Discretization of geometric inequalities via the lattice point enumerator

geOmetry, anaLysis & convExity June 20 – 24, 2022

Eduardo Lucas Marín¹

Joint work with David Alonso-Gutiérrez², María A. Hernández Cifre³, David Iglesias⁴ and Jesús Yepes Nicolás⁵

1, 3, 4, 5 Departamento de Matemáticas, Universidad de Murcia. 2 Departamento de Matemáticas, Universidad de Zaragoza.

Theorem

Given $K, L \in \mathcal{K}^n$ we have $\operatorname{vol}(K + L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n}$.

Theorem

Given $K, L \in \mathcal{K}^n$ we have $\operatorname{vol}(K + L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n}$.

Naturally, due to the homogeneity of vol of degree *n*, for any $\lambda, \mu \ge 0$ $\operatorname{vol}(\lambda K + \mu L)^{1/n} \ge \lambda \operatorname{vol}(K)^{1/n} + \mu \operatorname{vol}(L)^{1/n}$.

Theorem

Given $K, L \in \mathcal{K}^n$ we have $\operatorname{vol}(K + L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n}$.

Naturally, due to the homogeneity of vol of degree *n*, for any $\lambda, \mu \ge 0$ $\operatorname{vol}(\lambda K + \mu L)^{1/n} \ge \lambda \operatorname{vol}(K)^{1/n} + \mu \operatorname{vol}(L)^{1/n}$.

As a consequence of the (weighed) arithmetic and geometric means inequality, we can obtain:

Corollary

Given $K, L \in \mathcal{K}^n$ we have $vol((1 - \lambda)K + \lambda L) \ge vol(K)^{1-\lambda}vol(L)^{\lambda}$ for any $0 \le \lambda \le 1$

Theorem

Given $K, L \in \mathcal{K}^n$ we have $\operatorname{vol}(K + L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n}$.

Naturally, due to the homogeneity of vol of degree *n*, for any $\lambda, \mu \ge 0$ $\operatorname{vol}(\lambda K + \mu L)^{1/n} \ge \lambda \operatorname{vol}(K)^{1/n} + \mu \operatorname{vol}(L)^{1/n}$.

As a consequence of the (weighed) arithmetic and geometric means inequality, we can obtain:

Corollary

Given $K, L \in \mathcal{K}^n$ we have $vol((1 - \lambda)K + \lambda L) \ge vol(K)^{1-\lambda}vol(L)^{\lambda}$ for any $0 \le \lambda \le 1$

Note: The inequality can be extended to arbitrary non-empty compact sets, and even to more general measurable families.

Functional counterpart:

Theorem: Prékopa-Leindler inequality

Let $0 \le \lambda \le 1$ and let $f, g, h : \mathbb{R}^n \to \mathbb{R}^+$ be Lebesgue integrable functions verifying

$$h((1 - \lambda)x + \lambda y) \ge f(x)^{1-\lambda}g(y)^{\lambda}$$

for all $x, y \in \mathbb{R}^n$.

Functional counterpart:

Theorem: Prékopa-Leindler inequality

Let $0 \le \lambda \le 1$ and let $f, g, h : \mathbb{R}^n \to \mathbb{R}^+$ be Lebesgue integrable functions verifying

$$h((1 - \lambda)x + \lambda y) \ge f(x)^{1-\lambda}g(y)^{\lambda}$$

for all $x, y \in \mathbb{R}^n$. Then

$$\int_{\mathbb{R}^n} h(x) dx \ge \left(\int_{\mathbb{R}^n} f(x) dx\right)^{1-\lambda} \left(\int_{\mathbb{R}^n} g(x) dx\right)^{\lambda}$$

Generalization of Prékopa-Leindler:

Theorem: Borell-Brascamp-Lieb inequality

Let $0 \le \lambda \le 1$, let $-1/n \le p \le \infty$ and let $f, g, h : \mathbb{R}^n \to \mathbb{R}^+$ be Lebesgue integrable functions verifying

$$h((1 - \lambda)x + \lambda y) \ge \mathcal{M}_p^{\lambda}(f(x), g(y))$$

for all $x, y \in \mathbb{R}^n$.

