- For $A, B \subset \mathbb{Z}^{n}$ finite: $|A+B| \geq|A|+|B|-1$.
- Ruzsa (1994): $|A+B| \geq|A|+n|B|-\frac{n(n+1)}{2}$ when $|B| \leq|A|$ and $\operatorname{dim}(A+B)=n$.

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

- For $A, B \subset \mathbb{Z}^{n}$ finite: $|A+B| \geq|A|+|B|-1$.
- Ruzsa (1994): $|A+B| \geq|A|+n|B|-\frac{n(n+1)}{2}$ when $|B| \leq|A|$ and $\operatorname{dim}(A+B)=n$.
- Gardner \& Gronchi (2001): $|A+B| \geq\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$ when $\operatorname{dim} B=n$.

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

- For $A, B \subset \mathbb{Z}^{n}$ finite: $|A+B| \geq|A|+|B|-1$.
- Ruzsa (1994): $|A+B| \geq|A|+n|B|-\frac{n(n+1)}{2}$ when $|B| \leq|A|$ and $\operatorname{dim}(A+B)=n$.
- Gardner \& Gronchi (2001): $|A+B| \geq\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$ when $\operatorname{dim} B=n$.
- Hernández Cifre, Iglesias \& Yepes Nicolás (2018):

$$
|\bar{A}+B|^{1 / n} \geq|A|^{1 / n}+|B|^{1 / n} .
$$

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

- For $A, B \subset \mathbb{Z}^{n}$ finite: $|A+B| \geq|A|+|B|-1$.
- Ruzsa (1994): $|A+B| \geq|A|+n|B|-\frac{n(n+1)}{2}$ when $|B| \leq|A|$ and $\operatorname{dim}(A+B)=n$.
- Gardner \& Gronchi (2001): $|A+B| \geq\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$ when $\operatorname{dim} B=n$.
- Hernández Cifre, Iglesias \& Yepes Nicolás (2018):

$$
|\bar{A}+B|^{1 / n} \geq|A|^{1 / n}+|B|^{1 / n} .
$$

- Iglesias, Yepes Nicolás \& Zvavitch (2020):

$$
\left|A+B+\{0,1\}^{n}\right|^{1 / n} \geq|A|^{1 / n}+|B|^{1 / n} .
$$

Discreticing Brunn-Minkowski for $G(K)$

Theorem (Iglesias, Yepes Nicolás, Zvavitch (2020))

Let K, L be non-empty bounded sets and let $\lambda \in(0,1)$. Then

$$
G\left((1-\lambda) K+\lambda L+(-1,1)^{n}\right)^{1 / n} \geq(1-\lambda) G(K)^{1 / n}+\lambda G(L)^{1 / n} .
$$

Discreticing Brunn-Minkowski for $G(K)$

Theorem (Iglesias, Yepes Nicolás, Zvavitch (2020))

Let K, L be non-empty bounded sets and let $\lambda \in(0,1)$. Then

$$
G\left((1-\lambda) K+\lambda L+(-1,1)^{n}\right)^{1 / n} \geq(1-\lambda) G(K)^{1 / n}+\lambda G(L)^{1 / n} .
$$

Taking $\lambda=1 / 2$

Let K, L be non-empty bounded sets. Then
$G\left(\frac{K+L}{2}+[0,1]^{n}\right) \geq \sqrt{G(K) G(L)} \quad$ (Halikias, Klartag \& Slomka)
$G\left(\frac{K+L}{2}+[0,1]^{n}\right) \geq \frac{G(K)^{1 / n}+G(L)^{1 / n}}{2}$
(Iglesias, Yepes Nicolás \& Zvavitch)

Linear results

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $t, s \geq 0$ and let $K, L \subset \mathbb{R}^{n}$ non-empty bounded sets such that $G(K) G(L)>0$. Then

$$
\begin{equation*}
G\left(t K+s L+(-1,\lceil t+s\rceil)^{n}\right)^{1 / n} \geq t G(K)^{1 / n}+s G(L)^{1 / n} . \tag{2}
\end{equation*}
$$

The inequality is sharp.

Linear results

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $t, s \geq 0$ and let $K, L \subset \mathbb{R}^{n}$ non-empty bounded sets such that $G(K) G(L)>0$. Then

$$
\begin{equation*}
G\left(t K+s L+(-1,\lceil t+s\rceil)^{n}\right)^{1 / n} \geq t G(K)^{1 / n}+s G(L)^{1 / n} \tag{2}
\end{equation*}
$$

The inequality is sharp.

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $t, s \geq 0$ and let $K, L \subset \mathbb{R}^{n}$ non-empty bounded sets such that $G(K) G(L)>0$. Then (2) implies

$$
\operatorname{vol}(t K+s L)^{1 / n} \geq \operatorname{tvol}(K)^{1 / n}+\operatorname{svol}(L)^{1 / n}
$$

that is, the classical Brunn-Minkowski inequality.

