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Preface 
 

 
Gijón, 21st July 2021 
 
 
Welcome to the 2nd Conference on Structural dynamics, Gijón, Spain, July 22-23 (Thursday-Friday), 
2021. This Conference was planned to be organized in June 2020, but it was postponed to July 2021 
due to the COVID-19 pandemic. This conference is the continuation of the successful 1st Conference 
on Structural Dynamics organized by the Polytechnic University of Madrid (ETSICCP) in June 2018. 
Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected 
to dynamic loadings (people, wind, waves, traffic, earthquakes, machinery, explosions, impacts, etc.). 
Civil, Mechanical, Aerospace, and Ocean Engineers, face every day with topics related to structural 
dynamics with analytical, numerical, and experimental approaches.  
 
This Conference covers all major aspects of Structural Dynamics with focus on the following topics:  
Analytical Techniques, Numerical Techniques, Experimental Techniques, Aeroelasticity, Damping, 
Dynamic Loadings, Vibration Control, Model Correlation, Model Updating, Dynamic Behavior of 
Materials, Dynamics of Bridges, Earthquake Engineering, Structural Health Monitoring, etc. A pre-
conference course is also organized on Wednesday 21st from Sunday to Monday.   
 
Beyond a good number of interesting papers on these topics, presented by researchers, technical 
specialists and students, the Conference comprehends two Keynote Lectures by Professor Alvaro 
Cunha and Professor Salvador Ivorra.  
 
As the previous Conference, held in Madrid in 2018, scientists, applicants, and students have the 
occasion to share their knowledge in this rather fascinating field and to improve their specific skills. 
 
We warmly thank all the contributors, authors, speakers, and sponsors of the event and wish this 
conference offering you fruitful discussion and a pleasant time in Gijón.  

 
Prof. Manuel Aenlle López 

Dept. of Construction and Manufacturing Eng. 
University of Oviedo 
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Plenary keynote lectures  
 

“COMPORTAMIENTO DINÁMICO DE CHIMENEAS INDUSTRIALES DE OBRA DE 
FÁBRICA REFORZADAS DE TRM” 

 
by Prof. Salvador Ivorra Chorro 

 
About keynote speaker 
 
Salvador Ivorra Chorro is Full Professor of Continuum Mechanics 
and Structure Theory at the Department of Civil Engineering of the 
University of Alicante, where he is Vice-Rector for Infrastructure, 
Sustainability and Occupational Safety and head of the research 
group GRESMES. He holds a PhD in Industrial Engineering 
(Mechanical Engineering) from the Polytechnic University of 
Valencia and University Specialist in Occupational Risk Prevention 
by the same university. Since July 2018 he is the Coordinator of the 
Subarea of Civil Engineering and Architecture of the State Research 
Agency of Spain. His research activity has been focused on the 
dynamic behaviour of structures and structural reinforcement, and he 
has devoted an important part of his research to the structures 
belonging to the historical heritage.  
 
He is author of 79 scientific articles (61 in JCR-indexed journals) and more than 120 conference 
papers and is co-inventor of two patents. He has also directed 17 doctoral theses. He has participated 
in 29 competitive research projects (as principal investigator in 17) and in more than 200 research 
and technical assistance contracts with public agencies and private companies. He coordinated a 
project financed with €2,000,000 from FEDER funds for the construction of Civil Engineering 
research laboratory of the University of Alicante. According to the Scopus bibliometric analysis, his 
h-index is 25, with more than 1737 citations to his works. 

At the University of Alicante, he was deputy director of Civil Engineering from 2006 to 2013, being 
responsible for implementing the new Undergraduate and Master’s degrees in Civil Engineering 
under this period. He was also Deputy Director of the Department of Civil Engineering from 2016 to 
2019 and Direcor from 2019 to 2020. Between 2017 and 2018 he was the Manager of the State R&D 
Plan in the Construction area of the Ministry of Economy and Competitiveness (Spain). 

He was awarded the Teaching Excellence Award by the University of Alicante Social Council in 
2010. In 2015, the Kiss Bridge pedestrian footbridge in Pilar de la Horadada (Alicante), which he co-
designed, was nominated by the FIB as one of the best concrete works in 2009-2014. In 2002 he co-
designed the Polytechnic Tower in Valencia, the highest tower completely made of FRP in Europe 
until that moment. In 2019 he received the prize of the Association of Structural Consultants for the 
intervention project in the "La Paz" masonry chimney.  In 2019 he received the Outstanding or 
Productive Young Researcher Award from Alconpat. 



vi 
 

 
VIBRATION-BASED SHM OF TRANSPORTATION AND ENERGY 

INFRASTRUCTURES 
 

by Prof. Álvaro Cunha  
 
About keynote speaker 
 
Alvaro Cunha is Full Professor at the Department of Civil Engineering 
of the Faculty of Engineering of the University of Porto, Scientific 
Coordinator of the Research Unit CONSTRUCT (Institute of R&D in 
Structures and Construction), Head of Laboratory of Vibrations and 
Monitoring (ViBest) of FEUP and Member of the Scientific Council 
of Exact Sciences and Engineering of FCT.  
 
He is President of the European Association on Structural Dynamics 
(EASD) and he was Chair of SEM Civil Structures Testing Technical 
Division, Vice-Chair of IABSE Working Group 4 on Vibrations, 
Chair of the international conferences EVACES’07, SMART’09, 
CIAHP’2010, IOMAC 2013, EURODYN 2014 and SHMII-10 and 
Co-Chair of FOOTBRIDGE’08. 
 
His main fields of interest are Dynamics of Bridges and Special Structures, Measurement of 
Vibrations, Modal Identification, Structural Health Monitoring of Large Civil Structures and Control 
of Vibrations.  
 
He has been responsible by the development and implementation of 12 vibration based SHM 
demonstrators in large Civil structures with different typologies (roadway and railway bridges, 
footbridges, stadium suspension roof, wind turbine tower and arch dam), active since 2007, and 
creation of a digital data repository stemming from all monitoring activity (http://vibest.fe.up.pt/shm). 
 
He has been principal investigator of 12 national or European Research Projects, and researcher of 
other 9, focused on the themes: (1) Dynamic measurements with Laser sensors, (2) Modal 
Identification of Large Structures and Finite Element Updating, (3) Dynamics of Cable-Stayed 
Bridges, (4) Dynamic Effects of Traffic Loads on Bridges, (5) Wind and Structures, (6) Fatigue 
assessment in metallic Railway Bridges, (7) Vibrations in Footbridges, (8) Control of Vibrations in 
Civil Structures, (9) Structural Health Monitoring of Bridges and Wind Turbines, (10) Deterioration 
of Dams.  
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OBTAINING A FEM-LESS PHYSICAL MODEL OF A STRUCTURE. 

A CASE STUDY 

Álvaro Magdaleno*, César Peláez† and Antolín Lorenzana‡ 

Escuela de Ingenierías Industriales, 

Universidad de Valladolid 

47011 Valladolid, Spain 

e-mail: *alvaro.magdaleno@uva.es, †cesar.pelaez@uva.es, ‡ali@eii.uva.es

ORCID: *0000-0002-5606-1545, †0000-0003-1260-8112, ‡0000-0003-2562-0532 

Abstract. A direct method to estimate a set of physical matrices from a modal model is 

proposed. After assuming the validity of some hypothesis, like linear behavior, an inverse 

approach is formulated to obtain a set of mass, stiffness and damping matrices from a modal 

model that realistically reproduce the dynamics of a structure. The physical model, which is 

often incomplete due to the difference between the number of measured modes and monitored 

degrees of freedom, can be used to simulate the response of the structure subjected to any kind 

of load and, moreover, to simulate the effect of different types of structural modifications. The 

procedure is exemplified by applying it to a real structure. First, an EMA is performed to 

estimate its modal properties inside a certain frequency range from which a set of physical 

matrices is then calculated to reproduce the dynamics of those modes in the N monitored 

degrees of freedom. It can be shown that, despite not being unique, the model obtained in this 

work is perfectly useful to carry out simulations on it and to estimate the effect of several kinds 

of structural modifications. 

Key words: Structural dynamics, Experimental Modal analysis, Singular Value 

Decomposition, Physical Model, Modal Model. 

1 INTRODUCTION 

The dynamic behaviour of a structure can be 

described by means of different types of 

models, such as physical models, which 

contain explicit information about its mass, 

stiffness and damping, or modal models, 

composed of natural frequencies, damping 

ratios and scaled mode shapes. Both types of 

models allow to perform simulations and test 

the dynamic behaviour of the structure in a 

wide variety of loading scenarios. Together 

with the loads themselves, the different 

scenarios may involve modifying one or more 

physical properties, like the structural mass or 

damping, or the addition of other kind of 

systems, such as tuned mass dampers (TMDs). 

Although some workarounds exist, the 

physical properties of the structure that need to 

be modified are not explicitly represented in 

the modal models, which complicates 

performing such modifications or subsystem 

additions to that kind of models, and it is 

preferable having available a physical model 

for that type of tasks. Also, simulating the 

dynamic response of a structure subjected to 

the ground acceleration (to simulate a seismic 

action, for example) also requires having the 

structural mass explicitly modelled.  

In some situations, for example after 

applying a complete experimental modal 

analysis procedure to a certain structure, only 

the modal model is available. On way to 
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overcome the aforementioned issues consists 

in applying a Model Updating technique. This 

family of procedures have been developed in 

parallel to the evolution of the Finite Element 

Method (FEM) and are aimed to adapt (or 

update) a previously conceived computational 

model to a set of measured properties of a real 

structure, typically its modal properties. As a 

result, the computational models behave 

similarly to the real structure and, indirectly, 

some of its physical properties can be 

estimated and eventually modified according 

to any simulation requirement. However, an 

appropriate application of a Model Updating 

technique often leads to an iterative and long 

process which usually rely on sophisticated 

and complex FEM models and powerful 

optimization algorithms to provide meaningful 

results. Moreover, if the computation model is 

not detailed enough and does not include all 

the required structural and non-structural 

elements, the properties of the updated model 

may not be realistic and, thus, may not 

trustworthily represent the effect of the 

required structural modifications. 

As an alternative, direct methods exist to 

obtain physical models from experimentally 

estimated properties. These methods do not 

rely on the quality of a previously conceived 

model and directly provide a physical model of 

the structure from another kind of model, such 

as a modal model. In this work, a direct method 

is presented to estimate a linear model 

consisting of a set of physical matrices of a 

discretised structure from an experimentally 

estimated modal model, composed of a set of 

natural frequencies, damping ratios and scaled 

mode shapes. Note that the mode shapes need 

to be properly scaled in order to contain the full 

information required to perform simulations 

with it. The resulting structural model will be 

automatically discretized in the same degrees 

of freedom (DOFs) that have been monitored 

to estimate the modal model, which are the 

same DOFs on which the mode shapes are 

estimated.  

This kind of methods were first developed 

by Berman [1, 2], who warned about the 

solution of this problem not being unique if the 

number of identified modes, 𝑚, is fewer than 

the number of degrees of freedom, 𝑛, 

monitored to estimate them. Other authors 

have further explored this topic [3, 4] but 

restraining the applicability of their methods to 

proportional modal models, i.e., models with 

real-valued mode shapes. Very few authors 

have addressed the possibility of dealing with 

complex-valued mode shapes, like [5], but 

they tried to project them into the real axis 

rather than actually include the complex-

valued vectors into a methodology which 

issued a damping matrix that truly represents 

them. Finally, many authors, like [6, 7, 8, 9, 10] 

have dealt with that issue alone, obtaining 

damping matrices that accurately provide 

complex-valued mode shapes, but assuming to 

know the mass and stiffness matrices 

beforehand.  

The methodology proposed in this work is 

conceived to deal with both real and complex-

valued mode shapes and simultaneously 

provides a complete set of physical matrices M, 

C and K, that accurately reproduces the same 

dynamic behaviour than the modal model. To 

show its performance, the developed 

methodology is applied to a real structure 

consisting of a simple-supported timber beam. 

2 THEORETICAL BACKGROUND 

A linear model that represents the dynamic 

behaviour of a certain discretized structure can 

be described in terms of a set of three square 

and symmetric matrices: the mass matrix M, 

the damping matrix C and stiffness matrix K 

matrices, as shown in Eq. 1, where 𝐪(𝑡) and 

𝐟(𝑡) are column vectors that represent the 𝑛 

displacements and the forces acting on them, 

3333



Álvaro Magdaleno, César Peláez and Antolín Lorenzana 

respectively. The dot operand (·) represents a 

time derivative and 𝑡 is the time variable. 

M 𝐪̈(𝑡) + C 𝐪̇(𝑡) + K 𝐪(𝑡) = 𝐟(𝑡) (1) 

In the most general case, where non-

proportional damping is assumed and the 

matrix C cannot be expressed in terms of M and 

K, transforming the system of equations in 

Eq. 1 to the modal domain does not uncouple 

the equations [11]. One way to overcome this 

issue requires transforming Eq. 1 to its state 

space formulation, as shown in Eq. 2, where 

𝐱(𝑡) = [𝐪T(𝑡)   𝐪̇T(𝑡)]T is the state vector and

𝐮(𝑡) = [𝐟T(𝑡)    ∅]T is the input vector. The

symbol ∅ stands for a null matrix or vector of 

an appropriate dimension and the letter T 

indicates a matrix or vector transpose. 

A 𝐱̇(𝑡) + B 𝐱(𝑡) = 𝐮(𝑡) 

A = [
C M
M ∅

]      B = [
K +∅
∅ −M

 ] 
(2) 

That system of equations can be uncoupled 

by means of the 𝑛 pairs of eigenvectors (𝛉̃𝑟, 

𝛉̃𝑟
∗) that can be calculated together with their 

corresponding 𝑛 pairs eigenvalues (𝑠𝑟, 𝑠𝑟
∗) by

solving the eigenproblem shown in Eq. 3. The 

symbol * stands for the complex conjugate. 

The eigenvalues contain information about the 

natural frequency, 𝜔𝑟, and the damping ratio, 

𝜁𝑟, so 𝑠𝑟 = −𝜔𝑟𝜁𝑟 + j 𝜔𝑟√1 − 𝜁𝑟
2, where j is

the imaginary unit. 

(A 𝑠𝑟 + B)𝛉̃𝑟 = 0 (3) 

It is important to note that the eigenvectors 

𝛉̃𝑟 obtained from Eq. 3 are composed of terms 

related to displacements and terms related to 

velocities, similarly to the state vector 𝐱(𝑡). In 

fact, the displacement components and the 

velocity components are related through the 

eigenvalue 𝑠𝑟, so 𝛉̃𝑟 = [𝛉𝑟
T   𝑠𝑟𝛉𝑟

T]T, where 𝛉𝑟

are the mode shapes. This relationship can be 

expressed in a more compact way as shown in 

Eq. 4, where the matrix Θ̃ contains the 

eigenvectors 𝛉̃𝑟 (column-wise), Θ is composed 

of the mode shapes 𝛉𝑟 and S is a diagonal 

matrix containing the 𝑛 eigenvalues. Note that 

the eigenvectors and mode shapes are ordered 

according to the eigenvalue order in S.  

Θ̃ = [
Θ

Θ S
] (4) 

Both matrices A and B can be diagonalised 

thanks to their orthogonality properties with 

respect to Θ̃, as shown in Eq. 5, where Ã and B̃ 

are diagonal matrices satisfying Ã−1B̃ = −S. It

is also usual to scale the mode shapes so that 

matrix Ã is an identity matrix and B̃ = −S. 

Θ̃T A Θ̃ = Ã

Θ̃T B Θ̃ = B̃
(5) 

Finally, by making use of Eqs. 2 and 4, 

Eq. 5 can be further developed obtaining 

another pair of orthogonality expressions, as 

shown in Eq. 6.  

ΘTCΘ + SΘTMΘ + ΘTMΘS = Ã

ΘTKΘ − SΘTMΘS = B̃ 
(6) 

Eqs. 3 and 6 are the core of the methodology 

presented in the next section. 

3 METHODOLOGY 

As mentioned in the Introduction, the 

methodology presented in this work is aimed 

at estimating a set of physical matrices M𝑒, C𝑒 

and K𝑒 that represents the same dynamic 

behaviour than a set of experimentally 

estimated set of modes. The subscript 𝑒 stands 

for estimated to remark their nature, but they 

should be considered in the same one as the 

matrices M, C and K used in the previous 

section. The dimension of the resulting 

physical model, 𝑛, equals the number of DOFs 

monitored to obtain the modal model, which is 

composed by a total of 𝑚 identified modes.  

The procedure is divided into two stages. In 

the first stage, a system of linear equations is 
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built to account for the three main conditions 

that a physical model needs to meet in order to 

represent the same dynamic behaviour than a 

modal model. Due to an additional nonlinear 

inequality that need also to be imposed, the 

system of equations is solved in a second stage 

by carrying out an optimization procedure.  

3.1 The system of equations 

For an estimated physical model to be 

dynamically equivalent to a certain modal 

model, it needs to fulfil the following three 

conditions.  

1. The three physical matrices must be

symmetric. This is formulated as shown in 

Eq. 7, where the generic matrix 𝐏 can be 

substituted by 𝐌𝒆, 𝐂𝒆 and 𝐊𝒆 and the 

subscripts 𝒊 and 𝒌 are used to index the matrix 

elements. 

P𝑖𝑘 − P𝑘𝑖 = 0  ∀𝑖 ≠ 𝑘, (𝑖, 𝑘) ≤ 𝑛 (7) 

2. The physical model and the modal model

must satisfy the eigenproblem in Eq. 3, which 

can be expressed in terms of the physical 

matrices, the complex eigenvalues 𝒔𝒓 and the 

complex mode shapes 𝛉𝒓 as shown in Eq. 8. 

Note that, since the matrices are symmetric 

(condition 1), it is not necessary to impose the 

eigenvalue condition to the complex 

conjugates of 𝛉𝒓 and 𝒔𝒓, so Eq. 8 represents a 

total of 𝒎 equations. 

(M𝑒𝑠𝑟
2 + C𝑒𝑠𝑟 + K𝑒) 𝛉𝑟 = 0  𝑟 = 1. . 𝑚 (8)

Note that the three conditions are linear with 

respect to the problem unknowns, which are 

the elements of the physical matrices. These 

elements can be wrapped in an unknown 

vector, 𝐱𝒑, which has a length of 𝟑𝒏𝟐. By using

this vector, the three conditions can be 

rewritten in the form of a system of linear 

equations 𝐀𝒑𝐱𝒑 = 𝐛𝒑, where 𝐀𝒑 and 𝐛𝒑 must 

be built according so that the chosen 

expression of Eq. 6, and Eqs. 7 and 8 are 

properly expressed. Once this is done, many 

terms in 𝐀𝒑 turn out to be complex due to 

conditions 2 and 3, which may lead to complex 

terms in 𝐱𝒑 if the system of equations is 

directly solved and complex physical matrices 

would be obtained. To avoid this, the subset of 

complex-valued equations 𝐀𝒑𝒄𝐱𝒑 = 𝐛𝒑𝒄, 

where the subscript 𝒄 stands for “complex”, 

must be reformulated by splitting it into its real 

and imaginary parts, leading to the final and 

real-valued system of equations in Eq. 9, where 

the subscript 𝒓 stands for “real” and 𝐀𝒒 and 𝐛𝒒 

are real-valued. 

A𝑞𝐱𝑝 = 𝐛𝑞

[

𝐴𝑝𝑟

𝑅𝑒(𝐴𝑝𝑐)

𝐼𝑚(𝐴𝑝𝑐)

] 𝑥𝑝 = [

𝑏𝑝𝑟

𝑅𝑒(𝑏𝑝𝑐)

𝐼𝑚(𝑏𝑝𝑐)

] 
(9) 

Any vector 𝐱𝒑 that satisfies Eq. 9 contains 

the elements of a set of physical matrices 𝐌𝒆, 

𝐂𝒆 and 𝐊𝒆 that satisfies the three requirements 

described above and are, in principle, 

dynamically equivalent to the considered 

modal model.  

3.2 The optimization strategy 

In general terms, the number of equations in 

Eq. 9 is different from the number of 

unknowns. If the number of equations is 

greater, then a single solution can be obtained 

by pseudo-inverting the matrix A𝑞 and the 

resulting physical model only reproduces the 

3. If the two previous conditions are met,

the resulting modal matrices 𝐀̃ and 𝐁̃ are 

diagonal and satisfy 𝐀̃−𝟏𝐁̃ = −𝐒. Only the 

mode shapes scaling is left to be accounted for 

through one of the orthogonality conditions in 

Eq. 6. As in the previous condition, the scaling 

condition needs not be imposed to the complex 

conjugates. 
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desired dynamic behaviour approximately. 

However, if the number of equations is lower 

than the number of unknowns, infinite 

solutions exist that exactly meet the three 

presented conditions, so they all reproduce the 

desired dynamics. When this happen, the 

difference among all the infinite solutions is 

found in the so-called exogenous modes, 

which are the modes that are mathematically 

computable from the 𝑛-dimensional estimated 

physical model, but that do not belong to the 

modal model used to obtain it. In such a 

scenario, controlling the properties of the 

exogenous modes is of extreme importance for 

the physical model to be useful.  

If the properties of the exogenous modes are 

not constrained in any way, one major issue 

that may arise is that they may potentially have 

a negative damping ratio. This is equivalent to 

artificially increasing the energy in the 

structure over time, even if no acting force is 

applied on it, since the contribution of these 

modes would infinitely increase instead of 

decay to zero. To avoid this issue, a final 

condition must be imposed during the solution 

of the system of equations in Eq. 9, so that all 

the computable damping ratios (of the 𝑚 used 

modes and specially those associated to the 

𝑛 − 𝑚 exogenous modes) are strictly positive. 

This leads to a nonlinear inequality constraint 

which cannot be handled in a straightforward 

way. In this work, an optimization algorithm is 

proposed to be used in order to find an optimal 

𝐱𝑝 according to a cost function (described 

below), subjected to the linear constraints 

expressed in Eq. 9 and the nonlinear one 

described above.  

To perform the optimization procedure, 

different functions can be considered. In this 

work, the cost function shown in Eq. 10 is 

proposed, which is intended to simultaneously 

minimize the natural frequency of the 

exogenous modes, computed as |𝑠𝑟|, and

maximize their damping ratio, calculated as 

−|𝑠𝑟|/Re(𝑠𝑟), where |·| stands for the

magnitude of the complex eigenvalue and 

Re( ) represents the real part. The natural 

frequencies are minimised to make the 

exogenous dynamics as slow as possible. At 

the same time, their damping ratio is 

maximised to make the dynamic contribution 

less dominant even if the corresponding 

natural frequencies are not small enough. 

𝐽 = ∑
|𝑠𝑟|2

−Re(𝑠𝑟)

𝑛

𝑟=𝑚+1

(10) 

To perform the minimization of Eq. 10, the 

fmincon function of MATLAB is used, which 

implements the Interior-Point optimization 

algorithm and allows to simultaneously 

consider linear and nonlinear constraints as 

well as boundaries for the variables (if 

required). After the algorithm has been 

successfully run, an optimum 𝐱𝑝 vector is 

obtained, which is later parsed to retrieve the 

sought physical matrices.  

4 CASE STUDY 

To show its performance, the methodology 

is applied to a structural model consisting of a 

timber beam with a total length of 

approximately L = 13.5 m (Figure 1a). It has a 

rectangular section with a height of 100 mm 

and a width of 140 mm. It is instrumented with 

9 accelerometers (as the one shown in 

Figure 1b) placed at the locations depicted in 

the layout of Figure 2 and numbered from 1 to 

9 (points 0 and 10 correspond to the support, 

which are assumed to be rigid enough). A force 

is applied by means of an instrumented 

hammer at point 8, which is L/6 far from one 

end. All the sensors are connected to a data 

acquisition system that synchronously records 

the time domain signals. Then, the 

tfestimate MATLAB function helps to 

estimate the FRFs shown in Figure 3. 
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    (a)  (b) 

Figure 1: (a) Picture of the timber beam; (b) detail of 

an accelerometer 

A complete modal identification procedure 

is performed to the FRFs by means of a curve 

fitting technique, by assuming a linear model 

as shown in Eq. 11, where 𝑎𝑟 are the complex-

valued residues that contain the mode shape 

information. The identification is carried out in 

the frequency range between 0.5 and 35 Hz, 

leading to the natural frequencies and damping 

ratios shown in Table 1, which correspond to 

the mode shapes depicted in Figure 4 (note 

that, prior to generate the Figure, they have 

been projected on the real axis, but for further 

processing the original complex-valued mode 

shapes are kept). 

ℎ𝑖𝑘(𝜔) = ∑ (
𝑎𝑟,𝑖𝑘

j𝜔 − 𝑠𝑟
+

𝑎𝑟,𝑖𝑘
∗

j𝜔 − 𝑠𝑟
∗)

𝑚

𝑟=1

 (11) 

Mode 
Natural frequency 

[Hz] 

Damping ratio 

[%] 

1 1.46 0.81 

2 5.41 0.35 

3 12.17 0.33 

4 21.49 0.37 

5 33.17 0.39 

Table 1: Identified natural frequencies and damping 

ratios of the timber beam.  

Figure 3: Experimental FRFs. 

Figure 2: (a) Picture of the timber beam; (b) detail of an accelerometer 
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Figure 4: Identified mode shapes. 

4.1 Physical model estimation 

The algorithm presented in Section 3 is 

applied to the identified modal model. As 

mentioned before, 9 DOFs have been 

monitored to obtain that model, so the 

estimated physical matrices are of dimension 

9, and couple the dynamic behaviour only of 

those 9 DOFs of the structure. Since 5 modes 

are used to estimate the physical model, it is an 

incomplete model and the system of equations 

in Eq. 9 has infinite solutions. Moreover, after 

assembling it, a total of 208 equations are 

obtained to solve for the 3·92 = 243 unknowns. 

Due to this, the optimization procedure needs 

also to be applied to minimise the objective 

function in Eq. 10.  

After applying the whole procedure, a set of 

three physical matrices are obtained. They are 

not shown in this manuscript for brevity, and, 

per se, they lack interest because their terms do 

not have any meaning by themselves.  Instead, 

the FRFs associated to the estimated physical 

model are compared with the experimental 

ones used to identify the modal model in 

Figure 5, where only the point 7 is plotted for 

clarity, but similar conclusions can be drawn 

from the other 8 FRFs. As can be seen, there 

exist a high correspondence between both sets 

of FRFs, demonstrating that the estimated 

physical model accurately represents the 

desired dynamic behaviour in the range of 

interest. In addition, Table 2 summarises the 

natural frequencies and damping ratios of the 

nine computable modes of the estimated 

physical model compared to the original five 

identified ones. As mentioned above, there are 

other 4 exogenous modes that belong to the 

physical model but that do not have any impact 

on the dynamic response in the frequency 

range of interest, since they all have a damping 

ratio above 50%. 

Figure 5: Experimental FRF vs. computed FRF by 

means of the estimated physical model (point 7) 

 ode 1

 ode 2

 ode  

 ode  

 ode  

Mode Natural frequencies [Hz] Damping Ratios [%] 

Original Estimated Error [%] Original Estimated Error [%] 

1 1.46 1.46 1.05·10–4 0.81 0.81 8.40·10–2 

2 5.41 5.41 1.74·10–6 0.35 0.35 5.07·10–3 

3 12.17 12.17 3.44·10–7 0.33 0.33 7.81·10–4 

4 21.49 21.49 6.02·10–8 0.37 0.37 5.57·10–4 

5 33.17 33.17 1.96·10–8 0.39 0.93 4.12·10–5 

Table 2: Comparison between the identified modes and the ones provided by the estimated 

physical model. 
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To show the usefulness of the estimated 

physical model, the next sections are devoted 

to applying some structural modifications to 

both the real structure and the estimated 

physical model.  

4.2 Mass modification 

First, a certain amount of mass is added on 

the real structure. To make sure that the 

modification can also be included in the 

estimated physical model, the point on which 

the mass is added must be one of the monitored 

DOFs. In this case, an additional mass of 

5.97 kg is placed on point 5 (at L/2) and the 

FRFs are experimentally estimated in this 

situation by applying the same procedure as 

before. 

The same amount of mass is now added to 

the estimated physical model. To do so, the 

mass value is simply summed to the 

appropriate diagonal position of the mass 

matrix. In this case, the value 5.97 kg is 

summed to the fifth diagonal position of the 

mass matrix since the mass is placed on the 

fifth DOF. Then, the FRFs are computed by 

using the modified physical model compared 

with the experimental ones. Figure 6 shows the 

comparison of both modified FRFs 

(experimental and computational) together 

with the unmodified one.  

As can be seen, in general, there is a high 

correspondence between the modified 

dynamics predicted by the estimated physical 

model and the actual behaviour. Some 

differences can eb found in the surroundings of 

the first and third peaks, which may me due to 

the estimation errors committed during the 

modal identification procedure. Finally, it is 

worth noting that, since the mass is placed on 

L/2, which is a vibration node for modes 2 and 

4 (see Figure 4), the second and fourth peaks 

are barely affected in both FRFs. 

Figure 6: FRFs comparison of the model with 

modified mass (point 7) 

4.3 SDOF addition 

Finally, a single-degree-of-freedom system, 

composed by a 4.70 kg mass hanged from a 

728 N/m spring is installed on the beam. Its 

properties confer it a natural frequency of 

1.96 Hz (as an isolated system). The system 

could be interpreted as a tuned mass damped 

(TMD) if its natural frequency was closer to 

and under a natural frequency of the structure. 

It would also need to have a higher amount of 

damping to dissipate energy and reduce the 

overall response level. In this case, the only 

damping sources are the one associated to the 

spring deformation and the air friction, which 

are both very reduced. The ensemble is placed 

on the middle point of the beam (point 5), close 

to the maximum modal coordinate of the first 

mode, which is a proper location if a TMD 

would be installed on the beam to reduce the 

contribution of that mode to its dynamic 

response. Note that, again, due to being placed 

on the point at L/2, the second and fourth peaks 

of the FRFs should not be affected by this 

modification. 

Similarly to the previous scenario, once the 

SDOF system is installed on the beam, the 

experimental FRFs are estimated by means of 

the same experimental modal analysis 

9999



Álvaro Magdaleno, César Peláez and Antolín Lorenzana 

procedure. A model of the same system is also 

applied to the estimated physical model and the 

corresponding FRFs are calculated to be 

compared with the experimental ones. The 

SDOF system is added by creating a new DOF 

in the physical model, which is equivalent to 

add a new row and column to the estimated 

physical matrices, leading to a total of 10 rows 

and columns. The moving mass is directly 

placed on the new diagonal position of the 

mass matrix. The stiffness is accounted for as 

the 2x2 matrix shown in Eq. 12, where 𝛿𝑘 

stands for the spring stiffness. The elements of 

that matrix are added to the four positions of 

the stiffness matrix in the rows and columns 5 

and 10, i.e., the positions (𝑖, 𝑗) with 𝑖 and 𝑗 

equalling 5 or 10. Finally, as mentioned before, 

no damping is to the model of this SDOF 

system for being very reduced in comparison 

to the structural damping, so the added column 

and row are full of zeroes. 

∆𝐾 = 𝛿𝑘 [
+1 −1
−1 +1

 ] (12) 

Once the FRFs are experimentally 

estimated and calculated by means of the 

modified physical model, they are plotted 

together in Figure 7, which shows the FRFs 

associated to point 7 in the three scenarios 

(experimental modified, modified estimated 

physical model and experimental unmodified). 

