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Brunn-Minkowski inequality

Theorem

Given K, L ∈ Kn we have vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n.

Naturally, due to the homogeneity of vol of degree n, for any λ, µ ≥ 0
vol(λK + µL)1/n ≥ λvol(K)1/n + µvol(L)1/n.

As a consequence of the (weighed) arithmetic and geometric means
inequality, we can obtain:
Corollary

Given K, L ∈ Kn we have vol((1− λ)K + λL) ≥ vol(K)1−λvol(L)λ for
any 0 ≤ λ ≤ 1

Note: The inequality can be extended to arbitrary non-empty
compact sets, and even to more general measurable families.
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Related inequalities

Functional counterpart:

Theorem: Prékopa-Leindler inequality
Let 0 ≤ λ ≤ 1 and let f ,g,h : Rn → R+ be Lebesgue integrable
functions verifying

h((1− λ)x + λy) ≥ f (x)1−λg(y)λ

for all x, y ∈ Rn.

Then∫
Rn
h(x)dx ≥

(∫
Rn
f (x)dx

)1−λ(∫
Rn
g(x)dx

)λ
.
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Related inequalities

Generalization of Prékopa-Leindler:

Theorem: Borell-Brascamp-Lieb inequality
Let 0 ≤ λ ≤ 1, let −1/n ≤ p ≤ ∞ and let f ,g,h : Rn → R+ be
Lebesgue integrable functions verifying

h((1− λ)x + λy) ≥Mλ
p(f (x),g(y))

for all x, y ∈ Rn.

Then∫
Rn
h(x)dx ≥Mλ

p
np+1

(∫
Rn
f (x)dx,

∫
Rn
g(x)dx

)
.
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Brunn-Minkowski generalizations

In general hK+L = hK + hL.
Definition (Firey (1962))
Let p ≥ 1 and K, L ∈ Kn containing the origin in their interior. Then
the p-sum K +p L is the unique convex body such that

hK+pL =
(
hpK + hpL

)1/p
.

Definition (Lutwak, Yang, Zhang (2012))
Let K, L ⊂ Rn be non-empty bounded sets and let p ≥ 1. Then

K +p L =
{

(1− µ)1/qx + µ1/qy : x ∈ K, y ∈ L, µ ∈ [0, 1]
}
,

where q ∈ [1,+∞] is the Hölder conjugate of p, i.e., such that
1/p+ 1/q = 1.
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Brunn-Minkowski generalizations

• p = 1: K +1 L = K + L (Minkowski addition).
• p =∞: K+∞ L = conv(K ∪ L) (convex hull).
• If p ≤ q then:

• K +q L ⊂ K +p L.
• (1− λ) · K +p λ · L ⊂ (1− λ) · K +q λ · L.

Theorem (Firey (1962), Lutwak, Yang, Zhang (2012))
Let K, L ⊂ Rn be non-empty bounded sets, and let p ≥ 1. Then

vol(K +p L)p/n ≥ vol(K)p/n + vol(L)p/n.
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Brunn-Minkowski generalizations

Definition
Let f : Sn−1 → Rn+, the Wul� shape of f is

W(f ) =
⋂

u∈Sn−1

{x ∈ Rn : 〈x,u〉 ≤ f (u)} .

Then, for any K ∈ Kn containing the origin, K = W(hK). Thus, for any
K, L ∈ Kn containing the origin and any p ≥ 1,

(1− λ) · K +p λ · L = W
(
((1− λ)hpK + λhpL)1/p).

This definition can now be extended to 0 ≤ p < 1, in particular,

(1− λ) · K +0 λ · L = W
(
h1−λ
K hλL

)
.

May 28, 2022 — Discretization of geometric inequalities via the lattice point enumerator 6



Brunn-Minkowski generalizations

Definition
Let f : Sn−1 → Rn+, the Wul� shape of f is

W(f ) =
⋂

u∈Sn−1

{x ∈ Rn : 〈x,u〉 ≤ f (u)} .

Then, for any K ∈ Kn containing the origin, K = W(hK). Thus, for any
K, L ∈ Kn containing the origin and any p ≥ 1,

(1− λ) · K +p λ · L = W
(
((1− λ)hpK + λhpL)1/p).

This definition can now be extended to 0 ≤ p < 1, in particular,

(1− λ) · K +0 λ · L = W
(
h1−λ
K hλL

)
.