Generalization of Prékopa-Leindler:

Theorem: Borell-Brascamp-Lieb inequality

Let $0 \le \lambda \le 1$, let $-1/n \le p \le \infty$ and let $f, g, h : \mathbb{R}^n \to \mathbb{R}^+$ be Lebesgue integrable functions verifying

$$h((1 - \lambda)x + \lambda y) \ge \mathcal{M}_p^{\lambda}(f(x), g(y))$$

for all $x, y \in \mathbb{R}^n$. Then

$$\int_{\mathbb{R}^n} h(x) dx \geq \mathcal{M}_{\frac{p}{np+1}}^{\lambda} \left(\int_{\mathbb{R}^n} f(x) dx, \int_{\mathbb{R}^n} g(x) dx \right).$$

In general $h_{K+L} = h_K + h_L$.

Definition (Firey (1962))

Let $p \ge 1$ and $K, L \in \mathcal{K}^n$ containing the origin in their interior. Then the p-sum $K +_p L$ is the unique convex body such that

$$h_{K+_pL} = \left(h_K^p + h_L^p\right)^{1/p}$$

In general $h_{K+L} = h_K + h_L$.

Definition (Firey (1962))

Let $p \ge 1$ and $K, L \in \mathcal{K}^n$ containing the origin in their interior. Then the p-sum $K +_p L$ is the unique convex body such that

 $h_{K+_pL} = \left(h_K^p + h_L^p\right)^{1/p}.$

Definition (Lutwak, Yang, Zhang (2012))

Let $K, L \subset \mathbb{R}^n$ be non-empty bounded sets and let $p \ge 1$. Then

$$K +_{p} L = \left\{ (1 - \mu)^{1/q} x + \mu^{1/q} y : x \in K, y \in L, \ \mu \in [0, 1] \right\},$$

where $q \in [1, +\infty]$ is the Hölder conjugate of p, i.e., such that 1/p + 1/q = 1.

May 28, 2022 - Discretization of geometric inequalities via the lattice point enumerator

- p = 1: $K +_1 L = K + L$ (Minkowski addition).
- $p = \infty$: $K +_{\infty} L = \operatorname{conv}(K \cup L)$ (convex hull).
- If $p \leq q$ then:
 - $K +_q L \subset K +_p L$.
 - $(1 \lambda) \cdot K +_p \lambda \cdot L \subset (1 \lambda) \cdot K +_q \lambda \cdot L.$

- p = 1: $K +_1 L = K + L$ (Minkowski addition).
- $p = \infty$: $K +_{\infty} L = \operatorname{conv}(K \cup L)$ (convex hull).
- If $p \leq q$ then:

•
$$K +_q L \subset K +_p L$$
.

•
$$(1 - \lambda) \cdot K +_p \lambda \cdot L \subset (1 - \lambda) \cdot K +_q \lambda \cdot L.$$

Theorem (Firey (1962), Lutwak, Yang, Zhang (2012))

Let $K, L \subset \mathbb{R}^n$ be non-empty bounded sets, and let $p \ge 1$. Then

$$\operatorname{vol}(K +_p L)^{p/n} \ge \operatorname{vol}(K)^{p/n} + \operatorname{vol}(L)^{p/n}$$

Definition

Let $f: \mathbb{S}^{n-1} \to \mathbb{R}^n_+$, the Wulff shape of f is

$$W(f) = \bigcap_{u \in \mathbb{S}^{n-1}} \{x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u)\}.$$

Definition

Let $f: \mathbb{S}^{n-1} \to \mathbb{R}^n_+$, the Wulff shape of f is

$$W(f) = \bigcap_{u \in \mathbb{S}^{n-1}} \{x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u)\}.$$

Then, for any $K \in \mathcal{K}^n$ containing the origin, $K = W(h_K)$. Thus, for any $K, L \in \mathcal{K}^n$ containing the origin and any $p \ge 1$,

$$(1-\lambda)\cdot K+_p\lambda\cdot L=W(((1-\lambda)h_K^p+\lambda h_L^p)^{1/p}).$$

Definition

Let $f: \mathbb{S}^{n-1} \to \mathbb{R}^n_+$, the Wulff shape of f is

$$W(f) = \bigcap_{u \in \mathbb{S}^{n-1}} \{x \in \mathbb{R}^n : \langle x, u \rangle \leq f(u)\}.$$