The frequency axis has been zoomed to 

emphasize the effect the SDOF system has 

around its natural frequency. As can be seen, 

there is again a high correspondence between 

the dynamic behaviour of the real structure and 

the prediction made by the estimated physical 

model, except for slight errors in some peaks, 

mainly caused by modal identification errors 

prior to estimating the physical model. Finally, 

the second peak is barely affected by this 

addition, as expected. 

Figure 7: FRFs comparison of the model with the 

added SDOF system (point 7) 

5 CONCLUSIONS 

A method has been developed to obtain a 

physical model composed of three matrices 

(mass, stiffness and damping) that reproduces 

the same dynamic behaviour than an 

experimentally estimated modal model of a 

certain structure. The modal model must be 

composed of the natural frequencies and 

damping ratios of the structure, as well as the 

scaled mode shapes in order to apply the 

methodology. 

The estimated physical matrices, which 

have the same dimension as the number of 

DOFs monitored to identify the modal model, 

can be used to simulate the response of the 

structure to a variety of loads and to perform 

different types of structural modifications, as 

shown. Mass modifications can be performed 

by adding a certain amount of mass to the 

corresponding diagonal element of the mass 

matrix, whereas a SDOF system can be 

included by also assembling its stiffness and 

damping 2x2 matrices to the unmodified 

matrices, making them increase by one DOF. 

In all cases, the predictions made by the 

estimated physical model are accurate enough 

for the engineering purposes intended for the 

physical model. 

10101010



Álvaro Magdaleno, César Peláez and Antolín Lorenzana 

ACKNOWLEDGEMENTS 

This research was partially founded by the 

Ministerio de Economía y Competitividad, 

Spanish Government, through the research 

project number RTI2018-098425 and by the 

Ministerio de Educación, Cultura y Deporte, 

Spanish Government, through the predoctoral 

grant number FPU16/01339. 

REFERENCES 

[1] A. Berman, W. G. Flannelly, Theory of

incomplete models of dynamic structures,

AIAA Journal 9 (8) (1971) 1481-1487.

DOI: 10.2514/3.49950

[2] A. Berman, System identification of

structural dynamic models. Theoretical

and practical bounds, in: 25th Structures,

Structural Dynamics and Materials 

Conference, American Institute of 

Aeronautics and Astronautics, Reston, 

Virginia, 1984. DOI: 10.2514/6.1984-929 

[3] M. Link, Theory of a method for identifying

incomplete system matrices from vibration

test data, Z. Flugwiss. Weltraumforsch. 9

(2) (1985) 76-82.

[4] H.-P. Chen, N. Bicanic, Assessment of

damage in continuum structures based on

incomplete modal information, Computers

& Structures 74 (5) (2000) 559-570. DOI:

10.1016/S0045-7949(99)00062-0

[5] S. R. Ibrahim, Dynamic modeling of

structures from measured complex modes.

AIAA Journal 21 (6) (1982) 898-901. DOI:

10.2514/3.8168

[6] T. Kasai, M. Link, Identification of non-

proportional modal damping matrix and

real normal modes. Mechanical Systems

and Signal Processing 16 (6) (2002) 921-

934. DOI: 10.1006/mssp.2001.1478

[7] A. Srikantha Phani, J. Woodhouse, Viscous

damping identification in linear vibration.

Journal of Sound and Vibration 303 (3-5)

(2007) 475-500. DOI:

10.1016/j.jsv.2006.12.031

[8] S. Adhikari, A. Srikantha Phani,

Experimental identification of generalized

proportional viscous damping matrix,

Journal of Vibration and Acoustics 131 (1)

(2009) 011008. DOI: 10.1115/1.2980400

[9] M. Prandina, J. E. Mottershead, E.

Bonisoli, An assessment of damping

identification methods, Journal of Sound

and Vibration 323 (3-5) (2009) 662-676.

DOI: 10.1016/j.jsv.2009.01.022

[10] A. Bakric, J. Hogsberg, Identification of

damping and complex modes in structural

vibrations, Journal of Sound and Vibration

431 (2018) 367-389. DOI:

10.1016/j.jsv.2018.05.048

[11] D. J. Ewins, Modal testing: Theory,

practices and applications, 2nd Edition,

Research Studies Press (Hertfordshire,

United Kingdom), 2000

11111111

http://dx.doi.org/10.2514/3.49950
http://dx.doi.org/10.2514/6.1984-929
http://dx.doi.org/10.1016/S0045-7949(99)00062-0
http://dx.doi.org/10.2514/3.8168
http://dx.doi.org/10.1006/mssp.2001.1478
http://dx.doi.org/10.1016/j.jsv.2006.12.031
http://dx.doi.org/10.1115/1.2980400
http://dx.doi.org/10.1016/j.jsv.2009.01.022
http://dx.doi.org/10.1016/j.jsv.2018.05.048


2nd Conference on Structural Dynamics (DinEst 2021)  

Gijón, 22 -23 July 

APPLICATION OF SEMI-ANALYTICAL METHODS TO HYBRID 

SIMULATION OF BEAM-LIKE STRUCTURES WITH VIBRATION 

ABSORBERS UNDER MOVING INERTIAL LOADS 

José Ramírez-Senent*, Jaime H. García-Palacios†, Iván M. Díaz† and Carlos Zanuy† 
*

Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos

Universidad Politécnica de Madrid 

28040 Madrid, Spain 

e-mail: jose.ramirez.senent@alumnos.upm.es

ORCID: 0000-0002-1332-8182 

† Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos 

Universidad Politécnica de Madrid 

28040 Madrid, Spain 

Abstract. In real-time hybrid simulation of structural systems, the parts of the structure under 

test whose behavior is not sufficiently well understood are actually tested, while the remainder 

of the structure is numerically simulated, very frequently via finite element models. Hybrid test 

proceeds as both domains, physical and numerical, exchange information in terms of kinematic 

and dynamic magnitudes. Consequently, the reliability of the hybrid solution strongly depends 

on the accuracy of the numerical model. In this paper, the use of semi-analytical methods in 

hybrid simulation or purely numerical simulation of beam-like structures subjected to inertial 

moving loads, equipped with vibration control devices, is studied and its effectiveness is 

assessed by means of numerical simulations. These solution methods yield better results than 

the classical approach involving proportional mass lumping in the load neighbor nodes. 

Simulation results indicate that the implementation of the suggested technique is feasible with 

common, widely available testing equipment. The proposed approach might be of interest to 

obtain quick and accurate qualitative estimates of the behavior of civil engineering structures, 

with passive, semi-active or active vibration control devices, subjected to moving loads such as 

automobiles, trains or humans. 

Key words: Real-time Hybrid Simulation, Vibration Control Devices, Inertial Moving Load, 

Semi-analytical Methods, Active Vibration Control. 

1 INTRODUCTION 

Hybrid simulation (HS) has proven to be an 

effective approach to obtain reliable estimates 

of the behavior of complex structural systems 

[1]. In HS tests set-up the parts of the structure 

whose behavior is well understood are 

simulated numerically whereas the remainder 

of the system is tested experimentally. An 

example of a typical HS test set-up is shown in 

Figure 1, in which the test subject is a vibration 

control device (VCD). The time evolution of 

the numerical subsystem is estimated by means 

of a numerical integration scheme, very 

frequently based on a finite element model, 

which makes use of the outputs of the 

experimental subsystem (for example forces).  

The outputs of the numerical scheme (for 

example displacements) are then often 

imposed on the   physical structure by means  
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Figure 1: Scheme of hybrid simulation set-up for an active VCD. 

of hydraulic servoactuators, governed by a 

sophisticated control system, at each time step. 

The hybrid test proceeds with this exchange of 

information between domains at each time 

step. Therefore, the goodness of the results of 

the HS strongly depends on the one hand, on 

the accuracy of the employed numerical 

integration   scheme and on the accuracy of the 

kinematic magnitudes achieved by the 

servoactuator control system on the other. 

When dealing with moving inertial loads 

problems, such as those found in railways or 

automobile traffic, the classical procedure of 

dividing and lumping the moving mass 

between the adjacent nodes may not yield 

accurate results for moderate to high load 

velocities, unless special methods are used 

[2,3]. The semi-analytical procedure may 

represent an appropriate technique to obtain 

accurate solutions for simple structural 

problems. 

 In this paper, the methodology for the 

application of semi-analytical integration 

techniques to the purely numerical simulation 

of beam-like structures, equipped with VCDs, 

subjected to inertial moving loads is studied. In 

addition, the feasibility of the realization of 

real-time hybrid tests employing the semi-

analytical approach is assessed by means of 

numerical simulations.  The HS approach 

allows to obtain accurate, qualitative results, 

which reflect the true dynamic behavior of the 

VCD. These results may assist the researchers 

in determining which vibration control strategy 

should be applied to a particular moving load 

problem, even for multiple-input-multiple-

output vibration control schemes.  

The remainder of this paper is organized as 

follows. Section 2 provides a detailed 

description of the employed model of the 

system: subsection 2.1 deals with the semi-

analytical integration procedure employed to 

estimate the response of the structure, 

subsection 2.2 explains the model 

implemented for the hydraulic servoactuation 

system used to simulate the hybrid test, 

subsection 2.3 covers the actuator control 

system and subsection 2.4 describes the active 

VCD employed in the simulations.   

Simulation results and their discussion, for 

both the uncontrolled and the controlled 

structure, are addressed in section 3. Finally, 

section 4 outlines the conclusions and the 

issues to consider for a successful 

implementation of the proposed procedure. 

2 SYSTEM MODELING 

In this section the model implemented to 

assess the application of semi-analytical 

techniques to beam-like structures with VCDs 

under the action of moving inertial loads is 

fully described. 

2.1 Semi-analytical model for the moving 

inertial load 

Figure 2 depicts the scheme of a simply 

supported beam structure subjected to a 

moving inertial load and equipped with several 

VCD

Structural model and

Integration scheme

Actuator controller Load 

cell

Shake table

VCD

Actuator
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VCDs. The corresponding equation of motion 

is: 

𝐸𝐼
𝜕4𝑤( , 𝑡)

𝜕 4
+ 𝜌𝐴

𝜕 𝑤( , 𝑡)

𝜕𝑡

+ 𝑐𝐴
𝜕𝑤( , 𝑡)

𝜕𝑡

= 𝛿( − 𝑣𝑡) [ − 𝑚
𝑤(𝑣𝑡, 𝑡)

 𝑡2
]

+ ∑𝛿( − ,𝑝)

𝑁𝑎

𝑝=1

 ,𝑝,

(1) 

where 𝑤 is the beam deflection, 𝐿 is beam 

length,  𝐸, 𝐼, 𝜌 and 𝐴 are, respectively, the 

elastic modulus, the area moment of inertia, the 

mass density and the cross section area of the 

beam, 𝑐 is the damping per unit volume,   

represents the moving load, and 𝑚 and 𝑣 are 

the moving mass and its velocity. Moreover, 𝛿 

stands for Dirac’s delta, 𝑝 = 1,… ,𝑁  where 

𝑁  is the number of vibration absorption 

devices,   ,𝑝 are the axial coordinates of VCD 

locations and    ,𝑝(𝑡) is the force transmitted 

by each VCD to the beam structure. 

Figure 2: Simply supported beam subjected to a 

moving inertial load. 

Equation (1) must be completed with the 

boundary conditions corresponding to a simply 

supported beam: 

𝑤(0, 𝑡) = 𝑤(𝐿, 𝑡) =
𝜕 𝑤( , 𝑡)

𝜕 
|
𝑥=0

=
𝜕 𝑤( , 𝑡)

𝜕 
|
𝑥=𝐿

= 0 , 

(2) 

and the zero initial conditions: 

𝑤( , 0) =
𝜕𝑤( , 𝑡)

𝜕𝑡
|
 =0

= 0. 
(3) 

Below, the procedure explained in [2] will 

be followed. By expanding the beam deflection 

as a sine Fourier series the next relationship is 

obtained: 

𝑤( , 𝑡) =
2

𝐿
∑𝑉(𝑗, 𝑡) sin (

𝑗𝜋 

𝐿
) ,

∞

𝑗= 

 (4) 

which satisfies the simply supported boundary 

conditions and where 𝑉(𝑗, 𝑡) is the j-th Fourier 

coefficient at instant 𝑡 which can be calculated 

by means of: 

𝑉(𝑗, 𝑡) = ∫ 𝑤( , 𝑡) sin (
𝑗𝜋 

𝐿
)   

𝐿

0

. 
(5) 

Now, multiplying both sides of Eq. (1) by 

sin(𝑗𝜋 𝐿⁄ ), and integrating over the beam 

length, results in the following system of 

differential equations, for 𝑗 = 1,… ,∞: 

𝜌𝐴𝑉̈(𝑗, 𝑡) + 𝑐𝐴𝑉̇(𝑗, 𝑡) + 𝐸𝐼
𝑗4𝜋4

𝐿4
𝑉(𝑗, 𝑡) 

= [ −𝑚
𝑤(𝑣𝑡, 𝑡)

 𝑡
] sin (

𝑗𝜋 

𝐿
)

+ ∑ ,𝑝 sin (
𝑝𝜋  ,𝑝

𝐿
)

 𝑎

𝑝=

. 

(6) 

The acceleration of the point mass can be 

obtained by differentiating Eq. (4) twice with 

respect to time and particularizing the position 

at  = 𝑣𝑡 expressed as: 

𝑤(𝑣𝑡, 𝑡)

 𝑡

=
2

𝐿
∑ [𝑉̈(𝑘, 𝑡)𝑠𝑖𝑛 (

𝑘𝜋𝑣𝑡

𝐿
)

∞

𝑘= 

+
2𝑘𝑣𝑡

𝐿
𝑉̇(𝑘, 𝑡)𝑐𝑜𝑠 (

𝑘𝜋 

𝐿
)

−
𝑘 𝜋 𝑣

𝐿
 𝑉(𝑘, 𝑡)𝑠𝑖𝑛 (

𝑘𝜋𝑣𝑡

𝐿
)], 

(7) 

which substituted in Eq. (5) yields: 

x
y

z
𝑤( , 𝑡)

𝑚

𝑣

𝐸, 𝐼, 𝜌, 𝐴, L

  ,   ,   ,𝑝

 , 
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𝑉̈(𝑗, 𝑡) + 𝛼∑ 𝑉̈(𝑘, 𝑡)𝑠𝑖𝑛 (
𝑗𝜋𝑣𝑡

𝐿
) 𝑠𝑖𝑛 (

𝑘𝜋𝑣𝑡

𝐿
)

∞

𝑘= 

+ 𝛾𝑉̇(𝑗, 𝑡)

+ 2𝛼∑
𝑘𝜋𝑣

𝐿
𝑉̇(𝑘, 𝑡)𝑠𝑖𝑛 (

𝑗𝜋𝑣𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑘𝜋𝑣𝑡

𝐿
)

∞

𝑘= 

+ 𝐸𝐼
𝑗4𝜋4

𝐿4
𝑉(𝑗, 𝑡)

− 𝛼∑
𝑘 𝜋 𝑣

𝐿
𝑉(𝑘, 𝑡)𝑠𝑖𝑛 (

𝑗𝜋𝑣𝑡

𝐿
) 𝑠𝑖𝑛 (

𝑘𝜋𝑣𝑡

𝐿
)

∞

𝑘=

=
𝜌𝐴

𝑠𝑖𝑛 (
𝑗𝜋𝑣𝑡

𝐿
)

+
1

𝜌𝐴
∑ ,𝑝(𝑡) sin (

𝑗𝜋  ,𝑝

𝐿
)

 𝑎

𝑝= 

, 

(8) 

where 𝛼 = 2𝑚/𝜌𝐴𝐿 and 𝛾 = 𝑐/𝜌. The system 

shown in Eq. (7) can be arranged as follows: 

[𝑀]{𝑉̈} + [𝐶]{𝑉̇} + [𝐾]{𝑉} = { } (9) 

where: 

𝑀𝑗𝑘 = 𝛿𝑗𝑘 + 𝛼𝑠𝑖𝑛 (
𝑗𝜋𝑣𝑡

𝐿
) 𝑠𝑖𝑛 (

𝑘𝜋𝑣𝑡

𝐿
) 

𝐶𝑗𝑘

= 𝛾𝛿𝑗𝑘 + 2𝛼
𝑘𝜋𝑣

𝐿
𝑠𝑖𝑛 (

𝑗𝜋𝑣𝑡

𝐿
) 𝑐𝑜𝑠 (

𝑘𝜋𝑣𝑡

𝐿
) 

𝐾𝑗𝑘

= 𝐸𝐼
𝑗4𝜋4

𝐿4
𝛿𝑗𝑘

− 𝛼
𝑘 𝜋 𝑣

𝐿
𝑠𝑖𝑛 (

𝑗𝜋𝑣𝑡

𝐿
) 𝑠𝑖𝑛 (

𝑘𝜋𝑣𝑡

𝐿
) 

𝑗

=
𝜌𝐴

𝑠𝑖𝑛 (
𝑗𝜋𝑣𝑡

𝐿
)

+
1

𝜌𝐴
∑ ,𝑝(𝑡) sin (

𝑗𝜋  ,𝑝

𝐿
)

 𝑎

𝑝= 

, 

(10) 

in which 𝛿𝑗𝑘 represents Kronecker’s delta. 

In the case under study, a single VCD 

located at the midspan of the beam is 

considered; therefore, 𝑝 = 1 and   , = 𝐿/2. 
 The displacement of any point of the beam 

can be calculated as a function of time by 

means of Eq. (5), whereas the velocity and the 

displacement may be obtained according to: 

𝜕𝑤( , 𝑡)
𝜕𝑡

=
2

𝐿
∑𝑉̇(𝑗, 𝑡) sin (

𝑗𝜋 

𝐿
) ,

∞

𝑗= 

 (11) 

𝜕2𝑤( , 𝑡)

𝜕𝑡2
=

2

𝐿
∑𝑉̈(𝑗, 𝑡) sin (

𝑗𝜋 

𝐿
) .

∞

𝑗= 

 (12) 

A convergence study has been conducted to 

determine the number of terms to be accounted 

for in the analysis. Figures 3 and 4 show the 

outcome of this study in terms of the 

displacement of the midspan point and the 

RMS error between number of terms, 

respectively; as it can be appreciated, the error 

diminishes with the number of considered 

terms. In this work 18 terms have been 

considered. 

Figure 3: Displacement of the midspan point for 

different considered terms. 

Figure 4: RMS error for different numbers of terms. 
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Figure 5. Servoactuator schematic, modeled variables and sign criterion. 

2.2 Hydraulic servoactuator model 

Figure 5 displays a scheme of the hydraulic 

servoactuator simulated in this work, along 

with the relevant variables and the sign criteria 

employed. 

The servovalve spool motion has been 

modeled by means of the following first order 

system: 

𝐶𝑠 𝑣 = 𝜏𝑠𝑦̇𝑠 + 𝑦𝑠, (13) 

in which  𝑣 is the input voltage to the 

servovalve, 𝑦𝑠 is the spool position, 𝐶𝑠 is the 

spool static gain and 𝜏𝑠 is the time constant of 

the system.  

The flow rates through the servovalve ports 

have been calculated according to the flow-rate 

equations for a symmetrical servovalve with 

matched orifices and critically lapped spool 

[4]: 

𝑄

= {
𝐶𝑑𝐾𝑠𝑦𝑠𝑠𝑔𝑛( 𝑠 −   )√2| 𝑠 −   |/𝜌𝑜 ;   𝑦𝑠 ≥ 0

𝐶𝑑𝐾𝑠𝑦𝑠𝑠𝑔𝑛(  −  𝑠)√2|  −  𝑅|/𝜌𝑜 ;  𝑦𝑠 < 0
, 

(14) 

𝑄

= {
𝐶𝑑𝐾𝑠𝑦𝑠𝑠𝑔𝑛(  −  𝑅)√2|  −  𝑅|/𝜌𝑜;  𝑦𝑠 ≥ 0

𝐶𝑑𝐾𝑠𝑦𝑠𝑠𝑔𝑛( 𝑆 −   )√2| 𝑆 −   |/𝜌𝑜 ;  𝑦𝑠 < 0
, 

(15) 

where 𝐶𝑑 represents the orifices discharge 

coefficient, 𝐾𝑠 is the fluid passage area to spool 

position ratio,   𝑠 and  𝑅 are the pressures at 

the inlet and outlet ports of the servoactuator’s 

manifold,  𝑖, 𝑄𝑖 are the pressures and flow 

rates associated to servoactuator chambers and 

𝜌𝑜 denotes oil density.  

The evolution of the pressures in the 

chambers of the actuator has been obtained by 

applying the Continuity Equation to each 

servoactuator compartment [4]: 

(𝑣0 + 𝐴𝑤 𝑝) ̇ 𝛽 ⁄ + 𝐴𝑤 ̇ = 𝑄 , (16) 

(𝑣0 − 𝐴𝑤 𝑝) ̇ 𝛽 ⁄ − 𝐴𝑤 ̇ = −𝑄 , (17) 

where 𝐴𝑤 is the effective area of the piston, 

𝑣0𝑖  are the initial volumes of the actuator 

chambers, which are calculated from the value 

of 𝐴𝑤 and the cylinder stroke, s. Furthermore, 

𝛽𝑖 are the Bulk moduli of each chamber. In this 

work, leakage flows between actuator 

chambers and from chambers to their 

respective bearings have been neglected. 

The acceleration of the actuator rod is 

governed by Newton’s Second Law: 

(𝑚 + 𝑚𝑠) ̈ = (  −   )𝐴𝑤 − 𝐶  ̇ + , (18) 

in which 𝑚  and 𝑚𝑠 represent respectively rod 

and VCD stator masses,  ̈  and  ̇  are actuator 

rod acceleration and displacement, 𝐶  stands 

for actuator viscous damping coefficient and 

Load 

cell

Shake table

VCD

P1 P2

Q1 Q2

Ps PR

uv
ys

Cr  ̇

r

Servovalve

Actuator
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  is the force transmitted by the VCD to rod-

stator assembly. 

 By linearizing Eqs (13), (14), (15), (16), 

(17) and (18) around the mid-stroke

equilibrium point and considering a

completely symmetric actuator, the following

state-space representation of the actuator

system is obtained [5]:

{

 ̇
 ̈

Δ ̇
𝑦̇𝑠

} = [𝐴] {
 ̇
𝛥 
𝑦𝑠

} + [𝐵] {
 𝑣

 𝑝
}, (19) 

{ ̇
 ̈

} = [𝐶] {
 ̇
𝛥 
𝑦𝑠

} + [𝐷] {
 𝑣

 𝑝
}. (20) 

As it can be noticed, the selected state-space 

variables have been the displacement and 

velocity of the rod, the difference of pressures 

across actuator chambers, 𝛥 , and the spool 

displacement.  

[𝐴] =

[

0 1 0 0

0 −
𝐶

𝑚

𝐴𝑤

𝑚
0

0 −
2𝐴𝑤𝛽

𝑣0

0
2𝐶𝑑𝐾𝑠𝛽√

 𝑠
𝜌

𝑣0

0 0 0 −
1

𝜏𝑠 ]

, 

[𝐵] =

[
 

0 0

0
𝑚𝑝

0 0
𝐶𝑠

𝜏𝑠
0 ]

, 

[𝐶] = [

1 0 0 0
0 1 0 0

0 −
𝐶𝑟

𝑚𝑡

𝐴𝑤

𝑚𝑡
0
] and 

[𝐷] = [

0 0
0 0

0
1

𝑚

]. 

(21) 

where 𝑚 =𝑚 + 𝑚𝑠. Subindexes in 𝛽 and 𝑣0  

have been omitted in matrices in Eq. (21) 

because of the actuator symmetry assumption. 

Given the fact that the expected displacements 

of the actuator are small in comparison with its 

stroke (see Table 1), the linearized version has 

been employed in the simulations. 

So as to determine the size of the actuator, a 

campaign of simulations of the complete 

system may be run. The force rating of the 

actuator can be estimated by means of the 

acceleration values (Eq. (12)) multiplied by the 

total moving mass and accounting for the 

maximum force that the VCD can exert. The 

stroke of the actuator is estimated by Eq. (4). 

Finally, the flow rate, and consequently, the 

servovalve flow rate can be roughly estimated 

by Eq. (11). For an accurate sizing, of the 

servoactuation system a complete campaign of 

simulations, accounting for all the interest 

loading cases and target structures, needs to be 

carried out. In this work, a standard 25 kN 

actuator with a stroke of 150 mm and a 

servovalve with a nominal flow rate of 63 liters 

per minute with a pressure drop of 3.5 MPa per 

land have been considered. These represent a 

low cost solution, readily available in the 

market with which a wide range of tests can be 

performed. 

The values of the servovalve and actuator 

parameters employed in the numerical 

simulations are shown in Table 1. These have 

been obtained respectively from [6] and [7]. 

2.3 Servoactuator controller model 

A Three Variable Control scheme (TVC) 

has been implemented to ensure that the 

kinematic references output by the integration 

scheme are accurately tracked simultaneously 

(displacement, velocity and acceleration) [8]. 

The control order calculated by the TVC can 

be cast as: 

 𝑣 = 𝐾𝑑(  , 𝑒𝑓 −   ) + 𝐾𝑣( ̇ , 𝑒𝑓 −  ̇ ) +

𝐾 ( ̈ , 𝑒𝑓 −  ̈ ),
(22) 

where the subindex 𝑟𝑒𝑓 denotes the reference 

value and 𝐾𝑑, 𝐾𝑣 and 𝐾  are respectively the 

displacement, velocity and acceleration control 

gains. The kinematic references for the 
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actuator have been calculated making use of 

Eqs. (4), (11) and (12) particularized to the 

midspan of the beam structure, where the VCD 

is assumed to be installed. The displacement 

can be sensed by means of an embedded 

displacement transducer, whereas the 

acceleration is provided by an accelerometer 

installed on the rod. Velocity values may be 

obtained by fusion of displacement and 

accelerometer transducers data through a 

Kalman filter [9]. However, in this work it has 

been considered that a direct measurement of 

the velocity is available to the controller. Table 

1 shows the values of the control gains 

employed in the numerical simulations. These 

have been obtained by means of a trial and 

error procedure until satisfactory tracking of 

the reference waveforms has been obtained 

without compromising overall system 

stability. 

2.4 Vibration absorber device model 

An active vibration absorber has been 

considered as VCD in this study. The selected 

vibration control algorithm is the Direct 

Velocity Feedback Control (DVFC). The VCD 

has been assumed to be ideal, that is, with 

negligible internal dynamics and capable of 

reproducing instantaneously the target force 

calculated by the VCD controller [10]. 

Therefore, the force transmitted by the VCD to 

the actuator has been modeled by means of: 

= −𝐶𝐷𝑉𝐹𝐶 ̇ , (23) 

where 𝐶𝐷𝑉𝐹𝐶 is the control gain of the active 

VCD. Again, it has been assumed that a direct 

measurement of the velocity of the actuator rod 

is available to the control system of the VCD. 

Table 1 shows the value of the VCD control 

gain employed in the numerical simulations. 

3 SIMULATIONS RESULTS 

The numerical simulation results obtained 

with the model explained previously are 

presented in this section. A fourth order 

Runge-Kutta integration scheme with at step 

time Δ𝑡 =1e-4 s has been employed for all the 

simulations. 

First off, the beam structure subjected to an 

inertial moving load (5000 kg) traversing it at 

a speed 𝑣 = 25 km/h, without the VCD 

installed, has been simulated. Figure 6 displays 

the obtained displacement at the midspan point 

for both the simulated structure and for the 

hybrid test simulation. The error between the 

structure simulation and the simulated hybrid 

test is also presented. It is worth noting that this 

error coincides with the displacement tracking 

error achieved by the actuator control system. 

Figure 7 offers similar data for velocity at the 

midspan point and Figure 8 for acceleration. 

As it can be appreciated, the difference 

between the structural simulation and the 

hybrid experiment outcomes is small and 

remains within reasonable limits for the 

complete simulation timespan. This is due to 

the low error in displacement, velocity and 

acceleration tracking achieved by the TVC 

algorithm.  

Secondly, the beam structure traversed by 

the same inertial moving load and equipped 

with a VCD has been simulated in the same 

scenarios: (i) the structure with the VCD and 

(ii) the hybrid experiment accounting for

servoactuator system dynamics and its

controller. As in the previous simulation case,

the hybrid experiment yields results very

similar to the ones obtained by the structure

with VCD simulation due to the action of the

TVC which successfully compensates for the

dynamics of the actuator system.

As expected, the effect of the VCD is to 

effectively attenuate the maximum 

acceleration experienced by the midspan point 

by approximately a 43 %, see Figures (8) and 

(11). This attenuation even is more noticeable 

after the initial section of the simulation where 

an attenuation of around 83% is attained. In 

18181818



José Ramírez-Senent, Jaime H. García-Palacios, Iván M. Díaz and Carlos Zanuy 

any 

Figure 6: Displacement of midpoint without VSD 

Figure 7: Velocity of the midspan point without VCD. 

Figure 8: Acceleration of the midpoint without VCD. 

Figure 9: Displacement of the midpoint with VCD. 

Figure 10: Velocity of the midpoint with VCD. 

Figure 11: Acceleration of the midspan point with 

VCD. 

19191919



José Ramírez-Senent, Jaime H. García-Palacios, Iván M. Díaz and Carlos Zanuy 

any case, simulation results show that accurate 

predictions of the behavior of the structure 

equipped with the VCD system can be 

obtained by means of the HS procedure, 

provided that the semi-analytical integration 

scheme outputs correct results. 

Parameter Value Parameter Value 

𝐴 [m2] 1.20e00 𝑚 [kg] 5.00e03 

𝐴𝑤 [m2] 1.20e-03 𝑚  [kg] 7.96e00 

𝛽 [Pa] 1.00e09 𝑚𝑠 [kg] 8.00e02 

𝑐 [Nsm-4] 9.36e02 𝐿 [m] 3.00e01 

𝐶𝑑 [-] 6.11e-01 [N] 4.91e04

𝐶𝐷𝑉𝐹𝐶[Nm-1s] 1.00e06  𝑆 [Pa]6 2.80e07 

𝐶  [Nsm-1] 5.00e01  𝑅 [Pa] 0 

𝐶𝑠 [mV-1] 1.80e-04 𝜌 [kgm-3] 7.85e03 

Δ𝑡 [s] 1.00e-04 𝜌𝑜 [kgm-3] 8.50e02 

𝐸𝐼 [Nm2] 2.00e10 𝑠 [m] 1.50e-01 

𝐾𝑠 [m] 1.20e-04 𝜏𝑠 [s] 1.00e-02 

𝐾  [Vm-1s2] 5.00e-02 𝑣 [ms-1] 6.94e00 

𝐾𝑑 [Vm-1] 5.00e-01 𝑣0 [m3] 8.69e-05 

𝐾𝑣 [Vm-1s] 5.00e00 ,  [m] 1.50e01 

Table 1: Values of the parameters employed in 

numerical simulations. 

4 CONCLUSIONS 

In this paper a methodology for the hybrid 

simulation of beam-like structures subjected to 

moving inertial loads and equipped with VCDs 

has been presented. The proposed approach 

may also be used for purely numerical 

simulations. In the hybrid case, the structure 

and the moving load are simulated numerically 

whereas the VCD is tested experimentally by 

means of a hydraulic servoactuator. The 

feasibility of the suggested procedure has been 

proved by means of numerical simulations. 