L_{p} results

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))

Let $\lambda \in(0,1)$ and $p \geq 1$, and let $K, L \subset \mathbb{R}^{n}$ be bounded sets with $G(K) G(L)>0$. Then

$$
\begin{equation*}
G\left((1-\lambda) \cdot K+_{p} \lambda \cdot L+(-1,1)^{n}\right)^{p / n} \geq(1-\lambda) G(K)^{p / n}+\lambda G(L)^{p / n} \tag{3}
\end{equation*}
$$

The inequality is sharp and the cube

L_{p} results

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))

Let $\lambda \in(0,1)$ and $p \geq 1$, and let $K, L \subset \mathbb{R}^{n}$ be bounded sets with $G(K) G(L)>0$. Then

$$
\begin{equation*}
G\left((1-\lambda) \cdot K+p \lambda \cdot L+(-1,1)^{n}\right)^{p / n} \geq(1-\lambda) G(K)^{p / n}+\lambda G(L)^{p / n} . \tag{3}
\end{equation*}
$$

The inequality is sharp and the cube

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))

Let $\lambda \in(0,1)$ and $p \geq 1$, and let $K, L \subset \mathbb{R}^{n}$ be bounded sets with $G(K) G(L)>0$. Then (3) implies

$$
\operatorname{vol}((1-\lambda) \cdot K+p \lambda \cdot L)^{p / n} \geq(1-\lambda) \operatorname{vol}(K)^{p / n}+\lambda \operatorname{vol}(L)^{p / n}
$$

that is, the continuous L_{p} Brunn-Minkowski inequality.

L_{0} results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^{n}$ be centrally symmetric convex bodies and let $\lambda \in(0,1)$. If either K, L are unconditional convex bodies or $n=2$, then

$$
\begin{gathered}
G\left((1-\lambda) \cdot\left(K+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+o \lambda \cdot\left(L+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+\left(-\frac{1}{2}, \frac{1}{2}\right)^{n}\right) \\
\geq G(K)^{1-\lambda} G(L)^{\lambda} .
\end{gathered}
$$

L_{0} results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^{n}$ be centrally symmetric convex bodies and let $\lambda \in(0,1)$. If either K, L are unconditional convex bodies or $n=2$, then

$$
\begin{gathered}
G\left((1-\lambda) \cdot\left(K+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+o \lambda \cdot\left(L+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+\left(-\frac{1}{2}, \frac{1}{2}\right)^{n}\right) \\
\geq G(K)^{1-\lambda} G(L)^{\lambda} .
\end{gathered}
$$

- The cubes cannot be reduced.

L_{0} results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^{n}$ be centrally symmetric convex bodies and let
$\lambda \in(0,1)$. If either K, L are unconditional convex bodies or $n=2$, then

$$
\begin{gathered}
G\left((1-\lambda) \cdot\left(K+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+o \lambda \cdot\left(L+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+\left(-\frac{1}{2}, \frac{1}{2}\right)^{n}\right) \\
\geq G(K)^{1-\lambda} G(L)^{\lambda} .
\end{gathered}
$$

- The cubes cannot be reduced.
- It implies vol $((1-\lambda) \cdot K+o \lambda \cdot L) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}$, that is, the log-Brunn-Minkowski inequality, for both unconditional convex bodies or when $n=2$.

L_{0} results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^{n}$ be centrally symmetric convex bodies and let
$\lambda \in(0,1)$. If either K, L are unconditional convex bodies or $n=2$, then

$$
\begin{gathered}
G\left((1-\lambda) \cdot\left(K+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+o \lambda \cdot\left(L+\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}\right)+\left(-\frac{1}{2}, \frac{1}{2}\right)^{n}\right) \\
\geq G(K)^{1-\lambda} G(L)^{\lambda} .
\end{gathered}
$$

- The cubes cannot be reduced.
- It implies vol $((1-\lambda) \cdot K+o \lambda \cdot L) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda}$, that is, the log-Brunn-Minkowski inequality, for both unconditional convex bodies or when $n=2$.
- It can be extended to $0<p<1$.

The isoperimetric inequality

Theorem

For every $K \in \mathcal{K}^{n}$ with non-empty interior we have

$$
\frac{\mathcal{S}(K)^{n}}{\operatorname{vol}(K)^{n-1}} \geq \frac{\mathcal{S}\left(B_{n}\right)^{n}}{\operatorname{vol}\left(B_{n}\right)^{n-1}}
$$

Since $\mathcal{S}\left(B_{n}\right)=n \operatorname{vol}\left(B_{n}\right)$, then equivalently,

$$
\mathcal{S}(K) \geq n \operatorname{vol}(K)^{1-\frac{1}{n}} \operatorname{vol}\left(B_{n}\right)^{\frac{1}{n}}
$$

The isoperimetric inequality

Classically, an argument of symmetrization (Steiner symmetrization) was used to prove the isoperimetric inequality.

A similar technique ("compression") is used in the discrete setting.

What is a discrete boundary?

We focus on the integer lattice, $\mathcal{L}=\mathbb{Z}^{n}$, from now on.

Definition

We define the boundary of a discrete set $A \subset \mathbb{Z}^{n}$ as $\left(A+\{-1,0,1\}^{n}\right) \backslash A$.