Then, for any $K \in \mathcal{K}^n$ containing the origin, $K = W(h_K)$. Thus, for any $K, L \in \mathcal{K}^n$ containing the origin and any $p \ge 1$,

$$(1-\lambda)\cdot K+_p\lambda\cdot L=W\big(((1-\lambda)h_K^p+\lambda h_L^p)^{1/p}\big).$$

This definition can now be extended to $0 \le p < 1$, in particular,

$$(1-\lambda)\cdot K +_{o} \lambda \cdot L = W(h_{K}^{1-\lambda}h_{L}^{\lambda}).$$

Böröczky, Lutwak, Yang and Zhang conjectured:

Conjecture - The log-Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^n$ be centrally symmetric convex bodies, and let $\lambda \in (0, 1)$. Then

$$\operatorname{vol}((1-\lambda)\cdot K+_{o}\lambda\cdot L)\geq \operatorname{vol}(K)^{1-\lambda}\operatorname{vol}(L)^{\lambda}.$$
 (1)

Böröczky, Lutwak, Yang and Zhang conjectured:

Conjecture - The log-Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^n$ be centrally symmetric convex bodies, and let $\lambda \in (0, 1)$. Then

$$\operatorname{vol}((1-\lambda)\cdot K+_{o}\lambda\cdot L)\geq \operatorname{vol}(K)^{1-\lambda}\operatorname{vol}(L)^{\lambda}.$$

- *n* = 2 (Böröczky, Lutwak, Yang, Zhang, 2012)
- Unconditional bodies for p = 0 (Saroglou, 2015)
- Unconditional bodies for 0 (Marsiglietti, 2015)
- Symmetric w.r.t. *n* independent hyperplanes (Böröczky, Kalantzopoulos, 2020)

(1

Definition

A lattice \mathcal{L} in \mathbb{R}^n is a discrete additive subgroup of \mathbb{R}^n . Sometimes we will further require non-degeneracy (i.e. full dimensionality).

Definition

A lattice \mathcal{L} in \mathbb{R}^n is a discrete additive subgroup of \mathbb{R}^n . Sometimes we will further require non-degeneracy (i.e. full dimensionality).

Proposition

Every lattice \mathcal{L} can be expressed as $A\mathbb{Z}^n$ for some $A \in GL_n(\mathbb{R})$.

Definition

A lattice \mathcal{L} in \mathbb{R}^n is a discrete additive subgroup of \mathbb{R}^n . Sometimes we will further require non-degeneracy (i.e. full dimensionality).

Proposition

Every lattice \mathcal{L} can be expressed as $A\mathbb{Z}^n$ for some $A \in GL_n(\mathbb{R})$.

The objects of study in this setting can be

- Discrete sets $A \subset \mathcal{L} \longrightarrow$ Cardinality |A|.
- Convex bodies $K \subset \mathcal{K}^n \longrightarrow$ Lattice point enumerator $G(K) = |K \cap \mathcal{L}|$.

Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

• For $A, B \subset \mathbb{Z}^n$ finite: $|A + B| \ge |A| + |B| - 1$.

A discrete Brunn-Minkowski inequality in the classical form does not exist neither for the cardinality nor for the lattice point enumerator.

• For $A, B \subset \mathbb{Z}^n$ finite: $|A + B| \ge |A| + |B| - 1$.

• Ruzsa (1994): $|A + B| \ge |A| + n|B| - \frac{n(n+1)}{2}$ when $|B| \le |A|$ and $\dim(A + B) = n$.

Discreticing Brunn-Minkowski for the cardinality

- For $A, B \subset \mathbb{Z}^n$ finite: $|A + B| \ge |A| + |B| 1$.
- Ruzsa (1994): $|A + B| \ge |A| + n|B| \frac{n(n+1)}{2}$ when $|B| \le |A|$ and $\dim(A + B) = n$.
- Gardner & Gronchi (2001): $|A + B| \ge \left| D^B_{|A|} + D^B_{|B|} \right|$ when dim B = n.