The integration scheme used for the 

structure has been derived from the governing 

partial differential equation making use of the 

expansion in Fourier sine series; in this way, 

the solution is expressed as a sum of infinite 

terms in which spatial and temporal variables 

are separated. The family of time functions 

solves a system of ordinary differential 

equations of variable size; the solution to this 

system must be obtained numerically. In order 

to obtain accurate results, the minimum 

number of terms to be accounted for in the 

solution must be determined by means of a 

convergence study. 

The hydraulic servoactuation system 

candidate to be utilized in the hybrid tests has 

been modeled by means of a system linearized 

around its mid-stroke equilibrium point, given 

the fact that the expected displacements are 

small compared to maximum actuator 

displacement. A TVC algorithm has been 

employed to control simultaneously the 

displacement, velocity and acceleration 

response of the actuator. 

Simulations of the beam-like structure have 

been performed with and without the VCD 

installed on it. The selected control philosophy 

for the VCD is a DVFC scheme in which the 

dynamics of the inertial vibration controller 

have been neglected. 

Simulation results show that the proposed 

hybrid simulation test set-up is able to 

accurately reproduce the kinematic references 

output by the semi-analytical integration 

scheme, thus yielding a realistic estimate of the 

VCD device behavior when installed on 

structures assimilable to beams subjected to 

inertial moving loads. 

The main features of the suggested 

approach are: 

- Accurate and quick qualitative

predictions of VCDs performance in

moving load scenarios can be

obtained for a wide range of load

velocities, as long as the convergence

of the integration method is ensured

for the velocities whole range. This is

in opposition to the traditional

approach of detailed finite element

modeling and proportional mass

lumping in the load neighbor nodes,

which may only be valid for very low

load speeds.

- Any type of VCD device can be
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simulated and tested according to HS 

procedure. 

- The semi-analytical integration 

scheme may be modified to account 

for moving loads with associated 

dynamics or successive loads 

simulating a traffic flow. 

- The application of the method to the

assessment of multiple-input-multiple

output vibration control strategies is

straightforward.

- Actuators employed for hybrid

simulation tests may be readily sized

by running campaigns of purely

numerical simulations.

- It is relatively easy to modify the

proposed procedure to simulate

different types of structures, i.e.:

string, Timoshenko beam or plate-like

structures with different boundary

conditions.

Nevertheless, several factors must be 

evaluated to ensure a successful practical 

implementation. In particular, the hardware 

platform which executes the integration 

scheme must be carefully selected to ensure 

adequate processing capacity and real-time 

operation. Besides, the design of the actuator 

control algorithm based on a linearized system 

may not be sufficiently accurate for the actual 

realization of the system and more complex 

techniques may be required possibly implying 

sophisticated hardware. 

ACKNOWLEDGEMENTS 

The authors acknowledge the financial 

support provided by the Spanish Ministry of 

Science, Innovation and Universities through 

the project SEED-SD (RTI2018-099639-B-

I00). 

REFERENCES 

[1] Shing, P.B. Real-Time Hybrid Testing

Techniques. In: Bursi O.S., Wagg D. (eds) 

Modern Testing Techniques for Structural 

Systems, pp. 259-292. CISM International 

Centre for Mechanical Sciences, vol 502. 

Springer, Vienna (2008). 

[2] Bajer, C.I. and Dyniewicz, B. Numerical

Analysis of Vibrations of Structures under

Moving Inertial Load. Springer-Verlag

Berlin Heidelberg (2012).

[3] Bajer, C.I. and Dyniewicz, B. Numerical

modelling of structure vibrations under

inertial moving load. Arch. Appl. Mech.

79:499-508 (2009).

[4] Merrit, H.E. Hydraulic Control Systems.

John Wiley & Sons, New York, USA

(1967).

[5] Ramirez-Senent, J., García-Palacios, J.H.

and Díaz, I.M. Shaking table control via

real-time inversion of hydraulic

servoactuator linear state-space model.

Proc. IMechE Part I: J Systems and Control

Engineering. doi:

10.1177/09596518211007294 (2021)

[6] Moog. Servovalves with Integrated

Electronics-D765 Series. Moog GmbH,

Böblingen, Germany (2020).

[7] ISO 6022. Hydraulic fluid power.

Mounting dimensions for single rod

cylinders, 25 MPa (250 bar) series.

International Organization for

Standardization edition, 2006.

[8] Yao, J., Dietz, M, Xiao, R., Yu, H., Wang,

T. and Yue, D. An overview of control

schemes for hydraulic shaking tables. J Vib

Control, 22: 2807–2823 (2016).

[9] Franklin, G.F., Powell, J.D. and Workman

M.L. Digital Control of Dynamic Systems,

21212121



José Ramírez-Senent, Jaime H. García-Palacios, Iván M. Díaz and Carlos Zanuy 

Second Edition, Addison-Wesley, 1990. 

[10] Díaz, I.M., Gallegos, C.A., Ramírez-

Senent, J. and Renedo, C.M.A. Interaction

phenomena to be accounted for human-

induced vibration control of lightweight

structures. Frontiers in Built Environment

7. doi: 10.3389/fbuil.2021.658529 (2021).

22222222



2nd Conference on Structural Dynamics (DinEst 2021)  

Gijón, 22 -23 July 

ANALYSIS OF DYNAMIC LOADS IN STRUCTURES WITH 

NEURONAL NETWORK 

Prendes-Gero M.B.*, Gracia-Rodríguez J.†, Álvarez-Fernández I. a,*, 

González-Nicieza C. *, Rodríguez-Pereira, C. 
*

Grupo de investigación DINROCK,

Universidad de Oviedo 
ae-mail: inma@uniovi.es 

ORCID: 0000-0002-5681-6530 

† Departamento de Construcción e Ingeniería de Fabricación, 

Universidad de Oviedo 


Institute of Space Sciences and Technologies of Asturias (ICTEA) 

Abstract. Safety criteria that currently exist use the peak particle velocity (PPV) and the 

fundamental frequency as damage criterion to limit the dynamic loads in the structures. 

However, some researchers prefer the use of particle acceleration. On the other hand, the 

energetic criteria started to be developed, but these do not take into account the dynamism of 

the phenomenon suitably, because they do not consider the concept of power or energy flux. In 

fact, the practice shows that none of the four indicators mentioned (velocity, frequency, 

acceleration and energy) is more suitable than the rest. 

The identification of critical wave parameters for the occurrence of damage is a problem that 

has been unanswered for many years. A problem of this complexity cannot be addressed 

through the application of conventional techniques, but the use of new techniques invites 

optimism. 

In this paper a neuronal network is employed as a predictive tool. The objective is to know the 

variation of the values of the different variables that characterize one wave, once this wave has 

gone through the structure (going into it by the foundations and going out by the beams of the 

roof). The analysed variables have been the acceleration, velocity, frequency and duration in 

the three axes (X, Y, Z) and the energy. 

At the beginning, all the variables have been employed at the same time, that is, without 

deferring the values on each axis. The result was a neural network with two hidden layers of 13 

neurons each one, a high computational time and poor results with correlation values below 0.8 

and high mean square errors. 

The analysis by axes gave good correlation values greater than 0.8 and low mean square errors. 

For the x axis the obtained results with a neuronal network with one hidden layer with 5 neurons 

or two hidden layer with 5 neurons each one were similar. But in the case of the y and z axes 

the results improve where two hidden layers are employed.  

Key words: neuronal network, safety criteria, PPV criteria, energetic criteria. 

1 INTRODUCTION 

The vibration experienced at a certain 

distance from the blast is usually a complex 

combination of several types of waves, which 

are difficult to separate [1]. Its characteristics 

can be described through the measurement in 

23232323



Prendes-Gero M.B., Gracia-Rodríguez J., Álvarez-Fernández I., González-Nicieza C. 

time, in three orthogonal directions, of the 

acceleration, velocity or motion of a point. [2] 

adds frequency and velocity of wave 

propagation as necessary terms for his 

description. 

Factors reflecting the intensity, frequency 

and duration of the wave and, on the other 

hand, factors inherent to the structure such as 

its damping coefficient and natural frequency 

should be taken into account when trying to 

establish structural safety against a seismic 

event (either a blast or an earthquake). A 

comprehensive review of the most recent 

developments in damage criteria has been 

carried out by [3, 4]. As this author 

emphasises, each country has its own 

standards, based on a greater or lesser number 

of case studies, and there is no common 

consensus to reconcile them. 

The importance of the problem has meant 

that no effort has been spared in developing 

ground vibration transmission models [5 – 13] 

and of dynamic behaviour and damage in 

buildings [14 – 16]. 

In current standards, the PPV, which is the 

maximum velocity at which an individual 

particle moves in the passage of a given wave, 

is accepted as an indicator parameter of 

intensity, although some standards take into 

account only the largest component while 

others consider the modulus of the velocity 

vector. In some (but not all) cases, the 

frequency of vibration is also considered 

important. However, different elements of a 

structure can have very different natural 

frequencies. Thus, extensive studies [17, 18] 

have shown that walls have frequencies of 12 

to 20 Hz, while superstructures have lower 

frequencies (5 to 10 Hz). In fact, these are very 

simplistic models that assume that the structure 

has only one degree of freedom for vibration. 

However, there is a second set of damage 

criteria based on energy criteria. One of the 

first was proposed by [19], based on the 

hypothesis of a simple harmonic motion, 

which considers the peak acceleration (not 

velocity) and the frequency at the peak (not the 

fundamental). This criterion was developed 

through the analysis of more than 1000 

residential structures. [20] expressed this 

criterion in terms of velocity. In both cases, 

this is a very simplistic energy analysis. More 

recently [21] argue for the importance of 

taking into account the energy carried by the 

wave at the characteristic frequency of the 

structure. This energy would be obtained 

through the energy spectrum obtained through 

WPA (Wavelet Packed Analysis) of the signal. 

[22] have proposed another concept, obtaining

the energy after analysing the complete

waveform obtained through geophones.

On the other hand, the work of [23], who 

design large-scale equipment to induce 

vibrations in structures by means of hydraulic 

jacks, stands out. This review should not make 

us lose sight of the most important fact: neither 

the maximum particle velocity, nor the 

maximum acceleration, nor the Crandell (and 

later) energy criterion, nor the natural 

frequency of the structure allow us to correctly 

assess the effect of a wave on a structure. Nor 

does the wavelet analysis, as it is currently 

applied, solve the problem, since this analysis 

focuses more on the frequency field than on the 

amplitude of the wave, when in this problem 

both fields are important. 

The aim of this work is to develop on 

neuronal network as a predictive tool. The end 

is to know the variation of the values of the 

different variables that characterize one wave, 

once this wave has gone through the structure 

(going into it by the foundations and going out 

by the beams of the roof). The analysed 

variables have been the acceleration, velocity, 

frequency and duration in the three axes (X, Y, 

Z) and the energy.

2 PREVIOUS STUDIES 

Prior to the tests on full-scale structures, 
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small- and medium-scale studies were carried 

out. 

2.1. Small-scale tests 

Initially, small-scale laboratory tests were 

carried out [24 - 27] in order to control the 

different variables to be analysed. The tests 

were performed on isolated structural elements 

such as beams, columns, partitions (Figure 1). 

All the elements were fabricated in the 

laboratory with known and characterised 

materials. The dimensions of these first 

elements ranged from 10 to 40 cm. 

Figure 1. 3D frame bonded with mortar. 

These structural elements were 

instrumented with geophones and 

accelerometers and were subjected to states of 

static load and to states of dynamic load 

produced with a vibration generator. 

The vibration generator developed by the 

Din-Rock Research Group allowed to regulate 

the intensity and frequency to obtain the 

desired vibratory wave. 

The level of dynamic loading was modified 

(amplitude, different frequencies) until 

damage to the tested elements was obtained 

that triggered their rupture. 

Damage assessment was carried out with 

acoustic emission, ultrasound tomography (to 

assess internal damage) and direct observation 

and measurement (where damage is visible). 

From these small-scale studies it was 

concluded that  

 Ultrasonic tests show no internal damage

after vibration. 

 Fatigued structures have a lower fatigue

strength.

 Joints are areas of great weakness,

therefore, complex structures made up of

several basic elements joined by joints

have a worse vibration behaviour than

solid elements.

2.2. Medium-scale tests 

Next, work was carried out on more 

complex structures such as the foundation-

column assembly where different materials 

were also used and a simple portal frame 

formed by two columns centred on two 

foundations. 

The scale of the models is approximately 

1:10. The cross-section of the columns and the 

beam is 4 cm x 2 cm and their length is 20 cm, 

being identical in all cases. The foundations 

are square, 12 cm on each side and 2 cm on 

each edge (Figure 2). 

Figure 2. Medium-scale structures analysed. 

These elements were instrumented with 

accelerometers and, as in the small-scale 

studies, were subjected to static and dynamic 

load states. 

From these medium-scale studies it was 

concluded that: 

 In the foundation-column assembly, the

largest displacements are always

concentrated in the weak axis of the

column.
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 The use of different materials hardly

produces significant differences in the

behaviour of the foundation-column

assembly, with the exception of saturated

sands that show liquefaction.

 For the single portal frame, disparity of

results is observed between two of the

accelerometers used. This shows that

measurements in the field are affected by

factors such as adhesion or surface

regularity.

 In the portal frame, there is a change in the

mode of oscillation from oscillating on its

weak axis to oscillating more strongly on

its strong axis, which increases the induced

stresses by 25 %.

 3. CASE OF STUDY

Once the results of the small and medium

scale tests have been analysed, a concrete 

structure with dimensions of 2 m high and 2.5 

x 2.5 m base placed on a spread foundation is 

built. Figure 3 shows the construction process 

of the structure. 

Figure 3. Construction of the structure. 

The structure is located in the square of the 

Hanson quarry, located in Santa Marina de 

Piedramuelle near the city of Oviedo, capital of 

the Principality of Asturias in Northern Spain 

(Figure 4). 

Figure 4. Location of the quarry. 

This location was chosen because blasting 

is carried out permanently in the quarry, which 

allows for a continuous study over time 

Figure 5 shows the general layout of the 

structure, as well as the nomenclature used for 

each structural element: 

 NLB: North lower beam.

 NUB: North upper beam.

 SUB: South upper beam.

 BA: base or structure slab.

Figure 5. Structure and nomenclature of the beams. 

3. METHODOLOGY

Once the structure to be tested has been

defined: 

 Accelerometers type Syscom, Etna, 9043

and 5033 are placed both in the input

elements (NLB and BA) and in the output

elements (NUB, SUB).

 Controlled blasting are carried out.

 The maximum acceleration, velocity, Fast

Fourier Transform (FFT) and duration of
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the event, as well as its energy, are 

obtained for each axis.  

 The neural network capable of predicting

the values recorded in the output elements

knowing the values recorded in the input

elements is calculated.

Table 1 shows the total load, the operating

load, the distance from the blast to the structure 

and the scaled distance calculated according to 

[12], for three days of testing. 

Date 

Total 

load 

(kg) 

Operating 

load (kg) 

Distance 

(m) 

Dscaled 

(m/kg1/2) 

20/03/19 864 36 668 22.73 

26/03/19 1680 67.2 641 15.64 

06/04/19 888 74 501 16.81 

Table 1. Blasting data for the dates collected. 

It should be noted that all devices (except 

SYSCOM 3) directly measure acceleration 

(Table 2 and 3), so the velocity is obtained 

indirectly through the integration of 

acceleration and energy as the sum of the 

squares of the velocity components. 

Date Ele. 
Ax 

(mm/s²) 

Ay 

(mm/s²) 

Az 

(mm/s²) 

20/03/19 NLB 14.41 20.09 12.83 

NLB 16.03 29.08 178.46 

26/03/19 NLB 377 672.63 1138.9 

NLB 169.49 191.49 422.18 

06/04/19 NLB 46.01 60.26 25.19 

Table 2. Maximum acceleration collected for each axis 

at the input elements.  

Date Ele. 
Ax 

(mm/s²) 

Ay 

(mm/s²) 

Az 

(mm/s²) 

20/03/19 NUB 49.63 74.95 74.9 

SUB 48.73 92.52 41.97 

26/03/19 NUB 137.68 214.21 78.79 

NUB 71.85 54.94 35.28 

06/04/19 SUB 67.73 52.73 29.85 

Table 3. Maximum acceleration collected for each axis 

at the output elements. 

To obtain the FFT (Table 4 and 5), a 

MATLAB algorithm was used to calculate the 

dominant frequency from the recorded 

waveform. In addition, the value obtained is 

compared with the one obtained with the 

SismoSignal software that treats seismic 

signals coming from earthquake-type events. 

The objectives are: 

 Determine the FFT and compare it with the

one obtained in MATLAB verifying the

implemented algorithm.

 Determine the event duration (Table 6 and

7) by the significant duration or interval in

seconds, between 5% and 95% of the

Husid function, where most of the energy

is concentrated [28, 29].

Date Ele. 
FFTx 

(Hz) 

FFTy 

(Hz) 

FFTz 

(Hz) 
20/03/19 NLB 11.71 11.42 12.3 

NLB 42.72 28.02 20.01 

26/03/19 NLB 7.81 16.79 30.85 

NLB 8.05 8.05 23.92 

06/04/19 NLB 16.3 16.45 32.27 

Table 4. FFT for each axis at the input elements. 

Date Ele. 
FFTx 

(Hz) 

FFTy 

(Hz) 

FFTz 

(Hz) 
20/03/19 NUB 19.53 20.5 93.99 

SUB 19.53 20.26 93.5 

26/03/19 NUB 20.38 0.24 0.73 

NUB 20.01 0.97 0.49 

06/04/19 SUB 0.48 0.48 0.49 

Table 5. FFT for each axis at the output elements. 

Date Ele. tx (s) ty (s) tz (s) 

20/03/19 NLB 1.48 1.2 1.73 

NLB 0.19 0.18 0.13 

26/03/19 NLB 0.38 0.14 0.07 

NLB 0.33 0.27 0.14 

06/05/19 NLB 0.66 0.57 0.60 

Table 6. Event duration for each axis at the input 
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elements. 

Date Ele. tx (s) ty (s) tz (s) 

20/03/19 NUB 1.37 1.75 1.54 

SUB 1.12 1.51 0.97 

26/03/19 NUB 2.15 2.74 2.10 

NUB 1.91 2.82 2.69 

06/05/19 SUB 1.98 2.19 2.37 

Table 7. Event duration for each axis at the output 

elements. 

Once the acceleration, velocity, energy, 

FFT and event duration data are obtained, the 

neural network capable of predicting the 

values in the output elements from the values 

recorded in the input elements is calculated. 

In the calculation of the network, the Fitting 

network function of the Matlab software is 

used, using 70% of the data as training data, 

15% as validation data and the remaining 15% 

as check data. In addition, the Levenberg-

Marquardt backpropagation function is used as 

the training function. 

4. RESULTS

Initially, the calculation of a neural network

was approached with all input and output data, 

i.e. considering all axes at the same time.

The best result was obtained for a neural

network with two hidden layers and 13 neurons 

in each layer, although the results are very poor 

with regressions below 0.8 except for the 

validation set (Figure 6). 

The different attempts at improvement did 

not produce the desired result, so the 

calculation of different neural networks for 

each axis was proposed. 

Figure 6. Regressions obtained by considering all 

input and output data simultaneously. 

Neural networks with one and two hidden 

layers of 5 neurons in them were analysed. 

On the X-axis, there is hardly any difference 

in the results obtained when one or two hidden 

layers are used, so as it is less computationally 

expensive, it is decided to work with the 

simplest network with regressions higher than 

0.8 (Figure 7). 

On the contrary, for both the Y-axis and the 

Z-axis, it is necessary to use the more complex

prediction network with two hidden layers. In

the case of the Y-axis, although the regression

coefficient values present similar values for the

two networks, the value of the mean square

error committed is much lower when working

with two hidden layers (Figure 8). On the Z

axis, both the value of the regression

coefficient and the value of the mean squared

error is lower with two hidden layers.
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Figure 7. Regressions obtained for the X-axis with 

neural network with a hidden layer. 

Figure 8. Minimum squared error on the y-axis for a 

neural network with one hidden layer (up) and two 

hidden layers (down). 

5. CONCLUSIONS

The study shows that:

- One net should be used for each axis.

Preferably with two hidden layers. 

- The results are not as expected, but the

low volume of data available has to be

taken into account. Therefore, a large

improvement of the results can be

expected when the training dataset is

extended. This is expected to be done

when the current situation stabilises.

- A larger volume of data will allow

better filtering of the data, enabling

the elimination of outliers.
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Abstract. The measurement of ambient vibrations to be used in system identification, model 

updating and structural health monitoring applications is already common practice in civil 

engineering. When the structure under study is very stiff, as in the case of concrete dams, and 

the level of ambient excitation is very small due to the absence of wind, running water or other 

vibration sources, the requirements and cost of the equipment needed to capture and process 

the vibrations tend to be elevated. At the same time, the deployment of the above-mentioned 

system identification, model updating and structural health monitoring applications may 

involve the use of a significant number of sensors or the need for keeping the sensors installed 

and acquiring data for long periods of time. In these cases, the economic cost of the sensors 

may represent a barrier to the use of this technology. At the same time, the availability of low-

cost open platforms to perform this type of measurements is very useful not only in research 

but also in educational frameworks, because it allows students not only to use the technology 

but also to participate in its development and learn in the different fields (structural dynamics, 

electronics or programming) involved in a system of this kind. For these reasons, the paper 

presents the proposal of a low-cost horizontal sensor and data-acquisition system for low-level 

ambient vibration measurements. The mechanical sensor is based on the Lehman pendulum (or 

Garden Gate) design, with a coil-permanent magnet transducer and a data acquisition system 

based on the Arduino platform. The design of all elements involved in the system is presented 

in detail, and data obtained from a prototype of the design is presented and analyzed, showing 

the capabilities of the device. 

Key words: Ambient vibrations, experimental structural identification, Arduino, experimental 

techniques 
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1 INTRODUCTION 

Most civil structures, such as towers, bridges 

and dams, accumulate damage during their 

service life or can suffer a sudden damage due 

to natural disasters. So, an important issue is 

the detection of the structural damage since if 

the damage remains undetected the structure 

may have a reduced margin of safety. 

Formerly, the traditional procedure for 

evaluating the structural integrity was through 

visual inspections, and most recently, by 

means of destructive or forced vibration 

methods. Nowadays, numerous studies on 

damage detection use non-destructive 

evaluation methods such as Structural Health 

Monitoring (SHM) which can be conducted by 

means of ambient vibration through a sensor 

network that monitor the behaviour of the 

structures while they are in service, in order to 

extract information about displacement, 

velocity and acceleration from them. 

Commercially, there are a wide variety of 

seismic acquisition equipments but they are 

relatively expensive, which could restrict the 

number of stations that can be deployed 

simultaneously. However, the prices and 

accesibility to electronic components have 

helped to develop systems at low prices where 

geophones and accelerometers are the most 

widely used sensors. Thus, different research 

groups develop their own equipments. For 

instance, J.L. Soler-Llorens et al. [1] showed a 

low cost Arduino-based seismic recorder by 

means of vertical geophones and tested the 

system by comparing the registered signals 

with the ones obtained through different 

comercial data recording systems and different 

kind of geophones. In order to test the system, 

a sine wave was used as input signal where a 

function generator provided this input; S. 

Valenti et al. [2]  proposed a low cost wireless 

sensor node for building monitoring by means 

of accelerometers where the performance of 

the sensor was evaluated through comparison 

of results, in terms of modal frequencies and 

displacements, with those of a typical wired 

system using the Tower of the Engineering 

Faculty of the Università Politecnica delle 

Marche as demo structure. 

This paper presents a low-cost Arduino-

based horizontal sensor and data acquisition 

system to record low-level ambient vibration 

measurements with the following 

specifications (Fig.1):  

• Electronic devices with very low power

consumption. 

• High sensitivity.

• Price of the sensor, amplifiers, filter,

analog to digital converter and Arduino UNO 

board in their standard configuration is below 

100 €. 

Figure 1: Proposed system. 

The general design and the validation test of 

the system are reported in the paper to 

demonstrate its functionality. In order to 

validate it, two field tests have been conducted 

with ambient vibration comparing signals 

recorded by the proposed system with those 

obtained by a commercial high-precision and 

high-sensitivity seismograph. The outcome of 

those tests has shown the suitability of the 

proposed system to acquire and record low-

levels signals and has also highlighted some of 

the limitations and areas for improvement of 

this proposal. 

sensor 

Amplifiers, 

filter,  
AD converter  

and Arduino board 
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2 DESCRIPTION OF THE 

PROPOSED SYSTEM 

The proposed system consists of four 

different parts: a) sensor; b) amplifiers, c) 

digital converter; and d) a microcontroller. 

This modular design allows more flexibility 

for future modifications (Fig.2). 

Figure 2: Components of the proposed system: (a) sensor 

(b) amplifiers and filter for signal conditioning (c) analog-

to-digital converter (d) analog-to-digital converter

connected to Arduino board microcontroller. 

    2.1. Sensor 

A sensor is an instrument that measures the 

displacement of a vibrating body. The simplest 

type of sensor can be illustrated by a mass-

spring-damper single-degree-of-freedom 

(SDOF) system mounted inside a box that is 

attached to the surface whose motion is to be 

measured, as shown in Fig. 3. The mass is 

connected to the box by a spring and a damper, 

while the box is attached to the ground. Since 

the spring and the damper are not rigid, the 

motion of the mass will be different to the 

motion of the ground. The relative motion 

between the mass and the box will relate to 

motion of the ground. 

Thus, as illustrated in Fig. 3, the points 1 

and 2 of the spring and damper, respectively, 

will have the same motion as the box (which is 

to be measured, xg) and their vibration excites 

the mass into motion.  

Figure 3: Simple mass-spring-damper sensor to 

record horizontal motions. 

Being the displacement of the mass relative 

to the box x=xm-xg, where xm denotes the 

horizontal displacement of the mass, the 

equation of motion of the mass m can be 

written as [3]: 

 𝑚𝑥̈𝑚 + 𝑐(𝑥̇𝑚 − 𝑥̇𝑔) + 𝑘(𝑥𝑚 − 𝑥𝑔) = 0         (1) 

As mentioned above, 

 𝑥 = 𝑥𝑚 − 𝑥𝑔          (2) 

So, Eq. (1) can be written as 

 𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = −𝑚𝑥̈𝑔(𝑡)            (3) 

If we assume the motion xg to be harmonic, 

 𝑥𝑔(𝑡) = 𝑋𝑔(𝜔)sin (𝜔𝑡)    (4) 

Here  is the circular frequency and Xg() 

is the amplitude of the base displacement. 

Thus, Eq. (3) becomes 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑚𝜔2𝑋𝑔(𝜔) sin(𝜔𝑡)            (5) 

The particular solution of Eq. (5) is also 

harmonic; we assume the solution xp(t) 

𝑥𝑝(𝑡) = 𝑋(𝜔) sin(𝜔𝑡 − 𝜙)             (6) 

Where X(𝜔) and 𝜙, amplitude and phase 

angle of the response, respectively, are 
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constants to be determined. By substituting Eq. 

(6) into Eq. (5), we arrive at

𝑋(𝜔)[(𝑘 − 𝑚𝜔2) sin(𝜔𝑡 − 𝜙) + 𝑐𝜔 cos(𝜔𝑡 −
𝜙)] = 𝑚𝜔2𝑋𝑔(𝜔) sin(𝜔𝑡 − 𝜙)     (7) 

Using the trigonometric relations in Eq. (7) 

cos(𝜔𝑡 − 𝜙)  =  cos(𝜔𝑡) cos(𝜙) + sin(𝜔𝑡) sin(𝜙)                     

sin(𝜔𝑡 − 𝜙) =  sin(𝜔𝑡) cos(𝜙) − cos(𝜔𝑡) sin(𝜙)  (8)   

And equating the coefficients of cos(ωt) 

and sin(ωt) we obtain:   

 𝑋(𝜔)[(𝑘 − 𝑚𝜔2) cos(𝜙) + 𝑐𝜔 sin(𝜙)]
=  𝑚𝜔2𝑋𝑔(𝜔)

 𝑋(𝜔)[−(𝑘 − 𝑚𝜔2) sin(𝜙) + 𝑐𝜔 cos(𝜙)] =  0   (9) 

Solution of Eq. (9) gives: 

 𝜙 = tan−1 (
𝑐𝜔

𝑘 − 𝑚𝜔2
)  

𝑋(𝜔)

𝑋𝑔(𝜔)
=

𝑚𝜔2

√(𝑘 − 𝑚𝜔2) + (𝑐𝜔)2

Eq. (10) and Eq. (11) can be expressed in a 

different form by introducing the notation 

𝜔𝑛 = √
𝑘

𝑚

𝜉 =
𝑐

2𝑚𝜔𝑛

𝑟 =
𝜔

𝜔𝑛

Where ωn is the undamped natural circular 

frequency, ξ is the damping ratio and r is the 

frequency ratio. Thus, Eq. (10) and Eq. (11), 

can be rewritten as 

 𝜙 = tan−1 (
2𝜉𝑟

1 − 𝑟2
) 

𝑋(𝜔)

𝑋𝑔(𝜔)
=

𝑟2

√(1 − 𝑟2) + (2𝜉𝑟)2

Hence, when r → ∞, Eq. (16) becomes 

lim
𝑟→∞

𝑋(𝜔)

𝑋𝑔(𝜔)
=

𝑟2

√(1 − 𝑟2) + (2𝜉𝑟)2
≈ 1 

So, according to Eq. (17), for larger values 

of r, the relative displacement (X) and the base 

displacement (Xg) have the same amplitude. 

Therefore, in order to satisfy Eq. (17), the 

natural frequency of the sensor must be low 

compared to that vibration to be measured. 

The variations of X/Xg with respect to r are 

shown in Fig. 4 for different values of ξ. As can 

be seen, the damping ratio does not need to be 

present to satisfy Eq. (17), but its presence will 

improve the range of application of the 

instrument. For example, for ξ=0,7, 

X(ω)≅Y(ω) if r is greater than 2. 

Figure 4: Response of a vibration-measuring 

instrument. 

The device proposed here is based on the 

Lehman pendulum, sometimes also called the 

Garden Gate configuration, is a horizontal 

pendulum which is based on a system slightly 

tilted from horizontal where the mass of the 

system tends to remain suspended. When the 

ground moves, due to the vibrations caused by 

any excitation, the suspended mass of the 

system remains stationary, so we can directly 

measure the relative motion between the 

(11) 

(10) 

(13) 

(12) 

(14) 

(15) 

(16) 

(17)
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ground and the suspended mass by a coil which 

converts that movement into a little current [4]. 

The sensor structure is made of extruded 

aluminum rectangle (5 cm x 2,5 cm) with two 

horizontal bars and one vertical bar joined 

between them by means of nuts and bolts. Fig. 

5 shows a sensor structure picture, and the top, 

left side and front views of the structure. 

Figure 5: a) Sensor structure picture; b) Top, c) left side 

and d) front structure views (all dimensions in cm). 

Fig. 6 presents a picture of the sensor. The 

movable arm (40 cm length) rests on a knife 

edge which is held against the vertical bar [5]. 