May 28, 2022 — Discretization of geometric inequalities via the lattice point enumerator 6



Brunn-Minkowski generalizations

Definition
Let f : Sn−1 → Rn+, the Wul� shape of f is

W(f ) =
⋂

u∈Sn−1

{x ∈ Rn : 〈x,u〉 ≤ f (u)} .

Then, for any K ∈ Kn containing the origin, K = W(hK). Thus, for any
K, L ∈ Kn containing the origin and any p ≥ 1,

(1− λ) · K +p λ · L = W
(
((1− λ)hpK + λhpL)1/p).

This definition can now be extended to 0 ≤ p < 1, in particular,

(1− λ) · K +0 λ · L = W
(
h1−λ
K hλL

)
.

May 28, 2022 — Discretization of geometric inequalities via the lattice point enumerator 6



Brunn-Minkowski generalizations

Böröczky, Lutwak, Yang and Zhang conjectured:

Conjecture - The log-Brunn-Minkowski inequality
Let K, L ⊂ Rn be centrally symmetric convex bodies, and let
λ ∈ (0, 1). Then

vol
(
(1− λ) · K +0 λ · L

)
≥ vol(K)1−λvol(L)λ. (1)

• n = 2 (Böröczky, Lutwak, Yang, Zhang, 2012)
• Unconditional bodies for p = 0 (Saroglou, 2015)
• Unconditional bodies for 0 < p < 1 (Marsiglietti, 2015)
• Symmetric w.r.t. n independent hyperplanes (Böröczky,

Kalantzopoulos, 2020)
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Discretization preliminaries

Definition
A lattice L in Rn is a discrete additive subgroup of Rn. Sometimes
we will further require non-degeneracy (i.e. full dimensionality).

Proposition
Every lattice L can be expressed as AZn for some A ∈ GLn(R).

The objects of study in this setting can be

• Discrete sets A ⊂ L −→ Cardinality |A|.
• Convex bodies K ⊂ Kn −→ Lattice point enumerator
G(K) = |K ∩ L|.
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Discreticing Brunn-Minkowski for the cardinality

A discrete Brunn-Minkowski inequality in the classical form does not
exist neither for the cardinality nor for the lattice point enumerator.

• For A,B ⊂ Zn finite: |A+ B| ≥ |A|+ |B| − 1.

• Ruzsa (1994): |A+ B| ≥ |A|+ n|B| − n(n+1)
2 when |B| ≤ |A| and

dim(A+ B) = n.

• Gardner & Gronchi (2001): |A+ B| ≥
∣∣∣DB|A| + DB|B|

∣∣∣ when dimB = n.

• Hernández Cifre, Iglesias & Yepes Nicolás (2018):
|Ā+ B|1/n ≥ |A|1/n + |B|1/n.

• Iglesias, Yepes Nicolás & Zvavitch (2020):
|A+ B+ {0, 1}n|1/n ≥ |A|1/n + |B|1/n.
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Discreticing Brunn-Minkowski for G(K)

Theorem (Iglesias, Yepes Nicolás, Zvavitch (2020))
Let K, L be non-empty bounded sets and let λ ∈ (0, 1). Then

G((1− λ)K + λL+ (−1, 1)n)1/n ≥ (1− λ)G(K)1/n + λG(L)1/n.

Taking λ = 1/2

Let K, L be non-empty bounded sets. Then

G
(K+L

2 + [0, 1]n
)
≥
√
G(K)G(L) (Halikias, Klartag & Slomka)

G
(K+L

2 + [0, 1]n
)
≥ G(K)1/n+G(L)1/n

2 (Iglesias, Yepes Nicolás & Zvavitch)
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Linear results

Theorem (Iglesias, L., Yepes Nicolás (2020))
Let t, s ≥ 0 and let K, L ⊂ Rn non-empty bounded sets such that
G(K)G(L) > 0. Then

G(tK + sL+ (−1, dt+ se)n)1/n ≥ tG(K)1/n + sG(L)1/n. (2)

The inequality is sharp.