- For $A, B \subset \mathbb{Z}^n$ finite: $|A + B| \ge |A| + |B| 1$.
- Ruzsa (1994): $|A + B| \ge |A| + n|B| \frac{n(n+1)}{2}$ when $|B| \le |A|$ and $\dim(A + B) = n$.
- Gardner & Gronchi (2001): $|A + B| \ge \left| D^B_{|A|} + D^B_{|B|} \right|$ when dim B = n.
- Hernández Cifre, Iglesias & Yepes Nicolás (2018): $|\bar{A} + B|^{1/n} > |A|^{1/n} + |B|^{1/n}.$

- For $A, B \subset \mathbb{Z}^n$ finite: $|A + B| \ge |A| + |B| 1$.
- Ruzsa (1994): $|A + B| \ge |A| + n|B| \frac{n(n+1)}{2}$ when $|B| \le |A|$ and $\dim(A + B) = n$.
- Gardner & Gronchi (2001): $|A + B| \ge \left| D^B_{|A|} + D^B_{|B|} \right|$ when dim B = n.
- Hernández Cifre, Iglesias & Yepes Nicolás (2018): $|\bar{A}+B|^{1/n}\geq |A|^{1/n}+|B|^{1/n}.$
- Iglesias, Yepes Nicolás & Zvavitch (2020):

$$|A + B + \{0, 1\}^n|^{1/n} \ge |A|^{1/n} + |B|^{1/n}.$$

Discreticing Brunn-Minkowski for G(K)

Theorem (Iglesias, Yepes Nicolás, Zvavitch (2020))

Let *K*, *L* be non-empty bounded sets and let $\lambda \in (0, 1)$. Then

$$G((1-\lambda)K+\lambda L+(-1,1)^n)^{1/n}\geq (1-\lambda)G(K)^{1/n}+\lambda G(L)^{1/n}.$$

Discreticing Brunn-Minkowski for G(K)

Theorem (Iglesias, Yepes Nicolás, Zvavitch (2020))

Let K, L be non-empty bounded sets and let $\lambda \in (0, 1)$. Then

$$G((1-\lambda)K+\lambda L+(-1,1)^n)^{1/n}\geq (1-\lambda)G(K)^{1/n}+\lambda G(L)^{1/n}.$$

Taking $\lambda = 1/2$

Let K, L be non-empty bounded sets. Then

$$\begin{split} & G\left(\frac{K+L}{2} + [0,1]^n\right) \geq \sqrt{G(K)G(L)} \\ & G\left(\frac{K+L}{2} + [0,1]^n\right) \geq \frac{G(K)^{1/n} + G(L)^{1/n}}{2} \end{split}$$

(Halikias, Klartag & Slomka) (Iglesias, Yepes Nicolás & Zvavitch)

Linear results

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $t, s \ge 0$ and let $K, L \subset \mathbb{R}^n$ non-empty bounded sets such that G(K)G(L) > 0. Then

$$G(tK+sL+(-1,\lceil t+s\rceil)^n)^{1/n} \ge tG(K)^{1/n}+sG(L)^{1/n}.$$
(2)

The inequality is sharp.

Linear results

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $t, s \ge 0$ and let $K, L \subset \mathbb{R}^n$ non-empty bounded sets such that G(K)G(L) > 0. Then

$$G(tK + sL + (-1, \lceil t + s \rceil)^n)^{1/n} \ge tG(K)^{1/n} + sG(L)^{1/n}.$$
 (2)

The inequality is sharp.

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $t, s \ge 0$ and let $K, L \subset \mathbb{R}^n$ non-empty bounded sets such that G(K)G(L) > 0. Then (2) implies

$$\operatorname{vol}(tK+sL)^{1/n} \geq \operatorname{tvol}(K)^{1/n} + \operatorname{svol}(L)^{1/n}$$

that is, the classical Brunn-Minkowski inequality.