The knife edge is a very important part of the 

system since it avoids movable arm torsional 

oscillations. The other side of the movable 

arm, where it can swing freely, is hold up by a 

cable brake which is attached to the top of the 

vertical bar [6]. In this side, it can be seen the 

mass joined to the movable arm whose weight 

is 1,65 kg. In order to convert sensor structure 

movement into a little current, a neodymium 

magnet has been mounted on the mass (Fig. 

7.a).

The oscillations of the movable arm must be 

damped. There are different damping 

techniques, but in this work, the damping is 

obtained by means of two fins which are 

immersed in a tray filled (Fig. 7.b) with 

monograde diesel engine oil (SAE 30) 

insomuch as it is easier to control and to adjust 

than magnetic damping. 

Figure 6: Proposed sensor. 

Figure 7: a) Coil mounted on the mass and magnet 

position. b) Fins immersed in a tray filled with 

monograde diesel engine oil. 

On the other hand, the pickup coil has been 

mounted on a base which is independent from 

the sensor structure. When the ground moves, 

the sensor structure and the pickup coil move 

at the same time while the mass remains 

stationary. In this way, the relative motion 

between the magnet (mounted on the inertial 

mass) and the coil induces a small voltage in 

the coil which will be amplified and filtered. 

(a) (b) 

fins 
magnet 

coil 

0,4 0,4 

0,4 
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One of the most important parts of the 

sensor are the screws. We can difference two 

screws types: Leveling and period screws. The 

two leveling screws have the purpose of 

leveling the movable arm while the period 

screw allows the adjustment of the movable 

arm inclination; this inclination gives us the 

sensor natural cyclic frequency (see section 

2.1.1.). Periods of up to 6 to 8 seconds 

(equivalent to 0,12 Hz and 0,17 Hz), have been 

achieved, which allows to measure vibrations 

in structures with very low natural frequencies. 

2.1.1. Sensor mathematical model 

In order to obtain the sensor natural circular 

frequency and damping ratio, it will be 

considered the sensor showed in Fig.8 

Figure 8: Schema of the sensor with angle of 

tilt () exaggerated [4]. 

The sensor is a horizontal pendulum which 

consists of a mass m swinging at the end of a 

rigid massless rod pivoted at point O with a 

length l; l´ is the effective pendulum length of 

a simple pendulum. 

In Fig.9.a, the pendulum is in its 

equilibrium position; when the mass is 

displaced a small angle from its equilibrium 

position and released, a restoring forces appear 

(Fig.9.b), being 𝑓𝑑⃗⃗  ⃗ = −𝑐 · 𝑣  the damping force

which is acting at the end of the rigid massless 

rod (with 𝑣 = 𝑙′ · 𝜃′̇ , tangencial component of

the velocity of the mass m); at is the tangential 

component of the acceleration of the mass m 

(𝑎𝑡 = 𝑙′ · 𝜃′̈ ). Taking sum of moments respect

to O´: 

−𝑚gsin(𝜃′) 𝑙′ − 𝑐𝜃′̇ 𝑙′𝑙′ = 𝑚𝜃̈𝑙′𝑙′

The motion can be considered as a simple 

harmonic motion since θ’ is small, and we can 

say that sin(θ´) ≈ θ´. Operating with Eq. (18) 

we have: 

𝜃′̈ +
𝑐

𝑚
· 𝜃′̇ +

g

𝑙′
· 𝜃 = 0

From the Fig. 8 we can obtain sin (α) = l/ l´, 

and from Fig. 9.b we can get the relation 

θ´=θ·l/l´, thus, operating with (19) we get: 

𝜃̈ +
𝑐

𝑚
· 𝜃̇ +

g

𝑙
· sin 𝛼 · 𝜃 = 0 

Where Eq. (20) is the equation governing 

the free motion of the Lehman pendulum. 

The sensor undamped natural circular 

frequency will be obtained from Eq. (20) when 

c=0, so: 

𝜃̈ +
g

𝑙
· sin 𝛼 · 𝜃 = 0

Figure 9: Pendulum from y-z plane: (a) equilibrium 

position (b) mass displaced a small angle ´. 

z 
x 

Imaginary effective 

suspension point 

Sensor 

pivot point 
Suspension 

wire 

Pendulum 

rod (l) 

α 

α 

l´

α 

O 

O´

(18) 

(19) 

(20) 

m 

l 

z 

y 
Imaginary effective 
suspension point 

Sensor 
pivot point

l’ o

o’

l 
l’

z 

y o’

o

’

 

m 
A A’ 

P 

m·a
t

f
d
 



’ l’ 

(21)

37373737



J.C. Galván, L.A. Padrón, R. Quevedo-Reina, F. J. Auyanet, G. M. Álamo

The solution of the linear, homogeneous, 

second-order differential equation with 

constant coefficients, Eq. (21), has the form 

θ=eλt, thus, substituting into Eq. (21) yields: 

𝜆2 +
g

𝑙
· sin 𝛼 = 0; 𝜆1,2 = ±𝑖𝜔𝑛 

Where n is: 𝜔𝑛 = √
g

𝑙
sin 𝛼 

Thus, the differential equation of motion, 

Eq. (20), upon rearrangement and 

simplification, taking account Eq. (13), 

becomes: 

𝜃̈ + 2n𝜃̇ + 𝜔𝑛
2𝜃 = 0

Thereby, in according Eq. (23), the resonance 

frequency in a Lehman pendulum depends on the 

length of the movable arm and the angle of the 

structure (α) with respect to the horizontal plane. 

As can be seen in the spectra from Fig. 19 to Fig. 

24, one frequency component, or peak, is 

highlighted in blue rectangle, being located 

between 0,12 Hz and 0,17 Hz; this peak 

corresponds to the sensor natural frequency in 

each measure (using a movable arm 40 cm 

length). 

2.2. Amplifiers and filter for signal 

conditioning 

This part of the proposed system is formed 

by four stages (Fig.10): 1) a precision 

instrumentation amplifier; 2) an offset 

adjustment circuit; 3) an operational amplifier; 

and 4) an analog input filter; these four stages 

are powered with the same dual supplies, at 

least ±3.0 V, using external batteries. 

2.2.1. Precision instrumentation amplifier 

The small signal induced in the pickup coil 

by the movement, proportional to ground 

velocity, is amplified using an instrumentation 

amplifier (Fig.10 – label 1 or Fig.11) which 

provides an amplified output signal (Vo) with 

a single external resistor. The INA 114, which 

is a low cost, general purpose instrumentation  

(22)

(23) 

(24) 

Figure 10: Electronic scheme for signal conditioning. 
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amplifier offering excellent accuracy and 

providing very 

low noise, has 

been selected. 

The single 

external resistor 

(RG) sets any 

gain from 1 to 

10000 [7]; the 

gain is obtained 

by using the equation: 

G = 1 + 50 𝐾Ω
𝑅𝐺

⁄

We have used a resistor of 5 Ω obtaining a 

gain of 10000 V/V, approximately. The output 

(Vo) is referred to the output reference (Ref) 

terminal which is grounded through the offset 

adjustment circuit.  

2.2.2. Offset adjustment circuit 

 The offset 

voltage will be 

trimmed with 

the circuit 

shown in Fig. 

10 – label 2 or 

Fig.12. The 

voltage applied 

to Ref terminal 

is summed at the output. 

2.2.3. Operational amplifier 

Then, a second amplification is carried out. 

The output signal from INA114 (Vo) is 

amplified by an operational amplifier (Fig. 10 

– label 3) being given the circuit gain by the

relationship:

   G´=R´/10K       (26) 

This gain is set means of R´. The AD820, 

which is a precision, low power FET input op 

amp that can operate from a single supply of 5 

V to 36 V, or dual supplies of ±2,5 V to ±18 V, 

has been chosen. In the AD820, N-channel 

JFETs are used to provide a low offset, low 

noise, high impedance input stage [8]. 

2.2.4. Analog Input filter 

 Analog input 

filtering serves three 

purposes: first, to limit 

the effect of aliasing 

during the sampling 

process, second, to 

reduce external noise 

from being a part of 

the measurement and 

third, to filter high frequency signals; 

therefore, a low pass resistor-capacitor (RC) 

filter will be placed at the input of the analog 

to digital converter for improve performance 

(Fig. 13). R1/R2 and C1/C2 form a bridge circuit 

so any mismatch between C1 and C2 will 

unbalance the bridge and reduce common-

mode rejection; to avoid it, a differential input 

capacitor, Cdif, is placed, which mitigates the 

effects of mismatch in C1 and C2, being the 

effect of mismatched reduced with a larger Cdif 

(Cdif  10·C1, C1 = C2) [9]. 

Considering that the frequencies we are 

interested in are 

under 10 Hz, the 

cutoff frequency has 

been configured to 

approximately 35 

Hz, therefore, by 

applying (27) it 

results a Cdif of 470 

µF, and we can select a C1(=C2) of 33 µF 

(Fig.10 – label 4 or Fig. 14). This output signal 

will be directly connected to the analog to 

digital converter. 

         fcutoff = [2π(R1+R2)·Cdif]     (27) 

Figure 11: Precision

instrumentation amplifier. 

Figure 12: Offset adjustment circuit. 

Figure 13: Low pass

RC filter.

Figure 14: Analog Input filter. 

(25)
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2.3. Analog-to-digital converter 

Then, after the process of amplification and 

filtering, the signal will be connected to the 

analog-to-digital converter (ADC). In this 

system, we have selected the ADS1220 

analog-to-digital converter, which is a 

precision, 24-bit, that offers many integrated 

features to reduce system cost and component 

count in applications measuring small sensor 

signals, with a wide supply range (2,3V to 

5,5V). Moreover, the device features a low-

noise, low-drift, high input impedance and 

programmable gain amplifier which is changed 

inside the device using a variable resistor [9]. 

In this case, we have selected a gain of 128 

obtaining a full-scale input voltage of 

0,016V. The ADC operates with a single 

power supply provided through the 3,3V pin of 

the Arduino UNO. The principle serial 

interface connections for the ADS1220 are 

shown in Fig.15. It is important to remark that 

deviations in the internal clock of the 

ADS1220 of around 2% where found during 

the tests. 

Figure 15: Serial Interface Connections [9] 

2.4. Microcontroller 

The Arduino Uno board has been used for 

commanding the analog-to-digital converter, 

process the information, and send the data to a 

computer through the USB port. The Arduino 

Uno is an open-source microcontroller 

board based on the Microchip ATmega 

328P microcontroller and developed 

by Arduino.cc. The board is equipped with sets 

of digital and analog input/output (I/O) pins 

that may be interfaced to various expansion 

boards (shields) and other circuits. The arduino 

code is not presented herein due to space 

restrictions, but will be readily provided upon 

request to the authors by e-mail. 

3 MATERIALS COST 

Table 1 presents a list of materials and 

approximate costs at the time of assembly of 

the prototype. The total material cost lies 

below 100 €. 

Unit Unit cost Cost 

Sensor parts 
Extruded aluminiun 

(structure) 
2 m 5,00 €/m 10,00 € 

Mass 1,65 kg 2,50 €/kg 4,12 € 

Turnbuckle 1 2,50 € 2,50 € 

Screws 1 pack 1,50 € 1,50 €  

Movable arm 1 1,50 € 1,50 € 

Cable brake 1 1,00 € 1,00 € 

Magnet (neodymium) 1 pack 4,60 € 4,60 € 

Amplifiers and digital converter 
Resistors, capacitors, 

potenciometer and hook 

up wires 
4,00 € 

INA 114 (Instrumentation 

amplifier) 
1 12,00 € 12,00 € 

AD820 (Operational 

amplifier) 
2 8,00 € 16,00 € 

ADS1220 (analog-to-

digital converter) 
1 12,00 € 12,00 € 

External batteries – AA, 

1,5 V 
4 0,50 € 2,00 € 

Arduino UNO. 1 11,00 € 11,00 € 

   TOTAL COST 82,22 € 

Table 1: Materials cost. 

40404040

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/Microcontroller_board
https://en.wikipedia.org/wiki/Microcontroller_board
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/ATmega328P
https://en.wikipedia.org/wiki/ATmega328P
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Expansion_board
https://en.wikipedia.org/wiki/Expansion_board


J.C. Galván, L.A. Padrón, R. Quevedo-Reina, F. J. Auyanet, G. M. Álamo

4 EXPERIMENTAL VIBRATION 

TESTS AND ANALYSIS OF THE 

RESULTS 

In order to test the behavior of the proposed 

low-cost acquisition system, this section 

presents comparison results between this 

acquisition system with the ones obtained by a 

commercial seismograph; the commercial 

seismograph used is Tromino® by MoHo s.r.l., 

which is a high-resolution all-in-one system 

for passive and active seismic surveys and 

vibration monitoring.   

Two different campaigns have been carried 

out in the Island of Gran Canaria (Canary 

Island-Spain) conducted only with ambient 

vibration where the systems were configured 

with the following characteristics: 

First 

campaign 

Second 

campaign 

Recording time 15 min 15 min 

Tromino ® - Sampling 

frequency 
128 Hz 512 Hz 

Lehman - Sampling 

frequency 
88,2 Hz 88,2 Hz 

Table 2: Systems configuration. 

The first campaign took place on June 20th 

2019. The seismographs were installed on the 

third floor of a five-storey building located in 

Las Palmas city where the distribution of the 

measurement points is shown in Fig. 16.  The 

data acquisition systems were installed at the 

same place but the measurements were carried 

out at different times with a difference of 30 

minutes between one and the other. 

The second campaign was carried out in a 

dam, called Soria dam, located in the south of 

the Island and it took place on June 27th 2019. 

The distribution of the measurement points is 

shown in Fig.17. The proposed system has 

been protected from wind using a box (Fig.18). 

The proposed system and the data acquisition 

systems were installed close to each other so 

the measurements were carried out at the same 

time. 

Figure 16: House plan. First campaign. 

Figure 17: Soria dam. Second campaign. 

Fig.18: (a) Proposed system inside the box 

(b) Proposed system box and Tromino®.

Figures 19 to 21, and Figues 22 to 24, 

present the Power Spectral Density plots 

corresponding to the signals recorded at the 

building and the dam respectively. We can 

observe a very good agreement between the 

two systems, in terms of both frequency and 
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amplitude, being the frequencies from both 

devices very close with a maximum 

divergence of 0,06 Hz which contributes to 

validate the proposed system.  

Fig.19: PSD of the recording. Bedroom 1. 

Fig.20: PSD of the recording. Living room. 

Fig.21: PSD of the recording. Bedroom 2. 

Fig.22: PSD of the recording. Dam, point 1. 

Fig.23: PSD of the recording. Dam, point 2. 

Fig.24: PSD of the recording. Dam, point 3. 

5 CONCLUSIONS 

This paper presents the design and 

preliminary results of a low-cost arduino-based 
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prototype system for measurement of 

structural low-level vibrations. The cost of the 

proposed system is below 100 €. In order to test 

the accuracy of the design, two in situ tests 

were conducted for field validation of the 

system where the data obtained with the 

proposed system were compared with data 

recorded by commercial seismograph 

(Tromino®). The results obtained from these 

experiments surpassed our expectations: the 

match in terms of frequency response is very 

high, and the sensitivity of the device is also 

really good. On the other hand, the device 

present several important drawbacks: the time 

needed for the set-up (as it must be 

disassembled for transportation), its sensitivity 

to wind and its size and weight. There are also 

some areas that would need improvement 

and/or further developement, especially the 

calibration and reproducibility in terms of 

amplitude of the measured vibrations. 

All in all, the proposal can be used as a basis 

to teach, learn, measure vibrations and develop 

other types of devices for this purpose. 
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Abstract. The modal mass in constant mass-density systems is equal to the product between 

the total mass of the structure and the length of the mode shapes squared. However, in non-

constant mass-density systems, the modal mass is equal to the product between an apparent 

mass and the squared length of the mode shapes. This apparent mass is different for each mode 

and depends on the mode shape and how the mass is distributed in the structure. However, if a 

limited number of volumes with different mass-densities can be identified, a relationship 

between the modal masses of the different modes can be established. In this paper, numerical 

simulations on different structures with non-constant mass-density were performed. The length 

of the mode shapes was estimated using an approximate equation and the effect of the number 

of DOF’s was investigated. Then, the apparent masses corresponding to each mode were 

estimated. Finally, the analytical relationship between the modal masses of the different modes 

was verified. 

Key words: Modal Mass, Dynamics of Structures, Mode shapes, Normalization 

1 INTRODUCTION 

In discrete systems, the modal mass 

corresponding to the mode shape 𝝍 can be 

calculated with the equation [1-4]: 

𝑚 = 𝝍𝑻𝑴𝝍 (1) 

In constant mass-density systems, Eq. (1) 

can be expressed as [1,2]: 

𝑚 = 𝑀𝑇𝐿2 (2) 

Where 𝑀𝑇 is the total mass of the system 

and 𝐿2 is the squared length of the mode shape 

given by: 

𝐿2 =
𝝍𝑻𝑽𝝍

𝑉𝑇

(3)
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Where 𝑉𝑇 is the total volume of the system 

and 𝑽 is the volume matrix. The length depends 

on the mode shape 𝝍 and on how the volume is 

distributed in the structure. 

1.1 Two constant mass-density systems. 

If the structure is constituted by two parts 

with the two volumes, 𝑉1 with the mass density 

𝜌1 , and 𝑉2 with the mass density 𝜌2, the modal 

mass is obtained with the equation [1]:  

𝑚 = 𝑀1𝐿1
2 + 𝑀2𝐿2

2
(4) 

Where 𝐿1
2  and 𝐿2

2  are the partial squared

lengths of the mode shape 𝝍 over the partial 

volumes 𝑉1 and 𝑉2 , respectively, i.e.: 

𝐿1
2 =

𝝍𝑽𝟏

𝑻 𝑽𝟏𝝍𝑽𝟏

𝑉1

 (5)

And 

𝐿2
2 =

𝝍𝑽𝟐

𝑻 𝑽𝟐𝝍𝑽𝟐

𝑉2

(6) 

With respect to the total squared length 𝐿2,

it can be obtained from the partial lengths by 

means of the equation [1]: 

𝐿2𝑉𝑇 = 𝐿1
2𝑉1 + 𝐿2 

2 𝑉2 (7) 

Eq. (1) can also be expressed as: 

𝑚 = 𝑀𝑎𝐿2
(8) 

Where 𝑀𝑎 is an apparent mass, given by: 

𝑀𝑎 = 𝑉𝑇

𝑀1𝐿1
2 + 𝑀2𝐿2

2

𝐿1
2𝑉1 + 𝐿2 

2 𝑉2

(9) 

This apparent mass is different for each 

mode and depends on the mode shape and how 

the mass is distributed in the structure.  

With respect to the squared cross-length [2] 

between the mode shapes 𝝍𝒊 and 𝝍𝒋, it is 

defined as: 

𝐿𝑖𝑗
2 =

𝝍𝒊
𝑻𝑽𝝍𝒋

𝑽𝑻

(10) 

The total squared cross-length 𝐿𝑖𝑗
2  is related

with the partial squared cross-lengths by 

means of: 

𝐿𝑖𝑗
2 𝑉𝑇 = 𝐿𝑖𝑗1

2𝑉1 + 𝐿𝑖𝑗 2 
2 𝑉2 (11) 

The squared cross-length 𝐿𝑖𝑗
2 is zero in 

constant mass-density systems, which means 

that the mode shapes are orthogonal. On the 

contrary, non-orthogonality is an indicator of 

non-constant mass-density. 

Due to the fact that the mode shapes are 

orthogonal with respect to the mass matrix, the 

following relationship, relating the squared 

cross-lengths, is derived from Eq. (1): 

0 = 𝑀1𝐿𝑖𝑗1
2 + 𝑀2𝐿𝑖𝑗2 

2   (12)

1.2 Arbitrary number of constant mass 

distributions  

The equations formulated in section 1.1 can 

be generalized for an arbitrary number of 

constant mass distributions as: 

𝑚 = ∑ 𝑀𝑛𝐿𝑛
2

𝑛

(13) 

𝐿2 =
1

𝑉𝑇
∑ 𝑉𝑛𝐿𝑛

2

𝑛

(14) 

𝐿𝑖𝑗
2 =

1

𝑉𝑇
∑ 𝑉𝑛𝐿𝑖𝑗𝑛

2

𝑛

(15) 

In this paper, numerical simulations on 

different structures (beams, shells, and 3D 

solids) composed of two parts with different 

mass-densities were performed. An 

approximate formulation was used to calculate 

the length and the cross-length of the mode 

shapes. Using the modal masses of the first two 

modes and the length of the mode shapes, the 
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modal masses of the rest of the modes were 

estimated demonstrating that the technique is 

reasonable accurate.  

3 NUMERICAL SIMULATIONS 

3.1. Cantilever Beam: Different mass-density 

in section. 

A three-dimensional cantilever beam, 1 

meter long and with constant cross-section 

4 𝑐𝑚 × 5 𝑐𝑚) , with two different constant 

mass-density parts (steel and concrete) along 

the beam (see Fig. 1) was assembled in 

ABAQUS [5]. Both materials were considered 

linear-elastic and the material properties 

presented in Table 1 were assumed. 

Figure 1: Steel-Concrete cantilever beam. Concrete 

green color. Steel grey color. 

Material Mass-density 

𝜌 (
𝑘𝑔

𝑚3
) 

Young’s 

modulus 

𝐸(𝐺𝑃𝑎) 

Poisson 

ratio 

𝜈 

Steel 7850 210 0.3 

concrete 2400 20 0.18 

Table 1: Material properties considered for the steel-

concrete cantilever. 

The beam was meshed with twenty-node 

quadratic hexahedral elements (C3D20R) with 

an approximate global size of 0.0025 m (see 

Fig. 1). The natural frequencies and modal 

masses (mode shapes normalized to the largest 

component equal to unity) corresponding to 

the first eight modes are presented in Table 2. 

The total mass of the beam is 𝑀𝑇 =
10.25 𝑘𝑔, where 𝑀𝑇𝑠 = 7.85 𝑘𝑔   corresponds 

to the steel part and 𝑀𝑇𝑐 = 2.4 𝑘𝑔 corresponds 

to the concrete part.  

Mode 
Frequency 

[Hz] 

Modal mass 

[kg] ABAQUS 

Apparent 

mass [kg] 

1 21.41 2.56 10.23 

2 38.24 2.56 10.23 

3 133.46 2.58 10.20 

4 236.82 2.59 10.19 

5 370.51 2.62 10.16 

6 529.14 2.37 8.08 

7 651.13 2.60 10.15 

8 717.41 2.66 10.11 

Table 2 : Natural frequencies and modal masses. 

The squared length of the steel and concrete 

parts of the structure were calculated with the 

equations [2] 

𝐿𝑠
2 ≅

𝝍𝒔
𝑻𝝍𝒔

𝑁𝑠 

(16) 

and 

𝐿𝑐
2 ≅

𝝍𝒄
𝑻𝝍𝒄

𝑁𝑐

(17) 

Where the sub-indexes ‘s’ and ‘c’ indicate steel 

and concrete, respectively.  

The total squared length (Table 5) is given by 

[1]: 

𝐿2 ≅
𝐿𝑠

2𝑁𝑠 + 𝐿𝑐
2𝑁𝑐

𝑁

(18) 

Where 𝑁 = 𝑁𝑠 + 𝑁𝑐. The apparent mass 

corresponding to each mode (Eq. (8)) is 

presented in Table 2. 

Although the mass-density is not constant 

(𝜌 ≠ 𝑐𝑜𝑛𝑠𝑡) in this model, it is constant the 

mass-density for unit length, and the equation 

[2]: 

𝐿2 ≅
𝝍𝑻𝝍

𝑁

 (19)

can still be used to calculate the squared length 
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of the bending modes. This also means that the 

apparent mass of the bending modes is equal to 

the total mass of the system (see Table 2).  

With respect to the cross-length (see Table 5), 

it is close to zero between the bending modes, 

but this is not case, as expected, between the 

torsional and the bending modes.  

3.2. Cantilever Beam: Different mass-density 

in length. 

A three-dimensional cantilever beam with the 

same dimensions and same material properties 

as the structure studied in section 3.1, but with 

material distribution as shown in Fig. 2, is 

considered in this section. The encastre 

boundary condition is placed at the end of the 

steel part.  

Figure 2: Steel-Concrete cantilever beam. Concrete 

green color. Steel grey color 

The beam was meshed with twenty-node 

quadratic hexahedral elements (C3D20R) with 

an approximate global size of 0.0025 m (see 

Fig. 2). The natural frequencies and modal 

masses (mode shapes normalized to the largest 

component equal to unity) corresponding to 

the first eight modes are presented in Table 3. 

The total mass of the beam is again 𝑀𝑇 =
10.25 𝑘𝑔. distributed as 𝑀𝑇𝑠 = 7.85 𝑘𝑔   and 

𝑀𝑇𝑐 = 2.4 𝑘g

Mode 
Frequency 

[Hz] 

Modal mass 

[kg] 

1 1st Bending Y 47.81 0.93 

2 1st Bending X 59.66 0.93 

3 2nd Bending Y 148.44 1.32 

4 2nd Bending X 184.83 1.32 

5 3rd Bending Y 440.37 0.90 

6 3rd Bending X 542.98 0.91 

7 Torsion 743.98 0.79 

8 4th Bending Y 798.21 1.56 

Table 3 : Natural frequencies and modal masses of the 

structure in Fig. 2  

The contribution of the steel and concrete parts 

to the total modal mass (using the squared 

lengths estimated with Eqs. (16) and (17)), the 

total modal masses, and the apparent mass 

(different for each mode) are presented in 

Table 4.  

M
o

d
e
 

Modal mass [kg] 
Apparent 

mass 

[kg] 

Steel 

𝑀𝑇𝑠𝐿𝑠
2

Concrete 

𝑀𝑇𝑐𝐿𝑐
2

𝑀𝑇𝑠𝐿𝑠
2

+ 

𝑀𝑇𝑐𝐿𝑐
2

1 0.07 0.86 0.93 5.05 

2 0.07 0.86 0.93 5.05 

3 0.69 0.63 1.32 7.54 

4 0.70 0.63 1.33 7.54 

5 0.30 0.61 0.90 6.21 

6 0.30 0.62 0.92 6.21 

7 0.06 0.80 0.86 5.04 

8 0.87 0.70 1.56 7.79 

Table 4 : Modal masses and apparent masses for the 

cantilever beam in Fig. 2 

The partial squared lengths, cross-lengths, and 

the total squared lengths, estimated with eqs. 

(16-18) are shown in Tables 6-8. In this case 

the mass-density is not constant, different 

squared lengths are expected for each mode, 

and non-zero values are expected for the cross-

length (except for orthogonal mode shapes). 
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In systems consisting of two parts of constant 

mass-density, the following relationship 

between the squared cross-lengths and the total 

masses of the concrete and steel parts, is 

derived (for all the modes) from Eq. (12): 

1 1st Bending Y 0.25 0 0.0011 0 0.0011 0 0 0.0012 

2 1st Bending X 0 0.25 0 0.0002 0 0.0693 0 0 

3 2nd Bending Y 0.0011 0 0.25 0 0.0015 0 0 0.0014 

4 2nd Bending X 0 0.0002 0 0.25 0 0 0.0009 0 

5 3rd Bending Y 0.0011 0 0.0015 0 0.26 0 0 0.0019 

6 Torsion 0 0.0693 0 0 0 0.29 0.0025 0 

7 3rd Bending X 0 0 0 0.0009 0 0.0025 0.26 0 

8 4th Bending Y 0.0012 0 0.0014 0 0.0019 0 0 0.26 

Table 5: Squared Length Matrix of the Steel-Concrete cantilever beam (Fig. 1). 

1 1st Bending Y 0.01 0 -0.0271 0 0.0150 0 0 -0.0020

2 1st Bending X 0 0.01 0 -0.0273 0 0.0152 0 0

3 2nd Bending Y -0.0271 0 0.09 0 -0.0510 0 0 0.0145

4 2nd Bending X 0 -0.0273 0 0.09 0 -0.0516 0 0 

5 3rd Bending Y 0.0150 0 -0.0510 0 0.04 0 0 -0.0377

6 3rd Bending X 0 0.0152 0 -0.0516 0 0.04 0 0 

7 Torsion 0 0 0 0 0 0 0.01 0 

8 4th Bending Y -0.0020 0 0.0145 0 -0.0377 0 0 0.11 

Table 6 : Squared length of the steel part of the structure (Fig. 2). 

1 1st Bending Y 0.36 0 0.0898 0 -0.0470 0 0 0.0094 

2 1st Bending X 0 0.36 0 0.0902 0 -0.0474 0 0 

3 2nd Bending Y 0.0898 0 0.26 0 0.1684 0 0 -0.0482

4 2nd Bending X 0 0.0902 0 0.26 0 0.1705 0 0

5 3rd Bending Y -0.0470 0 0.1684 0 0.25 0 0 0.1259

6 3rd Bending X 0 -0.0474 0 0.1705 0 0.26 0 0 

7 Torsion 0 0 0 0 0 0 0.33 0 

8 4th Bending Y 0.0094 0 -0.0482 0 0.1259 0 0 0.29 

Table 7 Squared length of the concrete part of the structure (Fig. 2). 

1 1st Bending Y 0.18 0 0.0313 0 -0.0160 0 0 0.0037 

2 1st Bending X 0 0.18 0 0.0315 0 0 0 0 

3 2nd Bending Y 0.0313 0 0.18 0 0.0587 0 0 -0.0168

4 2nd Bending X 0 0.0315 0 0.18 0 0 0 0

5 3rd Bending Y -0.0160 0 0.0587 0 0.14 0 0 0.0441

6 3rd Bending X 0 0 0 0 0 0.15 0 0 

7 Torsion 0 0 0 0 0 0 0.17 0 

8 4th Bending Y 0.0037 0 -0.0168 0 0.0441 0 0 0.20 

Table 8 Total squared length of the structure (Fig. 2). 
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𝑀𝑇𝑠

𝑀𝑇𝑐
= −

𝐿𝑖𝑗𝑐

𝐿𝑖𝑗𝑠

(20) 

It is inferred from Tables 6 and 7 that Eq. (20) 

is fulfilled for all the modes (except if they are 

orthogonal) with an error less than 20%. 

However, the error decreases as increasing the 

magnitude of the squared cross-length 

components. 

Using the squared lengths of Tables 6 and 7, 

and the modal masses presented in Table 3, the 

total masses of the concrete and the steel parts 

were estimated using Eq. (4), obtaining 𝑀𝑇𝑠 =
7.98 𝑘𝑔 and 𝑀𝑇𝑐 = 2.34 𝑘𝑔, respectively. 

This demonstrates that the mass distribution 

can be known if the modal masses and the 

partial squared lengths can be estimated from 

the experimental or the numerical data. 

Alternatively, the modal masses can be 

estimated if the partial squared lengths and the 

total mass of each part (with different mass-

density) are known. 

3.3. Two-story building model. 

A two-storey building made of steel columns 

(section 0.1 𝑚 × 0.1 𝑚 and length 2.9 𝑚) and 

rectangular concrete storeys (dimensions 

4 𝑚 × 10 𝑚 and thickness 0.3 𝑚) was 

assembled in ABAQUS [5] (see Fig. 3). The 

same material properties as those considered in 

the previous sections were utilized in the 

simulations. 

A fix boundary condition was considered at the 

foundation, and the model was meshed with 

3D elements C3D20R with a global size of 0.1 

m for the storeys and 0.05 m for the columns. 