Discrete isoperimetric inequalities

The isoperimetric inequality admits the "neighbourhood form" given by

$$
\operatorname{vol}\left(K+t B_{n}\right) \geq \operatorname{vol}\left(r B_{n}+t B_{n}\right)
$$

where $r>0$ is such that $\operatorname{vol}\left(r B_{n}\right)=\operatorname{vol}(K)$.

Discrete isoperimetric inequalities

The isoperimetric inequality admits the "neighbourhood form" given by

$$
\operatorname{vol}\left(K+t B_{n}\right) \geq \operatorname{vol}\left(r B_{n}+t B_{n}\right)
$$

where $r>0$ is such that $\operatorname{vol}\left(r B_{n}\right)=\operatorname{vol}(K)$.
We can generalize this by changing the "distance" involved (i.e. the symmetric convex body being summed):

$$
\operatorname{vol}(K+t E) \geq \operatorname{vol}(r E+t E)
$$

where $r>0$ is such that $\operatorname{vol}(r E)=\operatorname{vol}(K)$.

Discrete isoperimetric inequalities

The isoperimetric inequality admits the "neighbourhood form" given by

$$
\operatorname{vol}\left(K+t B_{n}\right) \geq \operatorname{vol}\left(r B_{n}+t B_{n}\right)
$$

where $r>0$ is such that $\operatorname{vol}\left(r B_{n}\right)=\operatorname{vol}(K)$.
We can generalize this by changing the "distance" involved (i.e. the symmetric convex body being summed):

$$
\operatorname{vol}(K+t E) \geq \operatorname{vol}(r E+t E)
$$

where $r>0$ is such that $\operatorname{vol}(r E)=\operatorname{vol}(K)$.
This allows us to extend the notion of isoperimetric inequalities to more general contexts.

Discrete isoperimetric inequalities

Theorem (Radcliffe, Veomett (2012))

Let $A \subset \mathbb{Z}^{n}$ be a non-empty finite set and let $r \in \mathbb{N}$ be such that $\left|\mathcal{I}_{r}\right|=|A|$. Then

$$
\left|A+\{-1,0,1\}^{n}\right| \geq\left|\mathcal{I}_{r}+\{-1,0,1\}^{n}\right|
$$

Discrete isoperimetric inequalities

Theorem (Radcliffe, Veomett (2012))

Let $A \subset \mathbb{Z}^{n}$ be a non-empty finite set and let $r \in \mathbb{N}$ be such that $\left|\mathcal{I}_{r}\right|=|A|$. Then

$$
\left|A+\{-1,0,1\}^{n}\right| \geq\left|\mathcal{I}_{r}+\{-1,0,1\}^{n}\right|
$$

Definition

The extended lattice cube \mathcal{I}_{r} is the set of the first r points of \mathbb{Z}^{n} with respect to a suitably defined order.

Discrete isoperimetric inequalities

In order to extend the result to convex bodies we define:

Definition

Given $r \in \mathbb{N}$, we denote
$\mathcal{C}_{r}=\left\{\left(\lambda_{1} x_{1}, \ldots, \lambda_{n} x_{n}\right) \in \mathbb{R}^{n}:\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{I}_{r}, \lambda_{i} \in[0,1], i=1, \ldots, n\right\}$.

The extended lattice cube \mathcal{I}_{17} in \mathbb{Z}^{2} (left) and the corresponding extended cube \mathcal{C}_{17} in \mathbb{R}^{2} (right).

Discrete isoperimetric inequalities

Theorem (Iglesias, L., Yepes Nicolás (2020))
Let $K \subset \mathbb{R}^{n}$ be a bounded set with $G(K)>0$ and let $r \in \mathbb{N}$ be such that $G\left(\mathcal{C}_{r}\right)=G(K)$. Then

$$
\begin{equation*}
G\left(K+t[-1,1]^{n}\right) \geq G\left(\mathcal{C}_{r}+t[-1,1]^{n}\right) \tag{4}
\end{equation*}
$$

for all $t \geq 0$.

Discrete isoperimetric inequalities

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $K \subset \mathbb{R}^{n}$ be a bounded set with $G(K)>0$ and let $r \in \mathbb{N}$ be such that $G\left(\mathcal{C}_{r}\right)=G(K)$. Then

$$
\begin{equation*}
G\left(K+t[-1,1]^{n}\right) \geq G\left(\mathcal{C}_{r}+t[-1,1]^{n}\right) \tag{4}
\end{equation*}
$$

for all $t \geq 0$.

Theorem (Iglesias, L., Yepes Nicolás (2020))

The discrete isoperimetric inequality (4) implies the classical isoperimetric inequality for non-empty compact sets.

Discretization of geometric inequalities via the lattice point enumerator

geOmetry, anaLysis \& convExity June 20-24, 2022

Eduardo Lucas Marín ${ }^{1}$
Joint work with David Alonso-Gutiérrez², María A. Hernández Cifre³, David Iglesias ${ }^{4}$ and Jesús Yepes Nicolás ${ }^{5}$

1, 3, 4, 5 Departamento de Matemáticas, Universidad de Murcia.
2 Departamento de Matemáticas, Universidad de Zaragoza.