L_p results

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))

Let $\lambda \in (0, 1)$ and $p \ge 1$, and let $K, L \subset \mathbb{R}^n$ be bounded sets with G(K)G(L) > 0. Then

$$G((1-\lambda)\cdot K+_p\lambda\cdot L+(-1,1)^n)^{p/n}\geq (1-\lambda)G(K)^{p/n}+\lambda G(L)^{p/n}.$$
 (3)

The inequality is sharp and the cube

L_p results

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))

Let $\lambda \in (0, 1)$ and $p \ge 1$, and let $K, L \subset \mathbb{R}^n$ be bounded sets with G(K)G(L) > 0. Then

$$G((1-\lambda)\cdot K+_p\lambda\cdot L+(-1,1)^n)^{p/n}\geq (1-\lambda)G(K)^{p/n}+\lambda G(L)^{p/n}.$$
 (3)

The inequality is sharp and the cube

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))

Let $\lambda \in (0, 1)$ and $p \ge 1$, and let $K, L \subset \mathbb{R}^n$ be bounded sets with G(K)G(L) > 0. Then (3) implies

$$\operatorname{vol}((1-\lambda)\cdot K+_p\lambda\cdot L)^{p/n}\geq (1-\lambda)\operatorname{vol}(K)^{p/n}+\lambda\operatorname{vol}(L)^{p/n},$$

that is, the continuous L_p Brunn-Minkowski inequality.

Lo results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^n$ be centrally symmetric convex bodies and let $\lambda \in (0, 1)$. If either K, L are unconditional convex bodies or n = 2, then

$$G\left((1-\lambda)\cdot\left(K+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+_{o}\lambda\cdot\left(L+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)$$
$$\geq G(K)^{1-\lambda}G(L)^{\lambda}.$$

L_{o} results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^n$ be centrally symmetric convex bodies and let $\lambda \in (0, 1)$. If either K, L are unconditional convex bodies or n = 2, then

$$G\left((1-\lambda)\cdot\left(K+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+_{o}\lambda\cdot\left(L+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)$$
$$\geq G(K)^{1-\lambda}G(L)^{\lambda}.$$

• The cubes cannot be reduced.

L_{o} results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^n$ be centrally symmetric convex bodies and let $\lambda \in (0, 1)$. If either K, L are unconditional convex bodies or n = 2, then

$$G\left((1-\lambda)\cdot\left(K+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+_{o}\lambda\cdot\left(L+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)$$
$$\geq G(K)^{1-\lambda}G(L)^{\lambda}.$$

- The cubes cannot be reduced.
- It implies $vol((1 \lambda) \cdot K +_o \lambda \cdot L) \ge vol(K)^{1-\lambda}vol(L)^{\lambda}$, that is, the log-Brunn-Minkowski inequality, for both unconditional convex bodies or when n = 2.

Lo results

Theorem (Hernández Cifre, L. (2021))

Let $K, L \subset \mathbb{R}^n$ be centrally symmetric convex bodies and let $\lambda \in (0, 1)$. If either K, L are unconditional convex bodies or n = 2, then

$$G\left((1-\lambda)\cdot\left(K+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+_{\mathsf{o}}\lambda\cdot\left(L+\left[-\frac{1}{2},\frac{1}{2}\right]^n\right)+\left(-\frac{1}{2},\frac{1}{2}\right)^n\right)$$
$$\geq G(K)^{1-\lambda}G(L)^{\lambda}.$$

- The cubes cannot be reduced.
- It implies $vol((1 \lambda) \cdot K +_o \lambda \cdot L) \ge vol(K)^{1-\lambda}vol(L)^{\lambda}$, that is, the log-Brunn-Minkowski inequality, for both unconditional convex bodies or when n = 2.
- It can be extended to 0 .

Theorem

For every $K \in \mathcal{K}^n$ with non-empty interior we have

$$\frac{\mathcal{S}(K)^n}{\operatorname{vol}(K)^{n-1}} \geq \frac{\mathcal{S}(B_n)^n}{\operatorname{vol}(B_n)^{n-1}}.$$

Since $S(B_n) = nvol(B_n)$, then equivalently, $S(K) \ge nvol(K)^{1-\frac{1}{n}}vol(B_n)^{\frac{1}{n}}$. Classically, an argument of symmetrization (Steiner symmetrization) was used to prove the isoperimetric inequality.

A similar technique ("compression") is used in the discrete setting.

What is a discrete boundary?

We focus on the integer lattice, $\mathcal{L} = \mathbb{Z}^n$, from now on.

Definition

We define the boundary of a discrete set $A \subset \mathbb{Z}^n$ as $(A + \{-1, 0, 1\}^n) \setminus A$.