The natural frequencies and modal masses 

(mode shapes normalized to the largest 

component equal to unity) corresponding to 

the first 8 modes are presented in Table 9. The 

total mass of the structure is 𝑀𝑇 = 60332 𝑘𝑔.  

distributed as 𝑀𝑇𝑠 = 2732 𝑘𝑔  for the 

columns and 𝑀𝑇𝑐 = 57600 𝑘𝑔 for the storeys. 

The squared length of the mode shapes is 

shown in Table 10. 

Figure 3: Mesh of the steel concrete building model 

meshed with C3D20R. 

Mode 
Frequency 

[Hz] 

Modal 

mass 

[kg] 

Apparent 

mass [kg] 

1 1st Bending Z 1.06 37789 62113 

2 1st Bending X 1.07 38035 62102 

3 1st Torsion 1.52 15074 57375 

4 2nd Bending Z 2.69 38063 62425 

5 2nd Bending X 2.74 38298 62414 

6 2nd Torsion 3.89 15297 57837 

7 3rd Bending Y 14.62 15642 65035 

8 3rd Bending Y 15.19 15237 64882 

Table 9 Natural frequencies, modal masses and 

apparent masses for the building model  meshed with 

C3D20R. 

Due to the fact that most of the mass of the 

system is concentrated at the storeys, the 

length of the mode shapes can be approximated 

as:  
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𝐿2 ≅ 𝐿𝑐
2

(20) 

And the modal mass as: 

𝑚 ≅ 𝑀𝑇𝑐 ∙ 𝐿𝑐
2

(21) 

Which for this case results in: 

𝑚 ≅ 𝑀𝑇𝑐1 ∙ 𝐿𝑐1
2 + 𝑀𝑇𝑐2 ∙ 𝐿𝑐2

2  (22) 

Where sub-indexes 1 and 2 indicate 1st and 2nd 

storeys. respectively. For bending modes with 

stories moving as solid rigid. Eq. (22) 

simplifies to: 

𝑚 ≅ 𝑀𝑇𝑐1 ∙ 𝜓1
2 + 𝑀𝑇𝑐2 ∙ 𝜓2

2 (23) 

Mode 

Squared Length Modal mass [kg] 

full 

model 

Only 

storeys 

full 

model 

Only 

storeys 

1st Bending Z 0.61 0.64 37789 36834 

1st Bending X 0.61 0.64 38035 37068 

1st Torsion 0.26 0.26 15074 14878 

2nd Bending Z 0.61 0.65 38063 37217 

2nd Bending X 0.61 0.65 38298 37441 

2nd Torsion 0.26 0.26 15297 15250 

3rd Bending Y 0.24 0.27 15642 15305 

3rd Bending Y 0.23 0.26 15237 14793 

Table 10 : Squared length and modal masses of the 

building model  

From Table 9 it is inferred that the apparent 

mass for all the modes is rougly equal to the 

mass of the stories, i.e. to the total mass of the 

concrete (𝑀𝑇𝑐 = 57600 𝑘𝑔). With respect to 

the total mass, it can be determined accurately 

with Eq. (21). 

This structure was also meshed with beam 

elements B31 for the columns and shell 

elements S8R for the stories (see Fig. 4). 

Similar modal parameters were obtained with 

both models (3D and beam+shell). The 

squared length of the mode shapes was 

estimated using only the translational DOF’s. 

It can be observed in Table 11 that the squared 

length was estimated with a good accuracy 

using this model, the error being less than 

7.5%. 

Figure 4: Mesh of the steel concrete building model 

meshed with beams and shells. 

Mode 

Squared Length 
Apparent mass 

[kg] 

3D 
Beam-

shell 
3D 

Beam-

shell 

1st Bending Z 0.61 0.65 62113 59716 

1st Bending X 0.61 0.65 62102 59716 

1st Torsion 0.26 0.25 57375 60145 

2nd Bending Z 0.61 0.66 62425 59668 

2nd Bending X 0.61 0.66 62414 59668 

2nd Torsion 0.26 0.26 57837 60096 

3rd Bending Y 0.24 0.26 65035 59165 

3rd Bending Y 0.24 0.26 64882 59345 

Table 11 : Squared length and apparent mass using 3D 

and beam-shell elements.  

11 CONCLUSIONS 

In constant mass-density systems, the 

modal mass is equal to the product between the 

total mass of the structure and the length 
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squared. If the structure is constituted by two 

parts with the two volumes. 𝑉1 with the mass 

density 𝜌1, and 𝑉2 with the mass density 𝜌2, the 

modal mass is obtained with Eq. (4) [1]. 

If the mass density is not constant, the ratio 

modal mass/squared length is equal to an 

apparent mass. which is different for each 

mode and depends on the mode shape and how 

the mass is distributed in the structure. 

 In this paper, two steel cantilever 

structures made of steel and concrete and a 

two-story building model have been assembled 

in ABAQUS [5] and meshed with 3D, beam, 

and shell elements.  

The squared length of the mode shapes has 

been estimated with a good accuracy using Eq. 

(18).  

In structures constituted by two parts of 

different mass-density, the cross-length is non-

zero (except for orthogonal mode shapes). 

Moreover, the ratio of squared cross-lengths is 

constant for all the modes and equal to the ratio 

of total masses of the two different materials.  

In some particular cases and in some 

specific modes, the assumption of constant 

mass density is still valid. This is the case with 

two of the structures studied in his paper: 

beams with constant mass per unit length and 

building models with most of the mass 

concentrated at the stories.  
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Abstract. Mass normalized mode shapes (scaled mode shapes) contain information of both 

the modal mass (magnitude of the vector) and the shape of the mode (deflection shape). In 

scaled mode shapes the modal mass is dimensionless unity. On the other hand, a mode shape is 

said to be un-scaled if it is not mass normalized. Un-scaled mode shapes only contain 

information of the shape of the mode and a scaling factor (or modal mass) is needed to define 

completely the mode shape. It has been demonstrated that the modal mass in constant mass-

density systems is equal to the product between the total mass of the structure, and the length 

of the mode shapes squared. This means that a relation between the modal masses of the 

different modes exists, i.e. when using modal analysis only the modal mass of one mode is 

needed because all the modal masses can be estimated from such a mode. In this paper, 

numerical simulations on different structures (beams, plates and 3D solids) with constant mass-

density were performed. It is demonstrated that using the modal mass of the first mode, and the 

length of the mode shapes normalized to the largest component equal to unity, the modal masses 

for the rest of the modes can estimated with a good accuracy. 

Key words: Modal Mass, Dynamics of Structures, Mode shapes, Normalization 

1 INTRODUCTION 

A modal model is a mathematical model 

formulated to describe the dynamic behavior 

of a structure in terms of modal parameters, 

namely natural frequencies, damping ratios, 

mode shapes and modal masses. 

Mode shapes can be normalized in many 

different ways, the most common techniques 

being mass normalization, normalization to the 

unit length of the mode shape (length scaling) 

and normalization to a component (usually to 

the largest component) equal to unity (DOF 

scaling) [1,2,3]. For this reason, the magnitude 
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and the units of the modal mass depend on the 

normalization method. 

 In case of normalization to the mass matrix 

(mass normalization), the mode shapes contain 

information of both the shape of the mode and 

the scale (scaling factor or modal mass). 

The modal mass of mass-normalized mode 

shape is dimensionless unity for all the modes, 

whereas the units of the mode shapes are 

1/√𝑘𝑔 for the translational DOF’s and  

1/(𝑚√𝑘𝑔) for the rotational DOF’s. 

A mode shape is said to be normalized to 

the unit length if its length is unity. In discrete 

systems, the length of the mode shape vector  

𝝍 (length of a vector in an Euclidean space) is 

defined as [2,4]: 

𝐿𝐸
2 = √𝝍𝑻𝝍 (1) 

However, the modal mass estimated using 

the length defined by Eq. (1) is dependent upon 

the number of DOF’s in the model.  

Another approach to normalize mode 

shapes is to scale the largest component (or 

some other component) to a certain value (for 

instance equal to unity) [1,2]. If the modal 

masses (normalization to the largest 

component equal to unity) of a numerical and 

an experimental model are going to be 

compared, the DOF used for normalization 

should be the same in the FE model and the 

test. i.e. the DOF must be shared. If this is not 

the case, then the modal mass is dependent 

upon selected DOF.  

In this paper, numerical simulations on 

different structures (beams and 3D solids) with 

constant mass-density were performed. An 

approximate formulation to calculate the 

length of the mode shapes is proposed, which 

uses only the nodal components of the mode 

shapes. It has been proved that the modal 

masses of the structure can be estimated with a 

good accuracy when the length of the mode 

shapes and the modal mass of one mode is 

known. Moreover, it has been proved that the 

cross-length for all the modes is zero.  

2 BASIC THEORY 

In discrete systems, the mode shapes are 

vectors and the modal mass corresponding to 

an un-scaled mode shape (ψ) can be calculated 

with the equation [1,2,3]: 

𝑚 = 𝝍𝑻𝑴𝝍 (2) 

Where M is the mass matrix and m the 

modal mass.  

If the mass-density ρ of the system is 

constant, Eq. (2) can be expressed as [2]: 

𝑚 = 𝜌𝝍𝑻𝑽𝝍 (3) 

Where V is the volume matrix.  If the total 

volume of the system is denoted as 𝑉𝑇, Eq. (2) 

can also be formulated as: 

𝑚 = 𝑀𝑇

𝝍𝑻𝑽𝝍

𝑉𝑇

(4) 

Where the term: 

𝐿2 =
𝝍𝑻𝑽𝝍

𝑉𝑇

(5) 

is the length of the mode shape 𝝍,  which 

depends on the volume of the structure and on 

the mode shapes. Eq. (4) can also be expressed 

as: 

𝑚 = 𝑀𝑇𝐿2 (6) 

which indicates that in constant mass-

density systems the modal mass is equal to the 

product between the total mass of the structure 

and the length squared. 

From Eq. (6) it is derived that: 
𝑚1

𝐿1
2 =

𝑚2

𝐿2
2 = ⋯ =

𝑚𝑟

𝐿𝑟
2

= ⋯ = 𝑀𝑇 (7)

53535353



R. Stufano, A. Fraddosio, M. Aenlle, F. Pelayo and R. Brincker.

Where the subindex ‘r’ indicates the order 

of the mode.  

From Eq. (6) is inferred that if the length of 

the mode shapes is known: 

 Only one modal mass needs to be

known. The rest of the modal

masses can be estimated with Eq.

(7).

 The modal masses can be estimated

if the total mass of the structure is

known.

 If a structure is discretized with many finite 

elements of equal volume, Eq. (5) can be 

accurately approximated by: 

𝐿2 ≅
Δ𝑉 ∑ 𝝍𝒌

𝟐𝑵𝑽
𝒌=𝟏

𝑁𝑉Δ𝑉
=

∑ 𝝍𝒌
𝟐𝑵𝑽

𝒌=𝟏

𝑁𝑉

(8) 

Where 𝑁𝑉 is the number of elements 

(number of volumes) of the structure. As the 

components of the mode shapes are commonly 

known at the nodes of the elements, Eq. (8) can 

also be approximated by means of the 

expression: 

𝐿2 ≅
Δ𝑉 ∑ 𝝍𝒌

𝟐𝑵
𝒌=𝟏

𝑁Δ𝑉
=

𝝍𝑻𝝍

𝑁

(9) 

Where 𝑁 is the number of nodes of the 

model. 

 The cross-length between the mode shapes 

𝝍𝒊 and 𝝍𝒋 is defined as: 

𝐿𝑖𝑗
2 =

𝝍𝒊
𝑻𝑽𝝍𝒋

𝑉𝑇

(10) 

Which can be approximated (for constant 

mass-density systems) by: 

𝐿𝑖𝑗
2 =

𝝍𝒊
𝑻𝝍𝒋

𝑁
  (11)

From Eq. (11) is inferred that the all the 

mode shapes in constant mass-density systems 

are orthogonal, i.e. non-orthogonality is an 

indicator of non-constant mass-density. 

3 NUMERICAL SIMULATIONS 

3.1. Cantilever Beam. 3D model. 

A steel cantilever beam with rectangular cross-

section (4 𝑐𝑚 × 5 𝑐𝑚) and 1 meter long, was 

assembled in the finite element software 

ABAQUS [5]. The steel was considered linear 

-elastic and the following material properties

were assumed: mass-density 𝜌 =7850 kg/m3,

Young’s modulus E=210 × 109 N/m2, and

Poisson ratio 𝜈 = 0.3. The total mass of the

system is MT=15.7 kg.

The beam was initially meshed with eight-

node linear hexahedral elements (C3D8R) with

an approximate global size of 0.005 m (see

Figs 1 to 8). The natural frequencies and modal

masses (mode shapes normalized to the largest

component equal to unity) corresponding to

the first eight modes are presented in Table 1,

whereas the mode shapes are shown in Figures

1 to 8.

mode 
frequency 

[Hz] 

modal mass 

[kg] 

1 33.19 3.93 

2 41.57 3.93 

3 206.48 3.97 

4 257.52 3.99 

5 571.56 4.03 

6 708.42 4.09 

7 708.60 4.39 

8 1102.10 4.13 

Table 1 : Natural frequencies and modal masses. 

Figure 1 : First Bending Y 
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Figure 2 : First Bending X 

Figure 3 : Second Bending Y 

Figure ¡Error! No hay texto con el estilo especificado 

en el documento. : Second Bending X 

Figure 5 : Third Bending Y 

Figure 6 : Third Bending X 

Figure 7 : Torsion 

Figure 8 : Fourth Bending Y 

The analytical expressions of the mode shapes 

of a cantilever beam can be found in the 

literature [1,3], from which is derived that the 

analytical squared length of all the bending 

modes is 𝐿2 = 0.25, whereas the squared

length of the torsional mode as 𝐿2 =
0.2729 .The squared lengths estimated with 

Eq. (9) and the cross-lengths estimated with Eq 

(11) are presented in Table 2, where the

diagonal terms indicate the length and the off-

diagonal ones indicate  the cross-length.

From Table 2 is inferred that Eq. (9) provides

a good accuracy in the estimation of the length
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of the mode shapes, the maximum error in 

bending modes being 5.7%. 

Due to the fact that the mass-density is 

constant, the cross-length for all the modes 

must be zero. It can be observed in Table 2 that, 

as expected, all off-diagonal terms are very 

close to zero. 

Table 2 : Length Matrix of the Cantilever beam. 

Due to the fact that the system has constant 

mass-density, Eq. (6) has to fulfilled, i.e. the 

ratio 
𝑚

𝐿2, shown in Table 3, must be the same 

for all the modes and equal to the total mass of 

the system. It can be observed in Table 3 that 

the maximum error is 0.86% for the bending 

modes, whereas a larger error has been 

obtained for the torsional mode (16%), 

indicating that a more refined mesh is needed 

in order to calculate the length with a better 

accuracy. 

 Mode 𝑀𝑇

1 15.62 

2 15.62 

3 15.61 

4 15.61 

5 15.59 

6 15.59 

7 13.19 

8 15.56 

Table 3 : Total mass Matrix of Cantilever beam. 

The model was also meshed using twenty-node 

hexahedral elements (C3D20R). Moreover, in 

order to study the influence of the size of the 

finite elements, simulations were performed 

using finite elements (C3D8R and C3D20R) of 

the following size: 0.0025 m, 0.005 m, 0.010 

m, 0.020 m, and  0.030 m. The squared lengths 

obtained with Eq. (9) for all the simulations are 

presented in Figs 11 to 18. 

As expected, the accuracy of the technique 

increases as the size of the elements 

diminishes, and better accuracy is obtained 

with the quadratic elements C3D20R. 

However, the discrepancies between the 

squared lengths obtained with both types of 

elements decrease as the size of the elements 

diminishes. 

Figure 11 : Squared lengths obtained for different sizes 

of finite elements (First Bending Y) 

First Bending Y 0.25 0 0.0025 0 0.0025 0 0 0.0025 

First Bending X 0 0.25 0 0.0026 0 0.0025 0 0 

Second Bending Y 0.0025 0 0.25 0 0.0027 0 0 0.0026 

Second Bending X 0 0.0026 0 0.26 0 0.0027 0 0 

Third Bending Y 0.0025 0 0.0027 0 0.26 0 0 0.0028 

Third Bending X 0 0.0025 0 0.0027 0 0.26 0 0 

Torsion 0 0 0 0 0 0 0.33 0 

Fourth Bending Y 0.0025 0 0.0026 0 0.0028 0 0 0.27 
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Figure 12 : Squared lengths obtained for different sizes 

of finite elements (First Bending X) 

Figure 13 : Squared lengths obtained for different sizes 

of finite elements (Second Bending Y) 

Figure 14 : Squared lengths obtained for different sizes 

of finite elements (Second Bending X) 

Figure 15 : Squared lengths obtained for different sizes 

of finite elements (Third Bending Y) 

Figure 16 : Squared lengths obtained for different sizes 

of finite elements (Third Bending X) 

Figure 17 : Squared lengths obtained for different sizes 

of finite elements (Torsion) 
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Figure 18 : Squared lengths obtained for different sizes 

of finite elements (Fourth Bending Y). 

In order to study the effect of the elements 

aspect ratio, the model was meshed with 

elements C3D20R and dimensions (mm)  

2.5 × 2.5 × 2.5, 2.5 × 2.5 × 5 and 2.5 ×
2.5 × 10. It can be observed in Table 4, where 

the ratio 𝑚/𝐿2 is presented, that similar results

have been obtained with the different meshes, 

the accuracy being slightly better with cubic 

elements. 

Mode 
Ratio  𝒎/𝑳𝟐

Size 

2.5*2.5 

Size 

2.5*5 

Size 

2.5*10 

1 15.67 15.64 15.58 

2 15.67 15.64 15.58 

3 15.66 15.64 15.58 

4 15.66 15.64 15.58 

5 15.66 15.63 15.57 

6 15.66 15.63 15.57 

7 14.51 14.51 14.51 

8 15.65 15.62 15.56 

Table 4 : Ratio  𝑚/𝐿2 for different finite element sizes.

3.3. Cantilever Beam. Beam model. 

The aforementioned cantilever beam was also 

meshed with ABAQUS beam elements B32 

with an approximate length of 0.0025 m, 

obtaining the same modal parameters. The 

length of the mode shapes, calculated with Eq. 

(9) and using only the translational DOF’s, is

presented in Table 5, together with those 

obtained with the 3D model.  

Mode 

Squared length 

Model 

B32 

Model 

C3D20R 

First Bending Y 0.25 0.25 

First Bending X 0.25 0.25 

Second Bending Y 0.25 0.25 

Second Bending X 0.25 0.25 

Third Bending Y 0.25 0.26 

Third Bending X 0.26 0.26 

Torsion 0.5* 0.30+ 

Fourth Bending Y 0.26 0.26 

Table 5 : Squared lengths obtained with beam and 3D 

models. * with rotational DOF’s. + Calculated with 

translational DOF’s. 

The bending mode shapes were normalized to 

the largest component equal to unity, which 

means that the translational DOF’s are 

dimensionless, whereas the rotational DOF’s 

have the units [
1

𝑚
]. 

However, the torsional mode was normalized 

to the largest rotation equal to unity, which 

means that the squared length of the torsional 

mode (𝐿𝜃
2 )  is also dimensionless. With respect

to the modal mass, it is given in units of 𝑘𝑔 𝑚2

and obtained with the expression:  

𝑚𝜃 = 𝐼𝑀𝐿𝜃
2 (12) 

Where 𝐼𝑀 is the mass moment inertia of the 

structure with respect to the longitudinal axes 

of the beam, which for a rectangular section of 

dimensions 𝑎 × 𝑏 is given by: 

𝐼𝑀 = 𝑀𝑇

(𝑎2 + 𝑏2)

12

(13) 

From the finite element model it has been 

obtained that 𝐿𝜃
2 = 0.5 and 𝑚𝜃 = 2.682 ×

10−3 𝑘𝑔 𝑚2

The modal masses and the squared lengths of 

the torsional mode, obtained with the 3D 
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model and with the beam model, can be related 

as: 

𝑀𝑇 =
𝑚

𝐿2
=

𝑚𝜃

(𝑎2 + 𝑏2)
12

𝐿𝜃
2

(14) 

3.4. Cantilever Cross Beam. 

A steel cantilever beam with two short 

beams (rectangular section 4 𝑐𝑚 × 5 𝑐𝑚 and 

length 4 𝑐𝑚) attached near the free end, was 

assembled in ABAQUS [5] and meshed with 

elements C3D20R of size 0.0025 m (Fig. (23)). 

The same mechanical properties as those 

considered in the previous models were used in 

the simulations, the total mass of the beam 

being MT=17.27 kg. 

The lengths of the mode shapes (Eq. (9)), 

the modal masses and the total mass estimated 

with Eq. (7) are presented in Table 5. The 

modal masses (kg) are presented in Table 6.

Figure 23 : Cantilever cross beam: 3D model 

This structure was also meshed with beam 

elements B32 with an approximate length of 

0.0025 m. The beam was modelled with 

constant cross section and the effect of the 

attached beams were considered as 

concentrated masses and rotary inertias.  

The length of the bending mode shapes were 

calculated with Eq. (9) using only the 

translational DOF’s (the contribution of the 

rotational DOF’s is neglected). However, Eq. 

(9) only considers the components of the mode

shapes at the nodes, i.e, the volume of lumped 

masses is not taken into account. This means 

that the effect of the attached masses is not 

considered and Eq. (5) must be reformulated 

as: 

𝐿2 ≅
𝐿1

2𝑉1 + 𝐿Δ𝑀
2 𝑉Δ𝑀

𝑉1 + 𝑉Δ𝑀

(15) 

Where 𝐿1
2  and 𝑉1 indicate length and volume

of the beam (calculated with Eq. (9) and 

without considering the lumped masses) and 

𝐿Δ𝑀
2  and  𝑉Δ𝑀 refer to the length and the

volume of the lumped masses. A better 

accuracy can be obtained if the effect of the 

rotary inertias are considered in Eq. (13). 

Mode 

Squared length 

Model 

B32 

Model 

C3D20R 

first bending Y 0.30 0.30 

first bending X 0.30 0.30 

second bending Y 0.38 0.37 

second bending X 0.39 0.37 

torsion 0.07 --- 

third bending Y 0.37 0.36 

third bending X 0.40 0.36 

fourth bending Y 0.32 0.30 

 Table 5 : Cantilever cross beam: squared length. 

Mode 

Modal mass 

Model 

B32 

Model 

C3D20R 

first bending Y 5.1484 5.1525 

first bending X 5.1587 5.1623 

second bending Y 6.4947 6.4873 

second bending X 6.6568 6.6410 

torsion 1.1925 --- 

third bending Y 6.3863 6.3192 

third bending X 6.9497 6.7775 

fourth bending Y 5.5411 5.3900 

 Table 6 : Cantilever cross beam: modal masses (kg) 

It can be observed in Table 5 that the length of 
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the mode shapes is estimated with a good 

accuracy using the beam model, the error 

increasing with the order of the mode. With 

respect to the ratio 𝑚/𝐿2 (Table 6), a good

accuracy has been obtained for all the modes 

with both the 3D and the beam model. 

Mode 

Total mass 

𝑴𝑻 = 𝒎/𝑳𝟐

Beam 3D 

first bending Y 17.28 17.15 

first bending X 17.31 17.15 

second bending Y 17.47 17.26 

second bending X 17.84 17.25 

torsion --- 16.58 

third bending Y 17.64 17.36 

third bending X 18.62 17.32 

fourth bending Y 17.83 17.20 

Table 7 : Cantilever cross beam : total mass. 

11 CONCLUSIONS 

In constant mass-density systems, the 

modal mass is equal to the product between the 

total mass of the structure and the length 

squared. This means that the modal masses of 

experimental systems can be estimated if the 

total mass is known and the length of the 

experimental mode shapes can be estimated 

with a reasonable accuracy. 

In this paper, two steel cantilever 

structures have been assembled in ABAQUS 

[5], which have been meshed with 3D and 

beam elements.  

The length of the mode shapes when the 

model is meshed with 3D elements can be 

estimated with a good accuracy using Eq. (9), 

where the components of the mode shapes at 

the nodes have to be known. 

When using beam elements, the length of 

the bending modes can also be calculated with 

Eq. (9) considering the translational DOF’s. 

The contribution of the rotations can be 

neglected if the elements are small. 

When using beam elements, Eq. (9) can also 

be used to calculate the length of the torsional 

modes, considering the rotational DOF’s. 

When the length is calculated with Eq. (9), 

lumped masses and inertias are not considered. 

Their contribution to the length of the mode 

shapes have to be considered separately. 

For equal size of finite elements, Eq. (9) is 

more accurate for bending modes than for 

torsional modes.  

The beam models allow to estimate the 

length of the mode shapes with a good 

accuracy with less computational time.  
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Abstract. Seismic activity and vibrations may be predictable, but changes in the structure 

such as a variation in the stiffness during a seismic event or different induced load patterns in 

footbridges and bridges may require a damping response that varies in time as well. In this field 

of study, the incorporation of magneto rheological materials could be useful. 

Magneto Rheological Fluids (MRF) are characterized by being capable of changing their 

physical properties when subjected to a magnetic field. MRFs are made of micron-sized ferrous 

particles suspended in a base fluid. With a magnetic field in place, the particles align in chain-

like structures that show greater resistance to flow, which causes a change in viscosity from 

liquid to visco-elastic solids in just milliseconds and back to fluid when the magnetic field is 

no longer present. These fluids show outstanding features like fast response, reversibility and 

controllability.  

This work presents a rheological background to the MRF technology through different types of 

fluids, as well as the MRFs’ characteristics, operational modes, etc. The study presented in this 

work opens the door to real applications mostly related to structural engineering. A remarkable 

case study of the use of MRF is presented: the damper located in the Dongting Lake Bridge. 

The system reduces wind-rain induced vibrations on cables taking advantage of MRF, with 

regards to that both reliability and maintenance along with aesthetics are factors that determine 

the project. 

Key words: Magneto Rheological Fluids, Vibrations, Viscosity, Electromagnetism. 

1 INTRODUCTION 

In the event of seismic activity, building 

protection objectives may be summarised as: 

maintaining enough stiffness so that the 

construction behaves within the elastic range 

and ensuring ductility energy dissipation when 

it reaches the inelastic range.  

On the one hand, resistant design aim is to 

make the structure withstand seismic forces 

with as little damage as possible, depending on 

the magnitude of the earthquake and on the 

type of building considered. A resistant design 

takes into account both the materials used and 

their mechanical characteristics, and the floor 

plan and elevation geometry, configuration, 

slenderness, its joints…  

On the other hand, control systems either 

dissipate energy produced by dynamic loading 

or modify the energy that gets in the structure. 

This way, constructions withstand smaller 

stress.   
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1.1 Control systems 

According to ISO 3010:2017[1], control 

systems can be classified as follows: 

- Passive systems. These are widely used

due to their reduced cost and because there is 

no energy input requirement. They are 

automatically activated by the energy 

produced by the excitation. Major drawback is 

these systems are not capable of modifying the 

response under changing stimulus or structure 

damage. 

- Active systems. They are powered

mechanisms capable of adjusting the control 

forces applied. A series of sensors measure the 

structure response that is analysed by 

controllers which stablish the amount of force 

the actuator is to exert. A serious drawback is 

that energy supply could be shut down during 

a seismic event, therefore leaving the building 

unprotected. 

- Hybrid systems. These consist of a

combination of active and passive systems. 

While the passive part reduces the response, 

the active one is used to further decrease the 

acceleration or displacement. For this reason, 

control forces are smaller than those in active 

systems. Therefore, the energy input required 

is much lower, resulting in more reliable 

systems.  

- Semi-active systems. The sensor-

controller-actuator operating principle is 

similar to that in active systems, only semi-

active ones are not designed to exert a force in 

the structure. Consequently, these mechanisms 

are generally smaller and the amount of energy 

required is lower. Semi-active systems provide 

with fast changing response in case of varying 

conditions. 

Seismic activity and vibrations may be 

predictable, but changes in the structure such 

as a variation in the stiffness during a seismic 

event or different induced load patterns in 

footbridges and bridges may require a damping 

response that varies in time as well. In this field 

of study, the incorporation of magneto 

rheological materials in semi-active fluid 

devices could be useful, resulting in an 

improvement in functionality and costs.  

2 RHEOLOGICAL BACKGROUND 

Rheology is the study of flow and 

deformation of matter in response to the 

influence of stresses. Fluids have no fixed 

shape of their own and flow when an external 

force is applied, this is, while a solid can resist 

an applied shear stress by deforming, a fluid 

deforms continuously under the influence of 

shear stress. For this reason, fluids behaviour 

is analysed in terms of stress and strain rate. 

Therefore, fluids can also be defined as 

substances that can resist an applied shear 

stress by moving [2]. 

Substances are composed of molecules 

between which act cohesive forces. Solid 

molecules are closely packed together and so 

its bonds are the strongest, keeping the 

molecules at fixed positions.  Liquid molecules 

can move relative to each other although the 

volume remains constant due to strong 

cohesive forces. Gas molecules are widely 

spaced and their cohesive forces are small, 

which is the reason these fluids can move 

about at random [2,3]. 

Individual molecule dynamics should be 

considered enough to define a fluid sample. 

However, it is convenient to disregard the 

atomic nature of a substance and consider it as 

continuous and homogeneous, this is, a 

continuum. This idealization is valid as long as 

the molecular structure is very small compared 

to the size of the system considered.  This way, 

substances can be described by their properties 

as point functions [2,3]. 

One of these properties is the viscosity, 

which represents the internal resistance of a 

fluid to motion. It is a consequence of the 

cohesive forces between molecules. Fluids can 

be classified based on their viscosity as follows 
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(figure 1): 

Figure 1: Types of fluids. Variation of shear stress 

with the rate of deformation. 

- Ideal fluids are incompressible and

have no viscosity, hence the lack of resistance 

to shear stress (τ). 

- Ideal solids overcome shear stress with

no deformation rate, having infinite viscosity. 

- Newtonian fluids are those for which

the shear stress is proportional to the 

deformation rate (du/dy). The constant of 

proportionality is called dynamic viscosity (μ). 

- Non-Newtonian fluids are those in

which the relationship between shear stress 

and deformation rate is not linear. In dilatant 

fluids, μ increases with du/dy. On the other 

hand, in pseudoplastic fluids, μ decreases with 

du/dy. If the material behaves as a solid up to 

the yield stress and then deforms continuously 

as a fluid, it is called Bingham plastic. 

3 MAGNETORHEOLOGICAL FLUIDS 

Magnetorheological (MR) fluids were first 

described in the 1940’s by Jacob Rabinow [4-6]. 

MR fluids are dispersions composed of 

micron-sized magnetizable particles (1-10 µm) 

suspended in an organic or aqueous liquid 

carrier.  

These smart materials have the ability to 

modify some aspects of their rheology when an 

external magnetic field is applied.  

3.1 MR fluid components 

MR fluids are made up of three basic 

components: magnetizable particles, base fluid 

and additives [4-9].  

As for the magnetically active phase, 

different ceramic, metal and alloy 

compositions such as iron-cobalt alloys, 

manganese zinc ferrite or nickel zinc ferrite 

have been described to prepare MR fluids [4]. 

However, the most common magnetic material 

used for these dispersions is high purity iron 

powder (carbonyl iron, figure 2) due to its 

purity (>99%), high saturation magnetisation 

and non-abrasive spherical shape.  