Theorem (Iglesias, L., Yepes Nicolás (2020))
Let t, s ≥ 0 and let K, L ⊂ Rn non-empty bounded sets such that
G(K)G(L) > 0. Then (2) implies

vol(tK + sL)1/n ≥ tvol(K)1/n + svol(L)1/n,

that is, the classical Brunn-Minkowski inequality.
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Lp results

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))
Let λ ∈ (0, 1) and p ≥ 1, and let K, L ⊂ Rn be bounded sets with
G(K)G(L) > 0. Then

G
(
(1− λ) · K +p λ · L+ (−1, 1)n

)p/n ≥ (1− λ)G(K)p/n + λG(L)p/n. (3)

The inequality is sharp and the cube

Theorem (Hernández Cifre, L., Yepes Nicolás (2021))
Let λ ∈ (0, 1) and p ≥ 1, and let K, L ⊂ Rn be bounded sets with
G(K)G(L) > 0. Then (3) implies

vol((1− λ) · K +p λ · L)p/n ≥ (1− λ)vol(K)p/n + λvol(L)p/n,

that is, the continuous Lp Brunn-Minkowski inequality.
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L0 results

Theorem (Hernández Cifre, L. (2021))
Let K, L ⊂ Rn be centrally symmetric convex bodies and let
λ ∈ (0, 1). If either K, L are unconditional convex bodies or n = 2,
then

G
(

(1− λ) ·
(
K +

[
− 1

2 ,
1
2
]n)

+0 λ ·
(
L+

[
− 1

2 ,
1
2
]n)

+
(
− 1

2 ,
1
2
)n)

≥ G(K)1−λG(L)λ.

• The cubes cannot be reduced.
• It implies vol

(
(1− λ) · K +0 λ · L

)
≥ vol(K)1−λvol(L)λ, that is, the

log-Brunn-Minkowski inequality, for both unconditional convex
bodies or when n = 2.

• It can be extended to 0 < p < 1.
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λ ∈ (0, 1). If either K, L are unconditional convex bodies or n = 2,
then

G
(

(1− λ) ·
(
K +

[
− 1

2 ,
1
2
]n)

+0 λ ·
(
L+

[
− 1

2 ,
1
2
]n)

+
(
− 1

2 ,
1
2
)n)

≥ G(K)1−λG(L)λ.
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The isoperimetric inequality

Theorem
For every K ∈ Kn with non-empty interior we have

S(K)n

vol(K)n−1 ≥
S(Bn)n

vol(Bn)n−1 .

Since S(Bn) = nvol(Bn), then equivalently,

S(K) ≥ nvol(K)1− 1
n vol(Bn)

1
n .
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The isoperimetric inequality

Classically, an argument of symmetrization (Steiner symmetrization)
was used to prove the isoperimetric inequality.

A similar technique (“compression”) is used in the discrete setting.
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What is a discrete boundary?

We focus on the integer lattice, L = Zn, from now on.

Definition
We define the boundary of a discrete set A ⊂ Zn as
(A+ {−1,0, 1}n) \ A.
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Discrete isoperimetric inequalities

The isoperimetric inequality admits the “neighbourhood form” given
by

vol(K + tBn) ≥ vol(rBn + tBn),

where r > 0 is such that vol(rBn) = vol(K).

We can generalize this by changing the “distance” involved (i.e. the
symmetric convex body being summed):

vol(K + tE) ≥ vol(rE+ tE),

where r > 0 is such that vol(rE) = vol(K).

This allows us to extend the notion of isoperimetric inequalities to
more general contexts.
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Discrete isoperimetric inequalities

Theorem (Radcli�e, Veomett (2012))
Let A ⊂ Zn be a non-empty finite set and let r ∈ N be such that
|Ir| = |A|. Then

|A+ {−1,0, 1}n| ≥ |Ir + {−1,0, 1}n| .

Definition
The extended lattice cube Ir is the set of the first r points of Zn
with respect to a suitably defined order.
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9

10 1112

13
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17 1819 20
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Discrete isoperimetric inequalities

In order to extend the result to convex bodies we define:
Definition
Given r ∈ N, we denote
Cr = {(λ1x1, . . . , λnxn) ∈ Rn : (x1, . . . , xn) ∈ Ir, λi ∈ [0, 1], i = 1, . . . ,n} .

1

2

3

4

5 6

7

8

9

10 1112

13

14

15

16

17

The extended lattice cube I17 in Z2 (left) and the corresponding
extended cube C17 in R2 (right).
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Discrete isoperimetric inequalities

Theorem (Iglesias, L., Yepes Nicolás (2020))
Let K ⊂ Rn be a bounded set with G(K) > 0 and let r ∈ N be such
that G(Cr) = G(K). Then

G (K + t[−1, 1]n) ≥ G (Cr + t[−1, 1]n) (4)

for all t ≥ 0.

Theorem (Iglesias, L., Yepes Nicolás (2020))

The discrete isoperimetric inequality (4) implies the classical
isoperimetric inequality for non-empty compact sets.
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