The isoperimetric inequality admits the "neighbourhood form" given by

```
\operatorname{vol}(K + tB_n) \geq \operatorname{vol}(rB_n + tB_n),
```

where r > o is such that $vol(rB_n) = vol(K)$.

The isoperimetric inequality admits the "neighbourhood form" given by

```
\operatorname{vol}(K + tB_n) \geq \operatorname{vol}(rB_n + tB_n),
```

where r > o is such that $vol(rB_n) = vol(K)$.

We can generalize this by changing the "distance" involved (i.e. the symmetric convex body being summed):

 $\operatorname{vol}(K + tE) \geq \operatorname{vol}(rE + tE),$

where r > 0 is such that vol(rE) = vol(K).

The isoperimetric inequality admits the "neighbourhood form" given by

```
\operatorname{vol}(K + tB_n) \geq \operatorname{vol}(rB_n + tB_n),
```

where r > o is such that $vol(rB_n) = vol(K)$.

We can generalize this by changing the "distance" involved (i.e. the symmetric convex body being summed):

 $\operatorname{vol}(K + tE) \geq \operatorname{vol}(rE + tE),$

where r > 0 is such that vol(rE) = vol(K).

This allows us to extend the notion of isoperimetric inequalities to more general contexts.

Discrete isoperimetric inequalities

Theorem (Radcliffe, Veomett (2012))

Let $A \subset \mathbb{Z}^n$ be a non-empty finite set and let $r \in \mathbb{N}$ be such that $|\mathcal{I}_r| = |A|$. Then

$$|A + \{-1, 0, 1\}^n| \ge |\mathcal{I}_r + \{-1, 0, 1\}^n|.$$

Discrete isoperimetric inequalities

Theorem (Radcliffe, Veomett (2012))

Let $A \subset \mathbb{Z}^n$ be a non-empty finite set and let $r \in \mathbb{N}$ be such that $|\mathcal{I}_r| = |A|$. Then

$$|A + \{-1, 0, 1\}^n| \ge |\mathcal{I}_r + \{-1, 0, 1\}^n|$$
.

Definition

The extended lattice cube \mathcal{I}_r is the set of the first r points of \mathbb{Z}^n with respect to a suitably defined order.

Discrete isoperimetric inequalities

In order to extend the result to convex bodies we define:

Definition

Given $r \in \mathbb{N}$, we denote

$$\mathcal{C}_r = \left\{ \left(\lambda_1 x_1, \ldots, \lambda_n x_n \right) \in \mathbb{R}^n : \left(x_1, \ldots, x_n \right) \in \mathcal{I}_r, \lambda_i \in [0, 1], i = 1, \ldots, n \right\}.$$

The extended lattice cube \mathcal{I}_{17} in \mathbb{Z}^2 (left) and the corresponding extended cube \mathcal{C}_{17} in \mathbb{R}^2 (right).

May 28, 2022 - Discretization of geometric inequalities via the lattice point enumerator

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $K \subset \mathbb{R}^n$ be a bounded set with G(K) > 0 and let $r \in \mathbb{N}$ be such that $G(\mathcal{C}_r) = G(K)$. Then

$$G(K + t[-1,1]^n) \ge G(C_r + t[-1,1]^n)$$
 (4)

for all $t \ge 0$.

Theorem (Iglesias, L., Yepes Nicolás (2020))

Let $K \subset \mathbb{R}^n$ be a bounded set with G(K) > 0 and let $r \in \mathbb{N}$ be such that $G(\mathcal{C}_r) = G(K)$. Then

$$G(K + t[-1,1]^n) \ge G(C_r + t[-1,1]^n)$$
 (4)

for all $t \ge 0$.

Theorem (Iglesias, L., Yepes Nicolás (2020))

The discrete isoperimetric inequality (4) implies the classical isoperimetric inequality for non-empty compact sets.

Discretization of geometric inequalities via the lattice point enumerator

geOmetry, anaLysis & convExity June 20 – 24, 2022

Eduardo Lucas Marín¹

Joint work with David Alonso-Gutiérrez², María A. Hernández Cifre³, David Iglesias⁴ and Jesús Yepes Nicolás⁵

1, 3, 4, 5 Departamento de Matemáticas, Universidad de Murcia. 2 Departamento de Matemáticas, Universidad de Zaragoza.