The base fluid is a carrier in which the 

magnetic particles are suspended, such as 

silicon oil, synthetic oil or mineral oil [5]. It 

should present temperature-independent low 

viscosity and be non-reactive towards the 

magnetic particles and the materials used in the 

device.  

Additives include stabilizers and 

surfactants. These are required to control the 

settling and suspension of particles or to 

provide anti-wear properties. 

Figure 2: Scanning electron micrograph of carbonyl 

iron powder [10]. 

3.2 MR fluids rheology 

The viscosity of MR fluids varies when a 

magnetic field is applied. In the off-state (no 
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magnetic field) MR fluids flow freely, with 

low viscosity. When an external magnetic field 

is applied (on-state), there is a polarization of 

the magnetizable particles which rearrange 

into chain-like structures in the direction of the 

magnetic field [3,4,11,12], as seen in figure 3. The 

chain structure restricts the movement and the 

yield strength increases. As a result, the fluid 

exhibits greater resistance to flow, which 

causes a change in viscosity from liquid to 

visco-elastic solids in just milliseconds.  

Figure 3: MR fluid mechanism. 

This is a reversible process since MR fluids 

switch back to liquid when the magnetic field 

is no longer activated. The degree to which the 

fluid changes to a semi-solid is proportional to 

the strength of the magnetic field, giving MR 

fluids great controllability and precision [12]. 

This is the reason MR fluids make an 

outstanding semi-active control system, the 

response can be modified in milliseconds for 

the specific requirements. Moreover, if the 

magnetic field were damaged, it would behave 

as a passive system, providing the structure 

with protection. 

MR fluids behave as Non-Newtonian fluids 

during the on-state. They often exhibit shear-

thinning behaviour (pseoudoplastic fluid) [3] or 

Bingham plastic behaviour [8,11]. Table 1 shows 

the characteristic dynamic viscosity values for 

different materials. The dynamic viscosity of 

MR fluids can reach values 105 times greater 

than water and up to 103 times greater than 

engine oil. 

Material (20ºC) Dynamic viscosity μ (Pa·s) 

Water 0.001 

Mercury 0.0015 

Olive oil 0.01 

Engine oil 0.1 

Silicon oil 0.35 

Glycerin 1.50 

Honey 1-10

MR fluid 1-100

Table 1: Dynamic viscosity (order of magnitude) of 

various materials. 

4 MR FLUIDS OPERATIONAL 

MODES 

MR fluids standard operating modes are: 

valve mode, direct shear mode, and squeeze 

mode [5,12,13,14], depending on the type of 

deformation employed.   

4.1 Valve mode 

In valve mode, the MR fluid flows between 

two static plates (or an orifice) as a 

consequence of a pressure drop. The magnetic 

field applied is perpendicular to the flow and 

controls the viscosity, therefore modifying the 

velocity profile [14-15]. Valve mode scheme is 

defined in figure 4.  

Figure 4: Valve mode. 

The pressure drop (ΔP) is caused by both 

the pure rheological (ΔPμ, viscous) component 

and the magnetorheological component (ΔPmr, 

magnetic field-dependent). The value of the 

pressure drop is defined in equation 1 [5, 16]: 
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𝛥𝑃 = 𝛥𝑃𝜇 + 𝛥𝑃𝑚𝑟 (1) 

𝛥𝑃 =
12·𝜇·𝑄·𝐿

𝑔3· 𝑤
+ 𝜏𝑚𝑟·𝐿·𝑓

𝑔

Equation 1 shows that the pressure drop is 

dependent on the dynamic viscosity (μ, Pa·s) 

with no applied field, the flow rate (Q, m3·s) 

and the length (L, m) fluid gap (g, m) and width 

(w, m) of the flow channel in the viscous 

component. The magnetic field-dependent 

component depends on the variable yield stress 

(τmr, N/mm2) developed in response to the 

applied magnetic field, L and g form the 

geometrical data and an empirical factor (f). 

The parameter f is a function of the flow 

velocity profile and has a value from 2 (if ΔPmr 

/ΔPμ <1) to 3 (if ΔPmr /ΔPμ >100) [16]. 

The minimum volume of active fluid is 

defined in equation 2, in order to achieve the 

desired effect at a certain flow rate: 

𝑉 = 𝐿 · 𝑔 · 𝑤 (2) 

𝑉 =
12·𝜇

𝑓
2

·𝜏𝑚𝑟
2

· 𝛥𝑃𝑚𝑟
𝛥𝑃𝜇

· 𝑄 · 𝛥𝑃𝑚𝑟 (1) 

This operational mode is widely spread and 

some applications are dampers, actuators and 

shock absorbers [14,15]. 

4.2 Shear mode 

In shear mode, MR fluid is placed between 

two surfaces, a fixed one and a moving one. 

The magnetic field is applied perpendicularly 

to the motion of the surface [5, 12, 14]. Shear 

mode scheme is displayed in figure 5. 

Figure 5: MR Direct-shear mode. 

The force (F) can be divided into a pure 

rheological (Fμ, viscous) component and a 

magnetorheological component (Fmr, magnetic 

field-dependent). The value of the total force is 

defined in equation 3 [5, 14]:   

𝐹 = 𝐹𝜇 + 𝐹𝑚𝑟 =
𝜇·𝑆·𝐿·𝑤

𝑔 
+ 𝜏𝑚𝑟 · 𝐿 · 𝑤 (3) 

Equation 3 shows that the force depends on 

the dynamic viscosity (μ, Pa·s) with no applied 

field, the relative speed (S, m/s), the length (L, 

m), fluid gap (g, m) and width (w, m) of the 

flow channel in the viscous component, and 

the variable yield stress (τmr, N/mm2) 

developed in response to the applied magnetic 

field.  

The minimum volume of active fluid is 

defined in equation 4, in order to achieve the 

desired effect at a certain speed: 

𝑉 = 𝐿 · 𝑔 · 𝑤 =
𝜇

𝜏𝑚𝑟
2 · 𝐹𝑚𝑟

𝐹𝜇
· 𝑆 · 𝐹𝑚𝑟 (4)

This operational mode is likewise widely 

spread and used in brakes, clutches or 

chucking devices [5]. 

4.3 Squeeze mode 

In squeeze mode, a force is applied in the 

same direction as the magnetic field to either 

reduce or increase the distance between 

parallel plates which causes a squeeze flow 
[14,15]. Squeeze mode scheme can be seen in 

figure 6.  

Figure 6: Squeeze mode. 

Squeeze mode has not been so widely 

spread as the previous modes, and it is 

generally used in small-amplitude vibration 
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dampers. This mode allows the application of 

very large forces with small motion [14]. 

5 CASE STUDY: DONGTING LAKE 

BRIGDE 

A remarkable case study of the use of MR 

fluid is presented: the dampers located in the 

Dongting Lake Bridge (figure 7), southern - 

central China.  

Figure 7: Dongting Lake bridge [17] . 

The Dongting Lake bridge is a three-tower 

prestressed concrete cable-stayed bridge. It 

consists of two central spans measuring 310 m 

long each and two side spans measuring 130 m 

each. The central tower is 125.7 m high and the 

side towers measure 99.3 m. The deck in 23.4 

m wide. A total of 222 cables support the 

bridge. These are 28-210 m long and 99-159 

mm in diameter [18]. A scheme of Dongting 

Lake bridge is shown in figure 8. 

Figure 8: Dongting Lake bridge. Elevation [18]. 

The bridge was completed in 2000, when 

severe rain-wind induced vibration was 

observed [19] in nearly all cables. For this 

reason, it was decided to include a MR damper 

system, whose yield force could be monitored 

and adjusted for varying vibration conditions. 

It constituted the world’s first full-scale 

implementation of MR damping for bridge 

structures [20].  

The system reduces wind-rain induced 

vibrations on cables taking advantage of MR 

fluid, with regards to that both reliability and 

maintenance along with aesthetics are factors 

that determine the project [19].  

The dampers selected for the bridge were 

manufactured by Lord Corporation. RD-1005 

MR dampers, which are no longer 

commercially available, were used. However, 

their behaviour can be described by typical MR 

dampers which run in valve mode (figures 9 

and 10). RD-1005 included an outer case for 

protection against dust or rain. 

Figure 9: Valve mode MR damper [12] . 

Figure 10: MR piston assembly [12] . 

Several tests were performed on various 

cables. Results showed that the modal damping 

ratios were significantly increased when MR 
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dampers were installed [19], and so the resulting 

vibrations were so small they had no visible 

movement. Since the maximum damping ratio 

did not reach the same value for different 

modes, the usefulness of semi-active was made 

clear.  

The final assembly of the dampers can be 

seen in figure 11, in triangular shape in order 

to control in and out-plane vibrations. The 

electrical power supply reaches each cable and 

an A/D rectifier provides the required current, 

hence ensuring an optimal performance [19].

Figure 11: Dongting Lake bridge. Assembly of the 

dampers [20]. 

6 CONCLUSIONS 

MRF show outstanding features like fast 

response, reversibility and controllability. 

The viscosity of MR fluids can be 

considerably increased in just milliseconds and 

switched back to normal when the magnetic 

field is no longer present. 

Various operational modes are currently 

widely spread. A combination of these modes 

or new operation modes can be developed, 

taking into account MRF characteristics. 

The MRF technology proves itself useful as 

a semi-active control system. Variations in 

external inputs such as seismic forces or 

vibrations and internal modifications such as 

stiffness alteration can be overcome by a time-

varying response. 
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Abstract. This work presents a new possibility of reuse of Polyethylene terephthalate (PET) as 

a reinforcement on adobe structures. The ever-growing global demand of PET bottles, along 

with the impossibility of recycling processes to keep up with their consumption pace, are the 

reasons to define a new use that ensures its reuse. The implementation of PET-fibres structural 

reinforcement on adobe building structures seeks a better adobe tensile strength behaviour, that 

may be decreased due to earthquakes or landslide.  

This work is focused on adobe building on the specific location Keur Bakar Diahité in 

Senegal. Nonetheless, it is believed that this structural reinforcement may be applicable to other 

locations.  

Mechanical tensile strength, compressive strength and pull-out tests have been performed 

with and without PET reinforcement. Using the laboratory obtained data, Finite Element 

Method (FEM) has been applied to simulate the effect of the reinforcement.  

First, a single PET-reinforced brick has been analysed. The effect of the PET reinforcement 

has shown to improve the compressive strength on the adobe brick by a hoop-effect similar to 

that caused by steel hoops in concrete. 

Then, a single-storey, both PET-reinforced and non-reinforced, adobe brick dwelling has 

been analysed and subjected to a seismic event. FEM simulations show that the base shear on 

PET-reinforced adobe housing was halved, compared to those with no reinforcement.  

The results demonstrate that the inclusion of strip-shaped PET reinforcement on adobe 

constructions improves their mechanical behaviour, show that the yield strength tolerated by 

the reinforced adobe is 40% greater than the non-reinforced adobe, and manifest that the 

fracture energy of braided-reinforced adobe samples is 6 times greater than non-reinforced 

adobe. 

Key words: Method of finite elements, Reinforcement, PET, Adobe. 

1 INTRODUCTION 

The ever-growing global demand of PET 

bottles, along with the impossibility of 

recycling processes to keep up with their 

consumption pace, are the reasons to define a 

new use that ensures its reuse. This work 
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presents a new possibility of reuse of 

Polyethylene terephthalate (PET) as a 

reinforcement on traditional adobe structures 

which seeks reducing energy waste derived 

from recycling processes [1]. 

The implementation of PET-fibres 

structural reinforcement on adobe building 

structures seeks a better adobe tensile strength 

behaviour, that may be decreased due to 

earthquakes or landslide. Both laboratory tests 

and model simulations were carried out in 

order to evaluate the effect of the 

reinforcement [2].  

2. LOCATION

This research seeks to improve adobe

traditional construction by means of reusing 

PET waste products. It is focused on the 

buildings on the specific location Keur Bakar 

Diahité in southern Senegal.  

Locals build on-site compressed blocks 

made of cement, water and soil. Different 

requirements such as climate conditions and 

seismic resistance define a dwelling sample: 

cylindrical spaces with small openings provide 

thermal and solar conditioning, mass and 

stability against seismic events [3]. 

It is believed that this structural 

reinforcement may be applicable to other 

locations as well. 

3 MECHANICAL TESTS 

Mechanical tensile strength, compressive 

strength and pull-out tests were performed 

with and without PET reinforcement in order 

to evaluate the reinforcement strength. 

3.1 Tensile strength 

Tensile strength tests were carried out by a 

INSTRON 8501 with a 10 kN load cell at a 

speed of 10 mm/minute with displacement 

control. A mechanical swivel joint was used to 

nullify the eccentricity of loading. PET 

samples were fastened by grips. The 

deformation was measured by an Instron 

extensometer ranging from -2500 to +2500 

micron.  

The PET samples measured 20 mm high, 10 

mm wide and 0.34 mm thick and were obtained 

from PET bottles (figure 1). 

Figure 1: PET sample : before (left) and after (right) 

tensile strength test. 

The yield strength obtained was 75 MPa and 

the ultimate strength 128 MPa. Young’s 

Modulus was 2500 MPa average (figure 2).  

Figure 2: Vertical PET samples stress-strain graph. 

3.2 Compressive strength 

Compressive strength tests were developed 
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in order to compare the behaviour between 

non-reinforced and PET-reinforced adobe 

samples. The tests were carried out by a 

INSTRON 8501 with a 100 kN load cell at a 

speed of 0.2 mm/minute. The normalised 

samples were placed between two parallel 

compression plates.  

Adobe was placed in cylindrical normalised 

moulds measuring 150 mm high and 75 mm 

diameter. PET reinforced adobe consisted of a 

1.1 m long PET strip coiled around the adobe 

and secured by folding the end points into the 

mortar. The samples were cured for 10 days at 

constant 20ºC.  

Non-reinforced adobe showed an average 

yield strength of 1.05 MPa and an average 

Young’s Modulus of 330 MPa (figure 3) at 10 

days of curing. 

Figure 3: Non-reinforced adobe stress-strain graph (10 

days). 

Taking into consideration 28 days of curing, 

the value of the yield strength triples. 

Therefore, the yield strength considered for 

adobe was set at 3.15 MPa. 

As for PET-reinforced adobe, the average 

yield strength obtained was 1.5 MPa, 43% 

greater than the non-reinforced samples. Its 

average Young’s Modulus was 374 MPa 

(figure 4). 

Figure 4: PET-reinforced adobe stress-strain graph (10 

days). 

Regarding braided PET-reinforced adobe, 

the average yield strength obtained was 0.7 

MPa, the lowest value because of a smaller 

diameter of adobe available due to the 

inclusion of braided PET. Its average Young’s 

Modulus was 174 MPa (figure 5). 

Figure 5: PET-reinforced adobe stress-strain graph (10 

days). 

It is worth mentioning the value obtained 

for the fracture energy, calculated as the area 

below the stress-strain line. Braided PET-

reinforced samples fracture energy was 2.5 

times greater than those with PET-

reinforcement, and 6 times greater than non-

reinforced ones.  
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3.3 Pull-out tests 

Pull-out tests were carried out in order to 

evaluate the adherence between PET and 

adobe. These were performed by a INSTRON 

8501 with a 50 kN load cell at a speed of 0.2 

mm/minute.  

Plain and knotted PET strips were 

introduced in adobe bricks measuring 150 mm 

long, 75 mm wide and 75 mm tall. The 

adhesion coefficient obtained was 0.034 

N/mm2 for plain strips. Knotted PET samples 

resulted in the typical breakout failure. 

4 MODEL ANALYSIS 

Using the laboratory obtained data from the 

mechanical tests, Finite Element Method 

(FEM) was applied to simulate the effect of the 

reinforcement. Ansys software was used. 

The FEM can be defined as a general 

discretization procedure of continuum 

problems posed by mathematically defined 

statements [4]. This method of approximation to 

continuum problems involves dividing the 

continuum into a finite number of parts 

(elements), whose behaviour is specified by a 

finite number of parameters. These elements 

are assumed to be interconnected at a discrete 

number of nodal points. 

The first step is the determination of 

element properties from the geometric material 

and loading data. Therefore, both a single PET-

reinforced adobe brick and a single-storey 

adobe dwelling were defined. 

4.1 PET-reinforced adobe brick 

The geometry modelling of the adobe brick 

was made according to the Solid-285 Ansys 

element. This element is a tetrahedron defined 

by four nodes. Each node has three degrees of 

freedom (DOFs): translations in the nodal x, y, 

and z directions [5]. The geometry, node 

locations and coordinate system for this 

element are shown in figure 6. 

Figure 6: Solid-285 Ansys element. 

Solid-285 element proved itself useful since 

it is suitable for modelling irregular meshes. 

The adobe brick was modelled based on a 

cuboid measuring 295 mm long, 140 mm wide 

and 90 mm high. Three cylinders of diameter 

45 mm represent the hollow section of the 

adobe cored brick described in [6] (figure 7).  

Figure 7: Solid element. 

Boolean subtraction operations were used 

to obtain the final adobe brick shape as 

seen in figure 8. The distance between 

the cylindrical hollow sections is 98 

mm each, and the outer ones are 49 mm 

apart from the edge of the brick. These 

hollow sections are all aligned along 

the longitudinal axis of the brick. 
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Figure 8: Adobe brick. 

Ansys ‘Mesh tool’ was used to create an all-

tetrahedral mesh, as seen in figure 9. The 

spatial subdivision algorithm ensures 

refinement of the mesh where necessary (in 

this case along the hollow sections), but 

maintains larger elements where possible 

(outer perimeter of the brick) allowing for 

faster computation [7].  

Figure 9: Adobe brick meshing. 

The geometry modelling of the PET 

reinforcement was made according to the 

Shell-281 Ansys element. This element is 

suitable for analyzing composite shell 

structures, for linear and nonlinear applications 

and it accounts for follower effects of 

distributed pressures [8].   The element has eight 

nodes having each six DOFs: translations in 

the nodal x, y, and z axes, and rotations about 

the x, y, and z axes [5].  The geometry, node 

locations and coordinate system for this 

element are shown in figure 10.  

Figure 10: Shell-281 Ansys element. 

The PET reinforcement strips were 

modelled according to de dimensions obtained 

in the PET-bottle recycling process. Therefore, 

a shell of 100 mm wide and 0.34 mm thick was 

placed along stretcher face of the brick on each 

side. 

Once the geometry was modelled, the 

various mechanical characteristics were 

defined according to the laboratory obtained 

data for each material. Regarding the adobe, 

Young’s modulus was set at 1089 MPa 

(considering 28 days of curing) and Poisson’s 

ratio was set at 0.2. As for the PET, Young’s 

modulus was set at 2500 MPa and Poisson’s 

ratio was set at 0.31. In order to simulate the 

interaction between materials, a surface-to-

surface contact element was defined [9] and the 

coefficient of friction was set at 0.3 as derived 

from the pull-out tests.  

The PET contribution was studied through 

the model analysis carried out on a reinforced 

and a non-reinforced adobe brick. The 

displacements on the bed of the brick nodes 

were blocked and vertical loads were applied 

on the top bed nodes. The load was estimated 

taking into account the weight of the ceiling (2 

kN/m2) and the adobe weight (whose density is 

18.5 kN/m3). 
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Figure 11 shows the amplified deformation 

due to the applied loads. Vertical loads 

produce vertical deformations, and these, in 

turn, produce horizontal deformations along 

the x axis (along the y axis the adjacent blocks 

would prevent the displacement). In this 

situation the PET reinforcement begins to act 

and reduces the brick flattening. In a way, it 

resembles the clamping effect steel produces in 

reinforced concrete structures, which increases 

the strength up to 3.3 times. 

Figure 11: Deformation of the block due to the applied 

loads. 

Figure 12 shows the stress along the x axis. 

The tensile stress greatest values are located at 

the PET strips end points (0,11 MPa), which 

are rather low compared to the yield strength 

(75 MPa), representing the 0.0015% capacity. 

Figure 12: X axis stress. 

The ‘hoop-effect’ can be observed in the 

adobe surrounding the PET reinforcement. The 

compressive stress reaches -0.58 MPa, again a 

very modest value compared to the adobe yield 

stress (-315 MPa). It represents the 0.0018% of 

the total capacity. 

Regarding the interaction between 

materials, figure 13 shows mostly near contact, 

and also and sliding at some points. There are 

superpositions (Far Open) and it is worth 

mentioning there is no sticking between PET 

and adobe. This may be due to the low friction 

coefficient modelled, or more probably as a 

result of the significant PET effect. 

Figure 13: Interaction between PET and adobe. 

4.2 Adobe dwelling 

A simplified one-storey dwelling was 

subjected to a seismic simulation. Various 

studies are taken into consideration [8, 10, 11] in 

order to model the construction. In this case 

both Ansys and manual calculation were 

required since it was not possible for the 

programme to take fracture energy or 

deformation capacity into consideration [12]. 

Therefore, Ansys was helpful in calculating the 

vibration eigenmodes and in obtaining the 

mechanical response of the non-reinforced 

adobe dwelling. The contribution of the PET 

was manually obtained following the Spanish 

Code [13]. 

The geometry modelling of the adobe 

dwelling was made according to the Soild-185 

Ansys element. This element is used for 3-D 
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modeling of solid structures and provides 

creep and large deflection. The element has 

eight nodes having three DOFs at each node: 

translations in the nodal x, y, and z axes [5]. The 

geometry, node locations and coordinate 

system for this element are shown in figure 14. 

Figure 14: Solid-185 Ansys element. 

The geometry was defined as a hollow 

cylinder measuring 1500 mm outer radius, 

1205 mm inner radius (295 mm brick 

thickness) and 2300 mm high. A homogeneous 

rectangular mesh was applied and the 

mechanical properties of the material remained 

the same as in the previous section. 

Then, a modal analysis was carried out in 

order to calculate the modes of vibration of the 

structure, considering that the modes obtained 

are valid for both the reinforced and non-

reinforced adobe dwelling. The results can be 

seen in table 1. 

Mode Analytical Freq. [Hz] (wi) 

1 0.4305 

2 0.4625 

3 0.7056 

4 0.9112 

5 1.0813 

Table 1: Modes of vibration. 

Figure 15 represents the first mode of 

vibration, its displacements and frequency. 

Figure 15: First mode of vibration. 

The response spectrum is then calculated 

according to NCSE-02 [13]. 

Equation (1) is used to graph the response 

spectrum: 

𝛼(𝑇) = 1 + 1.5 ·
𝑇

𝑇𝐴
 𝑖𝑓 𝑇 < 𝑇𝐴 (1) 

        𝛼(𝑇) = 2.5        𝑖𝑓𝑇𝐴 < 𝑇 < 𝑇𝐵

𝛼(𝑇) = 𝐾 · 𝐶/𝑇   𝑖𝑓 𝑇 > 𝑇𝐵

TA and TB are the spectrum characteristic 

periods (figure 16), and are calculated in (2): 

𝑇𝐴 = 𝐾 · 𝐶/10 (2) 

𝑇𝐵 = 𝐾 · 𝐶/2.5

where: 

- K: contribution coefficient = 1.2

- C: geotechnical ground coefficient = 1

Figure 16: Response spectrum. 

Therefore, TA= 0.12 and TB=0.48 seconds. 
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The various values of α (T) can be seen in table 

2. These result in the response spectrum

plotted in figure 17.

T [s] α(T) 

0 1.00 

0.5 2.50 

1 1.20 

1.5 0.80 

2 0.60 

2.5 0.48 

3 0.40 

Table 2: Values for T and α(T). 

Figure 17: Response spectrum α(T)-T. 

Then the equivalent static force, fuerza 

sísmica estática equivalente, (Fik) was 

calculated as in (3) for the first mode of 

vibration: 

𝐹𝑖𝑘 = 𝑠𝑖𝑘 · 𝑃𝑘 (3) 

where: 

- sik: seismic coefficient corresponding to

the selected floor and mode of vibration 

- Pk: weight of the floor

The weight of the single-floor construction

(P1) was calculated multiplying the density of 

adobe (18.5 kN/m3) times the volume of the 

hollow cylinder, resulting in 106.8 kN. The 

value for s11 was calculated in equation (4): 

𝑠𝑖𝑘 = (𝑎𝑐/𝑔) · 𝛼 · 𝛽 ·  𝜂𝑖𝑘 (4) 

where: 

- ac: acceleration calculation value

- α: period-dependent coefficient

- β: response coefficient

- ηik: distribution factor for k-storey in i-

vibration mode 

The aceleración de cálculo (ac) is defined in 

equation (5): 

𝑎𝑐 = 𝑆 · 𝜌 · 𝑎𝑏  (5) 

where: 

- S: ground coefficient

- ρ: risk coefficient

- ab: seismic horizontal ground acceleration,

aceleración sísmica básica, corresponds to 

Sokone city, 15 km apart from Keur Bakar 

Diahité. 

S takes the value 1.0, ρ is 1.0 as the dwelling 

is considered as a normal construction, and ab 

is calculated in (6):  

𝑎𝑏 = 0.04 · 𝑔        (6) 

where: 

- g: gravity

Following equations (5) and (6) the final

value for ac is 0.39 m/ s2. 

The period-dependent coefficient (αi) is 

calculated in equation (7): 

𝛼 = 2.5       𝑖𝑓 𝑇𝑖 < 𝑇𝐵 (7) 

𝛼 = 2.5 · (𝑇𝑏/𝑇𝑖)  𝑖𝑓 𝑇𝑖 > 𝑇𝐵

Ti refers to the period considered, in this 

case for the first mode, being the period (T) the 

inverse of the frequency (w). Therefore 

T1=2.32 seconds.  

Introducing the values of T1 and TB in (7) 

we obtain the value for α1=0.517.  
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The response coefficient (β) is calculated as 

follows (8): 

𝛽 = 𝑣/𝜇 (8) 

where: 

- v: damping modification factor = 1 for

damping equal to 5% of critical damping 

- μ: ductility behaviour coefficient

The value for μ depends on the organization

of the structure, materials used and the detailed 

construction. Therefore, two values of μ were 

considered: both the adobe and the PET-

reinforced adobe construction. Masonry walls 

use μ=1 (non-reinforced) and high energy 

dissipation structures use μ=2 (PET-

reinforced), as indicated in the Spanish Code. 

Consequently, βnon-r = 1 and βPET-r = 0.5. 

The distribution factor for k-storey in i-

vibration mode (ηik) is defined in equation 9: 

𝜂𝑖𝑘 = 𝛷𝑖𝑘 ·
∑ 𝑚𝑘·𝛷𝑖𝑘

𝑛
𝑘=1

∑ 𝑚𝑘·𝛷
2

𝑖𝑘
𝑛
𝑘=1

(9) 

where: 

- Φik: shape coefficient for k floor in i

vibration mode 

- β: response coefficient

The shape (Φik) coefficient is defined in

equation 10: 

𝛷𝑖𝑘 = sin [(2𝑖 − 1) ·  𝜋 · ℎ𝑘/2𝐻] (10) 

where: 

- hk: k floor height above ground level

- H: total height of the building

As mentioned previously, the simplified

one-storey dwelling hk=H= 2.3 m. 

The values obtained for equations (3, 4, 5, 

7, 8, 9 & 10) are shown in table 3. The 

equivalent static forces F11 for both reinforced 

and non-reinforced one-storey dwellings are, 

in this case, equivalent to the static base shear 

V1. 

Non-reinforced 

dwelling 

PET-reinforced 

dwelling 

Φ11 1 Φ11 1 

η11 1 η11 1 

β 1 β 0.5 

α1 0.517 α1 0.517 

ac 0.39 m/s2 ac 0.39 m/s2 

s11 0.0206 s11 0.0103 

P1 106.8 kN P1 106.8 kN 

F11 2200 N F11 1100 N 

V1 2200 N V1 1100 N 

Table 3: values. 

These results showed that the base shear 

stress on PET-reinforced adobe housing was 

halved, compared to those with no 

reinforcement.  

The simplified one-storey dwelling was 

subjected to the seismic ‘spectrum’ simulation 

caused by Response spectrum α(T)-T (figure 

17). Figure 18 shows the horizontal 

deformation of the building and figure 19 

represents the tangential stress due to said 

input. 

Figure 18: Horizontal deformation. 

Then, the model analysis results were 

compared to the laboratory obtained data.  

The tests revealed an average yield 
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compressive strength (σ) of adobe of value 

1.05 MPa during its early days of curing. Von 

Mises theory was used to estimate the shear 

stress (τ) the structure is submitted to as 

follows (equation 11): 

𝜏 = 𝜎/√3    (11) 

resulting in τ=0.6 MPa. According to [14], 

the tangential strength of the mortar joint is a 

tenth of τ. For this reason, a tension greater 

than 0.06 MPa would not bear the studied 

seismic event. It is clear from the data in figure 

19 that various regions go over 0.06 MPa, 

resulting in weak areas when no reinforcement 

is applied. 

Figure 19: Tangential stress of non-reinforced 

construction. 

Similarly, the construction was then 

analysed taking into account the PET 

reinforcement of adobe. It was not possible for 

Ansys to take fracture energy or deformation 

capacity into consideration. Consequently, a 

static analysis was carried out. A base shear of 

V1=1100 N was applied.  

Figure 20 shows the tangential stress 

thereby obtained. It was observed that the PET 

reinforcement reduced these stress values, 

compared to the non-reinforced construction. 

Figure 20: Tangential stress of PET-reinforced 

construction. 

5 CONCLUSIONS 

- The results derived from mechanical

tests showed how PET-reinforcement

on adobe improves the mechanical

behaviour of this kind of mixed

structures. Tensile strength increased

along with a greater fracture energy.

- The model analysis showed a better

behaviour of PET-reinforced adobe

structures under seismic excitations.

- The reuse of materials combined with

traditional construction improve the

quality of the dwellings.
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Abstract. In this study the vibratory response of two-span continuous beams subjected to 
moving loads is investigated. The main practical interest is the evaluation of the maximum 
vertical acceleration in railway bridges, which is one of the most demanding Serviceability 
Limit States for traffic safety. Two-span continuous bridges exhibit antisymmetric and 
symmetric modes with closely spaced natural frequencies, leading to a more involved dynamic 
behavior than that of simply-supported bridges. First, the free vibration response of a Bernoulli-
Euler two-span beam after the passage of a single load is formulated analytically, and 
cancellation and maximum free vibration response conditions are obtained. These results are 
used to determine length-to-train characteristic distance ratios leading to cancelled resonances 
or remarkably prominent ones. Then a methodology for detecting which could be the most 
aggressive trains for a particular structure based on pure geometrical considerations is 
discussed. Finally, the applicability of the theoretical derivations is shown through the 
numerical analysis of two real bridges belonging to the Swedish railway network. 

Key words: Two-span continuous railway bridges, Moving loads, Resonance, Cancellation. 

1 INTRODUCTION 

Among the longitudinal typologies of 
railway viaducts, both bridges with continuous 
decks resting on multiple supports and bridges 
composed of simply-supported (SS) spans 
coexist. The former are structurally more 
efficient and able to transmit the horizontal 
break and acceleration forces to the ground 
with the collaborative action of the 
substructure elements. The latter may be 
constructed in a rather systematic way, allow 
possible prefabrication, partial replacement of 
the SS decks and facilitate continuous rails. 
Nevertheless, the higher number of joints and 

supporting devices increases the maintenance 
costs and these structures are usually 
appropriate only when piers have a limited 
height. This work is devoted to two-span 
continuous bridges, as the simultaneous 
contribution to the transverse vibrations of 
antisymmetric and symmetric modes 
constitutes a more complex problem and these 
structures may still experience important 
amplifications under railway traffic [1]-[2]. 

The basic phenomenon governing the 
vertical vibrations induced in a bridge by a 
railway convoy is the amplitude of the free 
vibrations that each axle leaves on the structure 
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after its passage, as these free vibration waves 
accumulate and may add in phase for certain 
speeds. Depending on the ratio between the 
travelling time of the load and the natural 
period of the structure, the amplitude of the 
free vibrations in that particular mode may be 
maximum or may be cancelled out, implying 
that the structure will remain at rest under 
certain ideal conditions. This basic problem 
has been analyzed in the past for simply- and 
elastically-supported beams [3]-[5]. The 
interest of knowing these conditions a priori is 
that when resonance, caused by series of loads, 
takes place at a maximum free vibration 
velocity or, on the contrary, close to a 
cancellation condition, the train will induce 
either a very prominent response or an almost 
imperceptible one, respectively. 

The objectives of this study are to (i) 
investigate analytically the problem of free 
vibrations in two-span continuous beams; (ii) 
verify whether maximum free vibration and 
cancellation conditions take place and, if so, to 
determine their value for any longitudinal 
bending mode and for any structure; (iii) obtain 
geometrical ratios leading to maximum 
resonance and cancellation of it for symmetric 
and antisymmetric modes and to prove their 
applicability when ideal conditions are not 
met; and (iv) apply the former theoretical 
derivations to the application of two-span 
bridges under High-Speed traffic by proposing 
a methodology to detect which could be the 
most and least aggressive trains for a particular 
design speed of the line, and what kind of 
resonance is responsible for it. 

Being able to predict velocities leading to 
maximum free vibration or cancellation is of 
practical interest as not only the most and least 
aggressive trains may be detected for a 
particular structure but, in addition, this 
information could also be useful when 
planning experimental campaigns on bridges 
with the aim of identifying amplitude-
dependent magnitudes (e.g. modal damping). 

2 FREE VIBRATIONS OF TWO-SPAN 
BEAM UNDER MOVING LOAD 

The partial differential equation governing 
the undamped transverse vibrations w(x,t) of a 
two-span Bernoulli-Euler beam, neglecting 
shear deformation and rotatory inertia, 
traversed by a constant-valued load P moving 
at constant speed V is given by 

𝜌𝐴ሺ𝑥ሻ
𝜕ଶ𝑤ሺ𝑥, 𝑡ሻ

𝜕𝑡ଶ ൅
𝜕ଶ𝐸𝐼ሺ𝑥ሻ

𝜕𝑥ଶ

𝜕ଶ𝑤ሺ𝑥, 𝑡ሻ

𝜕𝑥ଶ ൌ 

ൌ െ𝑃𝛿ሺ𝑥 െ 𝑉𝑡ሻ ቂ𝐻ሺ𝑡ሻ െ 𝐻 ቀ𝑡 െ
ଶ௅

௏
ቁቃ     (1) 

The solution to Eq. (1) may be expressed as 
a linear combination of the normal modes i(x) 
represented in Fig. (1) along with the 
corresponding roots of the frequency equations 
for antisymmetric 𝜆௜

௔ and symmetric modes 𝜆௜
௦: 

Figure 1: First three (a) antisymmetric and (b) 
symmetric normal modes of the two-span beam. 

In two-span continuous beams 
antisymmetric and symmetric modes alternate 
with the frequency number, and each modal 
frequency increases in relation to the 
fundamental one 𝑓ଵ

௔ according to the factors 

(a)

2
a
  =

1
a
  =

3
a
  =

(b)1
s
  =

2
s
  =3

s
  =
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𝑓ଵ ൌ 𝑓ଵ
௔ሾ𝟏, 1.56, 𝟒, 5.06, 𝟗, 10.56, … ሿ     (2) 

In virtue of the modes orthogonality, modal 
equations become uncoupled and the 
amplitude of the free vibrations normalized by 
the modal static displacement once the load 
leaves the beam, Rn, may be obtained in closed 
form neglecting structural damping as 

𝑅௡ ൌ
ఠ೙

మ ெ೙

ି௉
ට కሶ ೙

మ

ఠ೙
మ ൅ 𝜉௡

ଶ

௧ୀ
మಽ
ೇ

⇒ 𝑅௡ ൌ 𝑓 ቀ𝐾௡ ൌ
ఒ೙௏

ఠ೙௅
ቁ   (3) 

In Eq. (2), n, n and Mn are n-th modal 
amplitude, circular frequency and modal mass, 
respectively, L is the length of each span and a 
dot indicates differentiation with respect to 
time. Fig. (2) shows the evolution of Rn for the 
first antisymmetric and first symmetric modes 
vs. the speed parameter K1. As both Rn and K1 
are non-dimensional, these representations and 
the conclusions derived hereafter are 
applicable to any two-equal-span uniform 
beam. 

Figure 2: Rn for first two modes vs. K1. 

From the analysis of Fig. (2) it can be 
concluded that (i) depending on the travelling 

speed, the amplitude of the free vibrations that 
a particular beam undergoes in a certain mode 
once the load leaves the structure can be 
maximum or cancelled out, taking into account 
that no damping is present in the system. The 
speed parameters for these conditions can be 
obtained analytically. (ii) The velocities 
cancelling out the free vibrations of the 
fundamental mode also cancel out the response 
of the remaining antisymmetric modes. This 
does not occur among the symmetric modes or 
among these and the fundamental mode. (iii) 
When damping is present and for moderate 
levels of it, the evolution of Rn is similar, the 
amplitudes at local maxima are lower, and the 
response is not completely cancelled out at 
cancellation speeds, although the response is 
remarkably low. From the solution to Eq. (3) 
cancellation and maximum free vibration non-
dimensional speeds may be calculated as 

𝑅௡ሺ𝐾௡ሻ ൌ 0 ⇒ 𝐾௡
௖௜     

డோ೙ሺ௄೙ሻ

డ௄೙
ൌ 0 ⇒ 𝐾௡

௠௜      𝑖 ൒ 1   (4) 

In Table 1 the first four values of 𝐾௡
௖௜ and 

𝐾௡
௠௜ are given for the first four modes. As it 

should be expected the speed parameters for 
the fundamental mode coincide with those of 
the SS beam for the second bending mode if L 
is the span length [5]. It should be indicated 
that a realistic upper limit for K1 can be 
estimated in 0.5. Therefore, 𝐾௡

௠ଵ will never be 
reached in a practical situation. 

n 𝐾௡
௖ଵ 𝐾௡

௖ଶ 𝐾௡
௖ଷ 𝐾௡

௖ସ 
1 0.5000 0.3333 0.2500 0.2000
3 0.6667 0.5000 0.4000 0.3333
2 0.4835 0.3624 0.2758 0.2282
4 0.6201 0.5107 0.4044 0.3488
n 𝐾௡

௠ଵ 𝐾௡
௠ଶ 𝐾௡

௠ଷ 𝐾௡
௠ସ 

1 0.8883 0.4094 0.2886 0.2235
3 0.9653 0.5812 0.4478 0.3652
2 0.7312 0.4202 0.3157 0.2509
4 0.8409 0.5625 0.4542 0.3758

Table 1: Cancellation and maximum free vibration 
speeds of first two antisymmetric (n=1,3) and first two 

symmetric (n=2,4) modes. 
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3 FORCED VIBRATIONS UNDER 
EQUIDISTANT LOADS 

3.1 L/d ratios for maximum resonance and 
cancellation of resonance 

In what follows the dynamic response of the 
two-span beam is investigated under trains of 
equidistant loads travelling at constant speed 
V. When the time interval between the passage
of two consecutive loads is a multiple of one of
the beam natural periods, resonance is induced.
Depending on the amplitude of the free
vibrations, resonance could result in a
remarkably amplified response (if the resonant
speed coincides with a maximum free
vibration speed) or may not even be
perceptible (if it coincides with or is close to a
cancellation condition). Ideally, a train of
equidistant loads with characteristic distance d
induces a j-th order resonance of the n-th mode
as per Eq. (5), which may be expressed non-
dimensionally as

𝑉௡௝
௥ ൌ

ௗ൉௙೙

௝
⇒ 𝐾௡௝

௥ ൌ
ఒ೙

ఠ೙௅

ௗ൉௙೙

௝
    (5) 

By equating 𝐾௡௝
௥  to the cancellation or 

maximum free vibration speed parameters in 
Table 1, for any mode n and event i, L/d ratios 
leading to the cancellation or maximum of the 
j-th resonance of the n-th mode of the two-span
continuous beam are obtained according to

𝐾௡௝
௥ ൌ 𝐾௡

௖௜ ⇒ ቀ
௅

ௗ
ቁ

௡௝

௖௜
ൌ

ఒ೙

ଶగ௝

ଵ

௄೙
೎೔     (6a) 

𝐾௡௝
௥ ൌ 𝐾௡

௠௜ ⇒ ቀ
௅

ௗ
ቁ

௡௝

௠௜
ൌ

ఒ೙

ଶగ௝

ଵ

௄೙
೘೔   (6b) 

In Tables 2 and 3 these ratios are given for 
the first two normal modes n=1, 2, i.e. first 
antisymmetric and first symmetric modes, 
which will have the highest participation in the 
transverse acceleration, as will be shown later 
on. Ratios for higher modes could also be 
obtained analytically by applying Eq. (6). 
These ratios are valid for any beam or bridge 

due to the non-dimensional nature of the 
formulation. 

j ൬
𝐿
𝑑

൰
ଵ௝

௖ଵ

൬
𝐿
𝑑

൰
ଵ௝

௖ଶ

൬
𝐿
𝑑

൰
ଵ௝

௖ଷ

൬
𝐿
𝑑

൰
ଵ௝

௖ସ

1 1.000 1.500 2.000 2.500
3 0.500 0.750 1.000 1.250
2 0.333 0.500 0.667 0.833
4 0.250 0.375 0.500 0.625

n ൬
𝐿
𝑑

൰
ଵ௝

௠ଵ

൬
𝐿
𝑑

൰
ଵ௝

௠ଶ

൬
𝐿
𝑑

൰
ଵ௝

௠ଷ

൬
𝐿
𝑑

൰
ଵ௝

௠ସ

1 0.563 1.221 1.733 2.238
3 0.281 0.611 0.866 1.119
2 0.188 0.407 0.578 0.746
4 0.141 0.305 0.433 0.559

Table 2: L/d ratios for cancellation of resonance and 
maximum resonance of the first mode (antisymmetric). 

j ൬
𝐿
𝑑

൰
ଶ௝

௖ଵ

൬
𝐿
𝑑

൰
ଶ௝

௖ଶ

൬
𝐿
𝑑

൰
ଶ௝

௖ଷ

൬
𝐿
𝑑

൰
ଶ௝

௖ସ

1 1.293 1.725 2.266 2.739
3 0.646 0.862 1.133 1.369
2 0.431 0.575 0.755 0.913
4 0.323 0.431 0.567 0.685

n ൬
𝐿
𝑑

൰
ଶ௝

௠ଵ

൬
𝐿
𝑑

൰
ଶ௝

௠ଶ

൬
𝐿
𝑑

൰
ଶ௝

௠ଷ

൬
𝐿
𝑑

൰
ଶ௝

௠ସ

1 0.855 1.487 1.980 2.491
3 0.427 0.744 0.990 1.246
2 0.285 0.496 0.660 0.830
4 0.214 0.372 0.495 0.623

Table 3: L/d ratios for cancellation of resonance and 
maximum resonance of the second mode (symmetric). 

3.2 Contour plots of maximum response 

In what follows, the previous derivations 
are exemplified through numerical parametric 
analyses including the presence of structural 
damping and considering the simultaneous 
contribution of several modes of vibration in 
the computation of the transverse response. 

A particular beam is selected with the 
properties of an existing railway bridge that 
will be analysed in section 4. In particular 
L=23.5 m, EI=7.14ꞏ1010 Nm2, A=23010 kg/m 
and modal damping n=1%. The bridge 
vertical response is obtained in the time 
domain by numerical integration applying the 
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Newmark- linear acceleration algorithm 
under the circulation of artificial trains of 
equidistant loads. The analytical expressions 
for the normal modes are used to represent the 
deformation of the beam and, therefore, no 
spatial discretization is needed. The vertical 
response of the bridge is obtained under the 
circulation of 201 independent trains each 
composed of 25 loads of 210 kN separated by 
a distance d. Characteristic distances, d, are 
selected so that the range (L/d)  [0.5, 2.5] is 
covered using a fine increment (L/d) = 0.01. 
For each of the trains, the maximum 
displacement and acceleration are obtained at 
different sections of the beam in a range of 
circulating velocities such that the first three 
resonances (j=1,2,3) of the first and of the 
second modes are excited. The maximum 
response is obtained considering the first six 
modes of vibration with natural frequencies up 
to 60 Hz. The natural frequencies of the modes 
in the particular case under study are the 
following: 

𝑓௡ ൌ ሼ5.01, 20.04, 45.09ሽ Hz   𝑖 ൌ 1, 3, 5            (7a) 
𝑓௡ ൌ ሼ7.83, 25.37, 52.92ሽ Hz   𝑖 ൌ 2, 4, 6            (7b) 

In Fig. (3), contour plots of the maximum 
transverse displacement (a) and acceleration 
(b) at the mid section of the second span in
absolute value due to the contribution of the
first six modes (N=6) are included. Each point
in the contour representation corresponds to a
particular train, defined by its characteristic
distance d and a particular circulating velocity
V of that train. The maximum response for
each train and velocity is plotted in terms of
two ratios: L/d and the speed V divided by the
product of the fundamental frequency times
the characteristic distance. This representation
is not only non-dimensional, but it also
facilitates the visualization of a particular
mode resonant order, as the corresponding
peaks appear vertically aligned for each value
of j. In all the plots a series of maxima appear

at V/f1d={1,0.5,0.333,...} for different L/d 
values corresponding to resonances of the 
fundamental antisymmetric mode for 
j=1,2,3,... Series of peaks are also visible in the 
vicinity of V/f1d={1.56,0.78,0.52,...}, 
coinciding with resonances of the second mode 
(first symmetric mode), as well for j=1,2,3,... 
These values are consistent with the fact that 
f2=1.56ꞏf1. 

Figure 3: Contour plots for maximum displacement 
and acceleration under trains of equidistant moving 

loads. 

At resonance, as L/d increases maximum 
resonance peaks and cancelled resonances take 
place alternatively. Also, as L/d increases, the 
amplification at resonance reduces, since 
shorter characteristic distance trains excite the 
same resonance at a lower velocity, and lower 
velocities imply lower amplitude local maxima 

(a)

(b)
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of the free vibration response, as shown in 
section 2. 

The actual value of the maximum response 
in Fig. 3 is not relevant for this study, as no 
upper limit for the train speed is considered. In 
all plots and for the first resonance order (j=1) 
of the first two modes, corresponding to V/f1d= 
1 and 1.56, L/d analytical ratios for maximum 
resonance and cancellation of resonance have 
been highlighted in thick and discontinuous 
horizontal segments along with the specific 
value, which is that included in Tables 2 and 3. 
The analytical predictions are accurate, despite 
the simultaneous contribution of the six modes 
and despite the presence of structural damping. 
It is also worth mentioning that these ratios 
predict cancelled and maximum resonances 
adequately both in the displacement and in the 
acceleration response. 

The effect of modes higher than the second 
one is visible far from resonance, for moderate 
values of the response, especially in the 
acceleration plots. The displacement response 
is mildly affected by modes higher than n=2, 
which is to be expected and consistent with 
previous works. The overall maximum 
acceleration takes place at the first resonance 
of the second mode (V/f1d=1.56) in the vicinity 
of the first theoretical maximum, i.e. 
L/d=0.855, leading to 17.72 m/s2. 

From the previous analysis it can be 
concluded that when resonance is induced on a 
two-span continuous beam or bridge by a train 
of equidistant loads, its amplification will 
depend on the level of free vibrations 
associated with the particular velocity. 
Resonances of either the first (antisymmetric) 
or second (symmetric) mode are prone to be 
responsible for the overall maximum vertical 
acceleration of the bridge. The same train will 
require a higher speed in order to induce the 
same resonance of the second mode (when 
compared to that of the fundamental), with a 
higher level of free vibrations left by each axle 
load. Therefore, the second mode can be the 

one responsible for the maximum response as 
long as the train speed is sufficiently high. In 
other words, the mode causing the maximum 
overall response of the bridge will depend on 
the maximum train speed. 

Depending on the ratio between the length 
and the train characteristic distance, the 
response at resonance may be rather prominent 
or almost imperceptible. Furthermore, the 
analytical predictions of these L/d ratios 
leading to maximum resonance or cancellation 
of it, which were obtained in closed form in the 
absence of damping and admitting separate 
modal contributions, show themselves to be 
good estimates of the real values. This is due 
to the moderate damping values in railway 
bridges and also to the fact that, at resonance, 
the contribution of modes other than the one 
undergoing resonance is very limited. 

4 CASE STUDIES 

In this section, the analysis of the dynamic 
performance of two real bridges is presented 
under the circulation of articulated load trains 
considering realistic design speeds. The 
bridges belong to the Swedish railway 
network, in particular, to the Bothnia and to the 
West Coast lines, respectively. The maximum 
train speed at both sites is at present 200 km/h. 
The possibility of increasing the operating 
speed on these lines with a target of 250 km/h 
is currently under study, and the evaluation of 
the performance of the bridges if these lines are 
upgraded is a topic of major interest for the 
Swedish railway administration [6]. 

Lögde Br. Förslöv Br.
L (m) 43.0 23.5
EI (GNm2) 105 71.4
A (kg/m) 13816 23010 
n (%) 0.50 1.00 
f1, f2 2.34, 3.66 5.01, 7.83

Table 4: Properties of the bridges under study. 

The structures under study are single-track 
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and, in a first approach, the contribution of 
modes other than the longitudinal bending 
ones is disregarded. The main properties of the 
beams model for the two bridges and first two 
bending frequencies are included in Table 4. 

The response of the bridges under the 
circulation of the High Speed Load Model-A 
(HSLM-A) from Eurocode (EC) is obtained by 
time integration using analytical mode shapes. 
The design speed considered for both bridges 
is 300 km/h (i.e. 1.2 times the target operating 
speed). 

4.1 Case 1. Bridge over River Lögde 

The first structure under study is a 
continuous bridge with two 43 m identical 
spans and a uniform steel-concrete composite 
deck, as shown in Fig. 4. 

The critical speeds for the ten HSLM-A 
trains' characteristic distances (from 18 to 27 
m) for the lowest resonance order attainable
given the design speed, and for the first two
modes, which will be the ones that contribute
most to the acceleration response, are
represented in Fig. 5(a). The reader is referred
to [7] for numerical details. All the trains
induce first resonance of the fundamental
mode under 300 km/h. Nonetheless, only the
first five trains, with smaller characteristic
distances, are able to do so in the case of the
second mode, due to its higher frequency.

In order to compare the level of free 
vibrations associated to each train at the 
resonant speeds, the values of 𝐾ଵ௝

௥  are 
superimposed to the normalised amplitude of 
the free vibrations for the first two modes, R1 
and R2. The vertical black lines stand for the 
resonant speeds of the fundamental mode and 
the grey vertical ones to those of the second 
mode. The intersection of each vertical line 
with either R1(K1) or R2(K1) (only intersections 
of traces of the same color should be 
considered) provides an estimation of the level 
of acceleration experienced by the bridge in a 

certain mode at resonance. Moreover, the 
amplitude of either R1 or R2 is multiplied by the 
factor Pk/P1 in order to account for the different 
axle load modulus of the HSLM-A trains, Pk 
being the axle load of the k-th train and P1=170 
kN, which is the minimum value. This 
corrected product is shown with a red circle 
that has a black border in the case of 
resonances of the first antisymmetric mode and 
a grey border in the case of resonances of the 
second mode. 

Figure 4: Bridge over River Lögde Rover. Elevation 
view and cross section. 

Admitting that the number of loads is 
sufficient and that the resonance state has 
reached a constant amplitude due to the 
presence of damping, this may be used to 
compare the relative amplitudes of the 
acceleration at resonance induced by different 
trains on the first two modes of vibration. This 
is of course an estimation that only takes into 
account the lengths of the passengers' coaches 
and admits similar modal damping ratios for 
both modes, but it allows a preliminary 
prediction of which train will induce the most 
detrimental resonance and which mode will be 
the one undergoing it, taking into consideration 

3.735 m 3.735 m
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all cancellation and maximum free vibration 
situations. According to this the maximum 
acceleration may take place at first resonance 
of the second mode induced by train A4. This 
train should be one of the most aggressive 
trains for the particular structure and speed 
limit according to the Serviceability Limit 
State for traffic safety. 

The response of the Lögde bridge to the 
circulation of the ten HSLM-A trains is 
computed and presented. The overall 
maximum acceleration takes place at mid-span 
of the second span. In Fig. 6 the maximum 
transverse displacement (a) and acceleration 
(b) are plotted in absolute values at this most
critical section versus the non-dimensional
speed V/f1d for the ten HSLM-A trains. The
maximum response induced by the HSLM-A4

is represented with a red trace. The overall 
maximum acceleration exceeds the limit for 
ballasted tracks according to EC. Therefore, 
this bridge may need to be improved in order 
to allow increased train speeds. As predicted, 
for the admitted design velocity the maximum 
response in terms of accelerations is due to a 
first resonance of the second mode 
(V/f1d=1.56), and it is induced by the HSLM-
A4 train (red trace). In Fig. 6 it can also be 
observed that train A2 does not induce first 
resonance of the symmetric mode. For this 
train L/dk=2.26, very close to the theoretical 
value for cancellation of the second mode first 
resonance. Finally, it should be said that the 
effect of modes higher than the second one is 
very low, especially at resonance, especially 
for the displacement response. 

Figure 5: Rn vs. K1 for n=1,2 and most critical resonant speeds from HSLM-A under 300 km/h: (a) Lögde Bridge and 
(b) Förslöv Bridge.
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Figure 6: Lögde Bridge. (a) wmax and (b) amax at 
x=1.5L. HSLM-A, Vmax=300 km/h. 

4.2 Case 2. Förslöv Bridge 

As a second example, the case of a pre-
stressed concrete railway bridge from the West 
Coast line located between the cities of 
Gothenburg and Copenhagen is presented. A 
modified version of the real structure is 
analyzed, with two identical spans of 23.5 m. 

The first two natural frequencies of the 
bridge calculated analytically are 5.01 Hz and 
7.83 Hz, respectively. Again, the theoretical 
resonant frequencies are computed for the first 
two modes and the first resonant orders. In this 
case study the natural frequencies are higher 
than in the previous one. For this reason, the 
critical velocities leading to first resonance of 
the first two modes exceed the maximum 
design speed of 300 km/h assumed for all the 
HSLM-A trains. In Fig. 5(b) the highest 
attainable non-dimensional resonant speeds for 
each train are represented with vertical solid 

traces for the first and second modes. In this 
case, all the trains in the HSLM model are 
capable of inducing a second-order resonance 
of the first antisymmetric mode, but only the 
first four have a sufficiently low characteristic 
distance to induce second-order resonance of 
the first symmetric mode below 300 km/h. It 
can be verified graphically that train HSLM-
A10 is the one leading to a highest value of 
RnꞏPk/P1, in particular for the first mode, as its 
associated second resonance speed coincides 
with the third local maximum of the free 
vibrations for n=1. Therefore, this train could 
be one of the most aggressive. 

Figure 7: Förslöv Bridge. Elevation view and cross-
section. 

In what follows, the response of the bridge 
is obtained numerically under the ten HSLM-
A trains. Fig. 8 shows the maximum 
displacement and acceleration responses of the 
Förslöv bridge taking into account the 
contribution of the first six modes of vibration. 
The overall maximum acceleration takes place 
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at the mid-span section of the second span, as 
in the previous example. 

Figure 8: Förslöv Bridge. (a) wmax and (b) amax at 
x=1.5L. HSLM-A, Vmax=300 km/h. 

The maximum acceleration reaches 2.89 
m/s2, below the recommended limit for traffic 
safety on ballasted tracks. The maximum 
acceleration is associated to a second 
resonance of the fundamental mode, as 
predicted in the previous analysis of the level 
of free vibrations. The train leading to the 
maximum acceleration response is A10, with 
L/dk=0.87, close to the theoretical ratio for the 
maximum second resonance of the 
fundamental mode (see Table 2) and also 
consistent with what is shown in Fig. 5(b). This 
train is also the one responsible for the 
maximum displacement, which is also caused 
by the second resonance of the fundamental 
mode. Only a few trains are able to induce 
second resonance of the second mode (i.e. 
V/f1d=0.78) and the response in terms of 
accelerations is much lower than that induced 
by the most aggressive train in the first mode. 

In Fig. 8 it can also be observed that train A2 
does not induce second resonance of the 
fundamental mode. For this particular train and 
bridge L/dk=1.24, very close to the theoretical 
value of 1.25 of cancellation of this particular 
resonance (see Table 2). It is important to state, 
again, that the maximum response is mainly 
governed by the first two modes of vibration of 
the two-span beam, and that the contribution of 
higher modes in the acceleration response at 
resonance is negligible. 

11 CONCLUSIONS 

The main conclusions derived from the 
research conducted are: 

- When a load moving at constant speed
travels on a two-span continuous
beam, the level of free vibrations left
by the load in a certain mode may be
maximum or negligible, depending on
the ratio between the load velocity and
the beam frequency. These conditions
for maximum free vibration and
cancellation can be obtained
analytically in a non-dimensional
format.

- Linear velocities that cancel out the
free vibrations in the first
antisymmetric mode also cancel out
the response of the remaining
antisymmetric modes. This does not
occur among the symmetric modes or
among these and the fundamental one.

- When resonance is induced on a two-
span continuous beam or bridge by a
train of equidistant loads, its
amplification will depend on the level
of the free vibrations associated to the
particular velocity. Moreover,
depending on the ratio between the
length and the train characteristic
distance, the response at resonance
may be rather prominent or almost
imperceptible.
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- The analytical predictions of the L/d
ratios leading to maximum resonance
or its cancellation, obtained in the
absence of damping and admitting
separate modal contributions, show
themselves to be excellent estimates
of the real values when several modal
contributions and modal damping are
considered.

- The maximum acceleration response
in a two-identical-span railway bridge
is mostly governed by the first
antisymmetric and first symmetric
modes. If a bridge undergoes
resonance of the first two modes, the
one leading to the maximum
acceleration will depend on the
maximum design speed. The non-
dimensional free vibration amplitudes
at the actual resonant speeds may be
used to estimate the particular train,
resonance order and mode number
leading to the overall maximum
acceleration response in the structure.
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Abstract. A significant number of railway bridges composed by simply-supported (SS) 

spans are present in existing railway lines. Special attention must be paid to short to medium 

span length structures, as they are prone to experience high vertical acceleration levels at the 

deck due to their low weight and damping, compromising the travelling comfort and the 

structural integrity. The accurate prediction of the dynamic response of these bridges is a 

complex issue since it is affected by uncertain factors such as structural damping and complex 

interaction mechanisms such as vehicle-bridge, soil-structure or track-bridge interaction. 

Concerning track-bridge interaction, experimental evidences of a dynamic coupling exerted by 

the ballasted track between subsequent SS spans and also between structurally independent 

single-track twin adjacent decks have been reported in the literature. Nevertheless, this 

phenomenon is frequently disregarded due to the computational cost that involves the 

introduction of the track in the numerical models and the uncertainties in the mechanical 

parameters that define the track system. 

The present work contributes to the study of the coupling effect exerted by the continuity of the 

ballasted track in railway bridges composed by SS spans and structurally independent decks at 

each span. With this purpose a 3D finite element (FE) track-bridge interaction model is 

implemented, which includes a continuous representation of the track components meshing the 

sleepers, ballast and sub-ballast with solid FE. The numerical model is updated with 

experimental measurements performed on an existing railway bridge in a view to evaluate (i) 

the influence of the track continuity on the bridge modal parameters and on the train-induced 

vibrations; (ii) the adequacy of the implemented numerical model and (iii) the importance of 

the track-bridge interaction for an accurate prediction of the vertical acceleration levels under 

operating conditions. 

Key words: railway bridges, vertical acceleration, track-bridge interaction, ballasted track, 

resonance. 
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1 INTRODUCTION 

The dynamic behaviour of railway bridges 

has been a matter of concern for scientists and 

engineers during the past decades. The 

periodic nature of the railway excitation, 

associated to the succession of identical 

passenger coaches and track components 

travelling at constant speed, may cause 

important vibration levels in the infrastructure. 

Moreover, particular combinations of the 

structure natural periods and the train 

repetitive distances may induce resonance on 

the bridges, leading to a progressive increase 

of the vertical acceleration at the platform only 

bounded by the system damping. Bridges 

composed by simply supported spans are 

common in countries like Germany or China, 

as they may be constructed with rather 

systematic procedures, allowing prefabrication 

and partial replacement of the decks. In short-

to-medium spans such structures are prone to 

experience resonance and important vertical 

vibrations due to their usually associated low 

mass and structural damping [1]-[4]. 

According to European Standards (EC) [5], the 

maximum vertical acceleration in railway 

bridges is limited to 3.5m/s2 for ballasted 

tracks, which constitutes a considerably 

restrictive requirement for the design of new 

structures. 

In an attempt to predict accurately the 

bridge dynamic response under operating 

conditions several numerical models of 

different complexities have been proposed 

over the years. For practical purposes one 

major concern is to meet a compromise 

between accuracy, computational cost and the 

assumption of simplifications aligned with 

current regulations. The structural geometry 

and scheme of train loads are obvious and 

rather certain factors that affect the dynamic 

response significantly. In engineering 

consultancies it is common to assume a beam 

or plate-type behaviour for the bridge deck and 

to represent the railway excitation as constant 

moving loads, which is in accordance with the 

current standards and extensively used in the 

scientific literature [6]-[10]. However, other 

factors such as train-track-bridge and soil-

structure interaction mechanisms are generally 

disregarded for practical applications, due to 

their uncertain nature and the computational 

effort usually required. The influence of such 

mechanisms on the bridge dynamics is the 

subject of study of a number of current 

investigations, and the work presented herein 

is specifically devoted to the coupling effect 

exerted by the ballasted track on bridges 

composed by SS spans under operating 

conditions. 

In the present work, the authors analyse the 

properties and coupling effect of the ballasted 

track taking as starting point Old Guadiana 

Bridge, a representative railway bridge from a 

conventional railway line in Spain. The bridge 

is composed by two identical SS spans and two 

structurally independent but adjacent single-

track decks. A clear dynamic coupling between 

the spans attributable to the track continuity, 

and also between the adjacent decks through 

the shared ballast layer was detected during 

experimental tests [11]. This work aims to 

assess the extent of track-bridge interaction 

effects in such bridges and the key parameters 

affecting the dynamic coupling between 

structurally independent parts. With this 

purpose a 3D FE model is implemented. A 

degraded type of ballast with elastic 

anisotropic behaviour is assumed at the regions 

between subsequent spans or adjacent decks to 

consider the potential degradation of this layer 

due to the relative vertical movements over 

these areas. The model is updated applying 

optimisation procedures to reproduce the 

modal properties identified experimentally. 

Finally the bridge response under the passage 

of railway traffic is predicted and compared 

with experimental measurements in a view to 

assess the adequacy of the proposed numerical 
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model. 

2 BRIDGE DESCRIPTION 

The structure under study is a double-track 

bridge that belongs to the conventional railway 

line Madrid-Alcázar de San Juan-Jaén in 

Spain. It is composed by two identical SS 

spans of 11.93m length between supports 

centres. The horizontal structure is formed by 

two adjacent but structurally independent 

single-track decks. Each deck is made of a 

reinforced concrete slab resting on five pre-

stressed concrete girders. The decks are 

weakly connected along their longitudinal 

border through the ballast. Each track is 

conformed by Iberian gauge UIC60 rails and 

mono-block concrete sleepers separated 

0.60m. The bridge substructure consists of two 

external abutments and one central support. 

The girders rest on them through laminated 

rubber bearings. 

On May 2019 the response of the bridge 

was measured to characterise the modal 

parameters and the dynamic response under 

operating conditions. 18 accelerometers were 

installed underneath the girders and the 

vertical response was measured under ambient 

vibration and several train passages. The 

accelerometers were installed at points 1 to 18 

indicated in Figure 1. For details of the 

experimental campaign the reader is referred to 

Reference [11]. 

In Figure 2 the first five experimental 

natural frequencies (𝑓𝑖
𝑒𝑥𝑝 ), mode shapes and

modal damping ratios (𝜉𝑖
𝑒𝑥𝑝 ) identified from

the ambient vibration response are included. 

Notice that the number of sensors installed was 

limited, especially in the second span. The 

lowest mode in frequency order corresponds to 

the first longitudinal bending mode of each 

span where the two adjacent decks vibrate in 

phase. In the second mode the two decks 

deform jointly creating a combined first 

torsion mode in each span. In the third mode, 

the two adjacent decks deform under 

independent torsion but out of phase 

conforming a first transverse bending mode. In 

the aforementioned modes, the coupling 

exerted by the ballast layer over the adjacent 

decks is evident. The fourth and fifth modes 

correspond to an in-phase torsional 

deformation and to the transverse bending of 

each deck, respectively. 

Figure 1: Sensors layout. 
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Figure 2: First five experimental modes, natural 

frequencies and modal damping ratios identified from 

ambient vibration.

3 NUMERICAL MODEL 

A 3D continuous track-bridge interaction 

model of the complete bridge is implemented 

in ANSYS. The model includes the two spans 

and 15m of the track over the embankment 

before and after the bridge (Figure 3). 

Figure 3: 3D track-bridge numerical model. In the 

view: detail of one span and track extension. 

The main features of the model are: 

- The slabs and longitudinal girders are

meshed with shell FE (SHELL181)

with 6 degrees of freedom (DOF) per 

node.  

- For the laminated rubber bearings

located at the girders supports solid

FE (SOLID185) of isotropic material

are used, considering their real

dimensions. The elastic modulus of

the material is estimated in order to

reproduce the experimental static

deflection measured during the proof

load test in 2005 before the bridge

opening [12]. Kinematic constraints

are applied at each girder end for the

connection with the elastic bearing

through a massless infinitely rigid

plate defined at the bearing top

surface. In the bottom surface,

classical fixed boundary conditions

are used.

- Timoshenko beam elements with 6

degree of freedom (DOF) per node

(BEAM188) are used for the rails,

while the sleepers are discretised

using solid elements (SOLID185)

with 3 DOF per node. The rails are

connected to the sleepers through

discrete spring-damper elements

(COMBIN14)  representing the rail

pads.

- The ballast layer, meshed with solid

elements (SOLID185), is divided into

(i) a non degraded region of isotropic

elastic behaviour; and (ii) a degraded

region, placed in the vicinity of the

longitudinal joint between the decks

and along the transverse border

between the two spans, of transversely

isotropic material behaviour. With

this approach different interlocking

mechanisms of the ballast granules in

the out-of-plane (vertical) and in the

in-plane directions can be considered.

- The subgrade layer at the 

embankment, also meshed with solid 

elements (SOLID185), is restrained in 
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its bottom surface. 

- Finally, the handrails are included in

the model as lumped masses

(MASS21) uniformly distributed

along the two external borders of the

bridge decks.

The numerical model contains 231940 

elements and 260210 nodes, which correspond 

to 769801 degrees of freedom. 

4 MODEL CALIBRATION 

The numerical model of the bridge is 

calibrated based on the modal parameters 

(natural frequencies and mode shapes) 

identified from ambient vibration in the 

experimental test performed in Guadiana 

bridge. The agreement between the 

experimental and numerical mode shapes is 

quantified through the Modal Assurance 

Criterion (MAC) [13] and the relative 

difference between the numerical and 

experimental frequencies of the paired modes, 

as per 

MAC =  
(𝜙𝑖

𝑒𝑥𝑝,𝑇
· 𝜙𝑗

𝑛𝑢𝑚)
2

(𝜙𝑖
𝑒𝑥𝑝,𝑇

· 𝜙𝑖
𝑒𝑥𝑝

) · (𝜙𝑖
𝑛𝑢𝑚,𝑇 · 𝜙𝑗

𝑛𝑢𝑚)

(1) 

𝑒%1: =  
𝑓𝑖

𝑒𝑥𝑝
− 𝑓𝑗

𝑛𝑢𝑚

𝑓𝑖
𝑒𝑥𝑝 · 1

𝑖 = {1 , 2 , 3 , 4 , 5}  ;  𝑗 = {1 , 2 , … , 𝑛} 

In the previous equations, 𝜙𝑖
𝑒𝑥𝑝

and 𝜙𝑗
𝑛𝑢𝑚

are the ith and jth experimental and numerical 

mode vectors, respectively, 𝑓𝑖
𝑒𝑥𝑝

 and 𝑓𝑗
𝑛𝑢𝑚 the

corresponding natural frequencies, T implies 

transpose and n maximum numerical mode. 

An optimisation iterative procedure 

implemented in ANSYS-MATLAB is 

performed based on the minimisation of an 

objective function involving the difference in 

natural frequencies and MAC residuals, under 

variations of seven model parameters that are 

chosen according to (i) a preliminary 

sensitivity analysis; and (ii) the level of 

knowledge and certainty on the particular 

track-bridge system properties. Successive 

model samples are generated from variations 

of the selected model parameters within 

reasonable limits with respect to nominal 

values extracted from the project information, 

scientific literature and current standards. 

Table 2 shows the model parameters used in 

the numerical idealisation of Old Guadiana 

bridge, in which the following nomenclature is 

used: E, 𝜈 and 𝜌 stand for the elastic modulus, 

Poisson's ratio, and mass density, respectively. 

Also, X, Y and Z refer to the longitudinal 

direction (parallel to the track), transverse and 

vertical directions, respectively. In the rail, 𝐼𝑦𝑟 

refers to the moment of inertia of the cross-

section with respect to Y, and m denotes linear 

distributed mass. Concerning the track 

components, the spring-dashpot discrete 

properties of the rail pads (𝐾𝑝 and 𝐶𝑝) are 

provided, and the sleepers dimensions (length, 

width and height) and total mass are designated 

as 𝑙𝑠𝑙, 𝑤𝑠𝑙 , ℎ𝑠𝑙 and 𝑀𝑠𝑙, respectively. In the 

ballast properties, ℎ𝑏 is the total height of the 

layer, which is assumed constant and uniform 

over the platform. Underneath the sleepers, the 

ballast thickness is ℎ𝑏 − ℎ𝑠𝑙/2. A ballast 

thickness of ℎ𝑏= 45cm is considered based on 

in situ inspection, leading to a total ballast 

thickness underneath the sleepers of 34cm, in 

accordance with Spanish regulations [14]. 

Notice that the main ballast presents 

isotropic elastic properties 𝐸𝑏 and 𝜈𝑏  identical 

in the three directions, and that the degraded 

ballast elastic constants are expressed as 𝐸𝑏𝐼, 

𝐺𝑏𝐼𝐽 for the shear modulus, and 𝜈𝑏𝐼𝐽, where I 

and J refer to the spatial directions X, Y and Z. 

The degraded ballast behaviour is considered 

transversely isotropic, therefore unequivocally 

defined by five independent elastic constants: 

EbX = 𝐸𝑏𝑌    ;   𝐸𝑏𝑍   ;   𝐺𝑏𝑋𝑍 = 𝐺𝑏𝑌𝑍 

𝜈𝑏𝑋𝑌    ;   𝜈𝑏𝑋𝑍 = 𝜈𝑏𝑌𝑍

(2)
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In equation (2), 𝐸𝑏𝑋 = 𝐸𝑏𝑌 are the in-plane 

elastic moduli, 𝐸𝑏𝑍 and  𝐺𝑏𝑋𝑍 = 𝐺𝑏𝑌𝑍 the out-

of-plane elastic and shear moduli, respectively, 

and 𝜈𝑏𝑋𝑌  and 𝜈𝑏𝑋𝑍 = 𝜈𝑏𝑌𝑍 the Poisson's ratios. 

The seven optimisation parameters are 

those for which optimization ranges are 

provided in Table 2. Concerning the ballast, 

three properties are chosen (𝜌𝑏  and the 

degraded ballast elastic properties E and G), as 

their influence is found much more significant 

than the remaining ballast parameters.  The 

preliminary sensitivity analysis revealed the 

importance of considering degraded ballast 

regions with transversely isotropic material 

properties, since a better correspondence with 

the experimental modal parameters is achieved 

when the in-plane elastic constants 𝐸𝑏𝑋 = 𝐸𝑏𝑌 

are much lower than 𝐸𝑏𝑍. Therefore, the elastic 

constants in the degraded regions were initially 

set to 𝐸𝑏𝑋 = 𝐸𝑏𝑌 = 𝐸𝑏𝑍 (isotropic material) 

and successively reduced up to 0.1 · 𝐸𝑏𝑍 

during the optimization procedure. In a similar 

way, the constants 𝐺𝑏𝑋𝑍 = 𝐺𝑏𝑌𝑍 were initially 

set to 𝐸𝑏𝑍/(2 · (1 + 𝜈𝑏𝑋𝑍)) (isotropic 

material) and reduced up to 90% during the 

calibration. The final updated values for the 

optimisation parameters are also given in 

Table 2. 

Table 1 shows the results of the model 

calibration in terms of numerical frequencies 

(𝑓𝑗
𝑛𝑢𝑚), frequency differences 𝑒100%, and

MAC numbers of the paired numerical modes. 

In Figure 4 the first five numerical mode 

shapes and natural frequencies of the updated 

model are included. All the modes identified 

experimentally with natural frequencies below 

30Hz are finally reproduced numerically with 

reasonably good accuracy in terms of 

frequency differences and MAC numbers. The 

second and third modes, which are more 

affected by the continuity of the ballasted track 

between adjacent decks, are predicted with 

frequency differences lower than 5.5%. Also 

their MAC numbers exhibit a satisfactory 

correlation with the measurements, with values 

close to 0.90 or even above. As can be seen the 

correspondence of the fifth numerical mode 

with the experimental measurements is less 

accurate, though very reasonable considering 

the limited number of sensors available in the 

experimental campaign for the identification of 

higher frequency modes. 

Mode 1 2 3 4 5 

𝑓𝑖
𝑒𝑥𝑝

 [Hz] 9.84 11.03 12.84 21.43 28.74 

𝑓𝑗
𝑒𝑥𝑝

 [Hz] 9.79 11.38 12.15 21.87 31.54 

MAC 0.94 0.89 0.97 0.93 0.75 

𝑒100% 0.47 -3.17 5.37 -2.05 -9.75

Table 1: Experimental and numerical frequencies for 

modes under 30Hz. Frequency differences and MAC 

numbers of the paired modes after calibration. 

Figure 4: Paired numerical modes and natural 

frequencies of the calibrated 3d model. 

5 BRIDGE RESPONSE UNDER TRAIN 

PASSAGES 

During the experimental campaign 

performed by the authors in 2019 [11] the 

acceleration response of Old Guadiana Bridge 

was also recorded under several train 

circulations. In this section a comparison 

between the experimental and numerical 

prediction of the vertical acceleration levels at  
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different sensors locations under the passage of 

one train composition is presented. 

The chosen circulation corresponds to the 

passage of S449 train from Jaén to Madrid 

along track 2 (Figure 1) at 154.8 km/h. S449 is 

a train with distributed traction and five cars: 

driver and passenger integrated cars at each 

end and three additional passenger coaches. 

The distance between shared bogies is 

d=17.75m and each axle load attains 161 kN. 

According to the characteristic distance d of 

the train, the circulating speed is relatively 

close to the theoretical fourth resonant speed of 

the fundamental mode of Old Guadiana 

Bridge, 𝑣1,4 = 𝑓1 · 𝑑/4 = 9.84 · 17.75 · 3.6/
4 = 157.2 km/h. Furthermore, L/d = 0.67 for 

this particular train (with L being the span 

length, measured between supports centres). 

This ratio approaches the theoretical second 

cancellation of the cited resonance order in SS 

plates [10]. Even though the real bridge 

behaviour is not completely explained by the 

train axles scheme and the theoretical 

resonance and cancellation conditions, these 

Bridge component Parameter Initial value Lower Upper Final value Unit 

Girder 𝐸𝑔 3.60·1010 2.52·1010 5.22·1010 4.82·1010 Pa 

𝜈𝑔 0.3 - - 0.3 - 

𝜌𝑔 2500 1750 3250 2504 kg/m3 

Slab 𝐸𝑠 3.60·1010 2.52·1010 4.86·1010 3.10·1010 Pa 

𝜈𝑠 0.3 - - 0.3 - 

𝜌𝑠 2500 1500 4000 2480 kg/m3 

Elastic bearings 𝐸𝑒𝑏 2.39·108 - - 2.39·108 Pa 

𝜈𝑒𝑏  0.2 - - 18.20 - 

𝜌𝑒𝑏 1230 - - 1230 kg/m3 

Rail UIC60 𝐸𝑟 2.1·1011 - - 2.1·1011 Pa 

𝐼𝑦𝑟  3038·108 - - 3038·108 m4 

𝜌𝑔 60.34 - - 60.34 kg/m 

Rail pad 𝐾𝑝 1.00·108 - - 1.00·108 N/m 

𝐶𝑝 7.5·104 - - 7.5·104 Ns/m 

Sleeper 𝐸𝑠𝑙 3.60·1010 - - 3.60·1010 Pa 

𝜈𝑠𝑙  0.3 - - 0.3 - 

𝑤𝑠𝑙  0.30 - - 0.30 m 

𝑙𝑠𝑙  2.60 - - 2.60 m 

ℎ𝑠𝑙  0.22 - - 0.22 m 

𝑀𝑠𝑙 300 - - 300 kg 

Ballast ℎ𝑏 0.45 - - 0.45 m 

𝐸𝑏  1.10·108 - - 1.10·108 Pa 

𝜈𝑏  0.3 - - 0.3 - 

𝜌𝑏 1800 1260 2340 1584 kg/m3 

Degraded Ballast 𝐸𝑏𝑋 = 𝐸𝑏𝑌 1.10·108 1.21·107 1.10·108 12.10·106 Pa 

𝐸𝑏𝑍 1.10·108 - - 1.10·108 - 

𝐺𝑏𝑌𝑍 = 𝐺𝑏𝑋𝑍 4.58·107 2.29·107 4.58·107 2.29·107 - 

𝜈𝑏𝑋𝑌 = 𝜈𝑏𝑌𝑋  0.2 - - 0.2 - 

𝜈𝑏𝑋𝑍 = 𝜈𝑏𝑌𝑍 0.2 - - 0.2 - 

𝜌𝑏 1800 1260 2340 1584 kg/m3 

Subgrade 𝐸𝑓 9.00·107 - - 9.00·107 Pa 

𝜈𝑓  0.3 - - 0.3 - 

𝜌𝑓 1800 - - 1800 kg/m3 

Handrail 𝑚ℎ 50 - - 50 kg/m 

Table 2: Model parameters: initial values, ranges of variations and final values. 
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ratios are helpful estimates for the 

interpretation of the results, and justify that the 

amplification at resonance of the fundamental 

mode excited by the S449 train should not be 

relevant. 

Each row of Figure 5 shows the vertical 

acceleration response under the circulation of 

S449 at the sensors installed at the centre of the 

second span (A12 and A13), outer and inner 

borders of the  loaded deck  (A2, A8) and inner 

border of the unloaded deck at the first span 

(A15), according to the sensor location of 

Figure 1. The response at each sensor and for 

each train is plotted in the time domain (first 

column), frequency domain (second column) 

and in one-third octave frequency bands (third 

column). In the upper left corner of the third 

column graphs, letters (L) and (U) differentiate 

sensors installed under the loaded or unloaded 

track, respectively. This allows a good 

comparison of the effects of the traffic 

direction and type of train in the response at 

equivalent positions.  

The experimental responses, represented in 

black trace, have been filtered applying two 

third-order Chebyshev filters with high-pass 

and low-pass frequencies of 1 Hz and 30 Hz, 

respectively. The numerical acceleration 

response, in red trace, is computed by Modal 

Superposition, considering a constant moving 

load model for the train excitation and 

therefore neglecting vehicle-bridge interaction 

(VBI) effects. The dynamic equations of 

motion of the full FE model are transformed to 

modal space and numerically integrated by the 

Newmark-Linear Acceleration algorithm. The 

time-step is defined as 1/50 times the smallest 

period used in the analysis, accounting for 

mode contributions up to 30 Hz as per 

European Standards [15]. Twenty modes are 

included in the numerical analyses. Modal 

damping values identified during the 

experimental campaign under ambient 

vibration (Figure 2) are assigned to the paired 

numerical modes. For the rest of the modes EC 

recommended damping values are used. 

Figure 5: Time history (a-e), frequency content of the 

acceleration (f-j) one-third octave band content of the 

acceleration (k-o) at points A12 A13 A2 A8 and A15, 

induced by S449 on track 2 J-M at speed v=154.8 

[km/h]. Experimental results (black line) vs numerical 

prediction (red line). 

The experimental acceleration responses 

reveal a noticeable coupling between the two 

decks that conform each span, which exhibit 

significant acceleration levels at points A13 

and A15 when compared to the measurements 

at the same locations of the loaded deck (points 

A12 and A8, respectively), meaning that the 

transmission of vibrations between the loaded 

and unloaded decks through the ballast layer is 

substantial. The evident vibration transmission 

between the twin decks and the coupling 

detected in the lowest frequency modes 

justifies the need of a numerical model 
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accounting for the continuity of the ballast in 

order to reproduce the real bridge response 

under passing trains. 

The proposed numerical model is 

reasonably accurate, especially for frequency 

contents below 20 Hz. The frequency domain 

plots exhibit clear peaks at frequencies below 

9 Hz associated to the excitation (i.e. axle or 

bogie passing frequency, calculated as v/d) and 

their corresponding multiples, which are much 

more perceptible at the loaded sensors. 

Additional peaks appear in the range 10-20 Hz 

in the frequency domain plots which could be 

associated to structural modes and also 

multiples of the bogie passing frequency. The 

peak amplitudes are overestimated at the 

unloaded deck and underestimated at the 

loaded deck.  

The time-history responses show certain 

underestimation of the amplitude levels in the 

loaded decks during the forced vibration phase. 

Conversely, at the unloaded decks the 

predicted time history response during the 

forced vibration is overestimated. The 

correspondence with the measurements 

improves during the free vibration phase. It is 

well known that VBI effects, not considered in 

this study, tend to reduce the vibration levels 

on the structure and may become significant at 

resonance for train compositions with a high 

number of coaches [16]. For the S449, VBI 

should not be of importance either as clear 

resonance of the first bending mode is not 

induced.   

As general conclusions, it can be said that 

(i) taking into account the ballasted track

coupling between the decks is relevant in order

to capture the contribution of modes higher

than the first bending or first torsion modes

under train passages; (ii) in this type of

structures where the ballasted track coupling

may be of importance, identifying the structure

properties experimentally becomes essential;

(iii) the model presented herein reproduces

with acceptable accuracy the bridge response

both at the loaded and unloaded decks, but the 

correspondence is better in the former case; 

(iv) the solution of the dynamic problem is

performed in reasonable time with a personal

computer once the modal analysis has been

performed.

6 CONCLUSIONS 

In this work the dynamic response of 

railway bridges composed by SS spans and 

adjacent single-track decks weakly connected 

through the ballasted track is investigated. The 

main aim is to assess the extent of track-bridge 

interaction effects in such bridges and the key 

parameters affecting the dynamic coupling 

between structurally independent parts. With 

this purpose a 3D FE model is implemented. A 

degraded type of ballast with elastic 

anisotropic behaviour is assumed at the regions 

between subsequent spans or adjacent decks to 

consider the potential degradation of the 

ballast due to the relative vertical movements 

under train passages. The model is updated 

with experimental results and the main ballast 

properties affecting the decks coupling are 

identified and evaluated by means of 

sensitivity analyses. Finally the bridge 

response under the passage of a crossing the 

bridge is predicted and compared with 

experimental measurements, in a view to 

assess the adequacy of the proposed numerical 

model. 

The updated numerical model is able to 

reproduce the first five natural frequencies and 

mode-shapes identified experimentally with an 

average error in the frequencies close to 4% 

and an average MAC of 0.9, and with a 

remarkably good correspondence in the 

particular case of the first longitudinal 

bending, third transverse bending and fourth 

second torsion modes. In order for the model 

to reproduce experimental modes higher than 

the second one, it is essential to consider the 

coupling effect of the ballast layer, especially 
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between the adjacent decks. Also, in order to 

be able to reproduce with reasonable accuracy 

the first five modes of the structure, 

considering the ballast along the shared 

borders as an elastic isotropic material does not 

provide satisfactory results. For this reason, in 

those areas the ballast elastic behaviour is 

assumed transversely isotropic, with elastic 

moduli in the horizontal directions of 

approximately 10% of the vertical elastic 

modulus. 

The bridge response under the passage of a 

train is compared with the numerical 

predictions. The numerical response is 

obtained by Modal Superposition. 

Experimental modal damping values obtained 

from ambient vibration are used in the 

analysis. From the experimental-numerical 

comparison the following may be concluded: 

- The bridge exhibits a noticeable

dynamic coupling between adjacent

decks under operating conditions

which can be attributed to the

continuity of the ballasted track.

Therefore, for an accurate assessment

of the vertical acceleration levels in

bridges formed by structurally

independent SS decks, the

implementation of weak connections

between the parts may be a good

practice. The results presented herein

may be useful for the definition of

alternative discrete track models for

this same purpose.

- The experimental-numerical

comparison reveals that the dynamic

behaviour of these type of bridges

under railway traffic is complex and

difficult to predict, since it is affected

by a number of interaction

mechanisms highly uncertain. Despite

the good correspondence of the

calibrated model with the first five

identified modes in terms of both

natural frequencies and MAC values,

the predicted vertical acceleration 

levels are reasonable but less accurate 

for frequency contents above 20 Hz. 

The assumption of a classically-

damped structure and the amplitude 

dependent mechanisms associated to 

the shared ballast layer can play an 

important role and deserve further 

studies. 

- In general terms, the numerical model

predicts the vertical acceleration

levels with more accuracy at the

sensors located at the loaded decks. In

the unloaded decks the amplitudes

associated to the excitation

frequencies and to the lowest natural

frequencies of the bridge are

sometimes overestimated.

- In this type of structures where the

ballasted track coupling may be of

importance, identifying the structure

properties experimentally becomes

essential.
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Abstract. Short-to-medium span simply-supported (SS) railway bridges are prone to 

experience high levels of vertical acceleration due to train passage. The necessity of predicting 

accurately their dynamic behaviour, for design, safety and maintenance reasons, requires a deep 

understanding of the train induced vibrations in these structures. A key factor of this 

phenomenon is the influence exerted by the ballasted track on their dynamic response. This 

paper provides a detailed sensitivity analysis over a single-track bridge catalogue covering 

lengths of interest from 10 to 25 m considering two different typologies, (i) girder-deck bridges 

and (ii) slab-deck bridges. The effect of the vertical flexibility of elastic bearings is also 

analysed. A 2D Finite-Element (FE) track-bridge interaction model is implemented with the 

aim to evaluate the influence of the track parameters on the modal properties, the harmonic 

response and also the dynamic response due to train passage of the bridges. The obtained results 

reveal the influence of the ballast shear stiffness and damping in the dynamic behaviour of the 

structures, especially in the case of the girder bridges. 

Key words: Railway Induced Vibrations, Bridges, Track-Bridge Interaction, Resonance, 

Vertical Acceleration, Ballast Track. 

1 INTRODUCTION 

In a context of an increasing demand of 

personal and freight mobility around the world, 

railway systems have experienced a sustained 

development that projects them as a reliable 

and sustainable way of transportation for the 

time to come.  

For this reason, dynamic effects on railway 

bridges are considered of major interest and 

concern for scientists and engineers, especially 

since the appearance of High Speed (HS) [1]. 

In this regard, short-to-medium span (10 – 25 

m) SS railway bridges are particularly prone to

experience an excessive level of vertical

acceleration at the deck during train passage,

due to its usually associated low mass and

structural damping, especially at resonance [2].

This could cause discomfort for the

passengers, flaws in the ballast layer, a rise in

the maintenance service cost of the track and

an increased risk of derailment in the worst-

case scenario.

Train induced vibrations in railway bridges 

is a rather complex interaction problem, which 

is affected by several factors. Apart from the 
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mechanical and geometrical properties of the 

bridge and the characteristics of the train, 

interaction mechanisms regarding the vehicle, 

the track and the soil may also affect the 

response of the structure, which are currently 

under investigation [3]. In addition, the 

computational cost of including these 

mechanisms is considerable, thus, simplified 

models that usually disregard them are 

commonly used in engineering consultancies.  

This work is dedicated to the investigation 

of the effect exerted by the ballast track on the 

vertical dynamic response of SS railway 

bridges. To this aim, the influence of the main 

parameters of the ballast track on the bridge 

modal properties, harmonic response and also 

the dynamic response due to train passage, is 

evaluated. With this purpose, a 2D FE track-

bridge interaction model is implemented, 

where the track is represented using a three-

layer discrete model, based on the work by 

Zhai et al. [4]. The model is employed to 

perform a sensitivity analysis over a bridge 

catalogue covering bridges of two different 

deck typologies and for a selected range of 

lengths of interest from 10 to 25 m. In sections 

2 and 3, the bridge catalogue is presented, and 

the numerical model is described. In section 4, 

the results of the dynamic are included. 

Finally, in section 5, the main conclusions are 

summarized. 

2 BRIDGE CATALOGUE 

The catalogue contemplates single-track 

railway bridges of span lengths that range from 

10 to 25 m in 2.5 m intervals. For each length, 

two common deck typologies are considered: 

(i) pre-stressed concrete girder decks; and (ii)

voided or solid concrete slabs, or pre-stressed

filler beams encased in a concrete pseudo-slab

(see Fig. 1). As for the vertical support of the

decks, infinitely rigid supports and elastic

supports accounting for the vertical flexibility

of neoprene bearings are differentiated.

Figure 1: Left: (a) pre-stressed concrete girder deck; 

(b) concrete filler beam pseudo-slab; (c) solid concrete

slab; (d) voided concrete slab. Right:  girder deck (up)

and pseudo-slab (down) of two bridges in Madrid-

Sevilla HS line. 

The main characteristics regarding the mass 

and the fundamental frequency of the bridges 

are calculated according to the work presented 

by Doménech et al. [5], where an ensemble of 

existing bridges of the considered typologies 

were studied. Fig. 2 shows for the 28 bridges 

of the catalogue the total mass per bridge span 

and the fundamental frequency. For the girder 

decks, the mass of the reported single-track 

existing bridges approaches the inferior limit. 

Additionally, this corresponds to the worst-

case scenario for the vertical acceleration 

criterion. The fundamental frequency is 

selected as 50% of the difference between the 

Eurocode 1 (EC1) simplified method limits for 

each length [6]. For the slab decks, the mass 

value is selected as 25% of the difference 

between the upper and the lower limits for each 

length. This corresponds to an average value 

for the mass of existing single-track slab 

bridges. For the fundamental frequency, the 

same criterion is applied, and the frequency is 

calculated as 25% of the difference between 

the limits for each length. In addition, an ES 

version for each bridge is also defined 

admitting that the ratio κ between the bridge 
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bending stiffness and the vertical stiffness of 

the bearings is approximately equal to 0.05, 

which leads to a reduction of the fundamental 

frequency of 3-4% with respect to the SS case 

[7], as indicated in Eq. 1. This equation shows 

the relation between the cross-section flexural 

rigidity of each section (EbiIybi) and the product 

of the vertical dynamic stiffness of the elastic 

bearings (Kbi,dyn) by the span length (Lbi). 

κ =
𝐸𝑏𝑖  𝐼𝑦𝑏𝑖 𝜋

3

𝐾̅𝑏𝑖,𝑑𝑦𝑛 
𝑛

𝐿𝑏
3

≈ 0.05 (1) 

Figure 2: (a) Mass per span and (b) fundamental 

frequency of the bridges under study. 

The mechanical properties of the bridges of 

the catalogue are shown in Tables 1 and 2, 

where the data are expressed per bridge span. 

The first column (ID) stands for the 

identification code for each bridge, which 

contains the typology, the type of support and 

the span length (e.g. GD-ES-10 stands for 

girder-deck bridge, elastically-supported with 

10 m of span length). The next columns 

include the fundamental frequency, f1, total 

mass, Mbi, cross-section flexural rigidity of the 

span section, EbiIybi, and the vertical dynamic 

stiffness of the elastic bearings (Kbi,dyn). 

ID 
f1 Mbi EbiIybi Kbi,dyn 

  [Hz] [t] [MN/m2] [MN/m] 

GD-SS-10 12.46 80.0 3.56·103  
GD-ES-10 11.72 80.0 3.12·103 3.12·103 

GD-SS-12.5 10.36 106.3 6.45·103  
GD-ES-12.5 9.75 106.3 5.81·103 2.87·103 

GD-SS-15 8.92 135.0 1.06·104  
GD-ES-15 8.39 135.0 9.63·103 2.70·103 

GD-SS-17.5 7.86 166.3 1.64·104  
GD-ES-17.5 7.39 166.3 1.50·104 2.58·103 

GD-SS-20 7.04 200.0 2.41·104  
GD-ES-20 6.62 200.0 2.20·104 2.49·103 

GD-SS-22.5 6.48 236.3 3.51·104  
GD-ES-22.5 6.09 236.3 3.20·104 2.49·103 

GD-SS-25 6.02 275.0 4.93·104  
GD-ES-25 5.66 275.0 4.51·104 2.50·103 

Table 1: Mechanical properties of the girder bridges. 

ID 
f1 Mbi EbiIybi Kbi,dyn 

[Hz] [t] [MN/m2] [MN/m] 

SD-SS-10 10.22 177.5 6.63·103  
SD-ES-10 9.62 177.5 6.06·103 4.67·103 

SD-SS-12.5 8.38 228.1 1.09·104  
SD-ES-12.5 7.88 228.1 9.97·104 4.03·103 

SD-SS-15 7.12 281.3 1.66·104  
SD-ES-15 6.70 281.3 1.53·104 3.59·103 

SD-SS-17.5 6.22 336.9 2.40·104  
SD-ES-17.5 5.84 336.9 2.21·104 3.32·103 

SD-SS-20 5.52 395.0 3.32·104  
SD-ES-20 5.19 395.0 3.05·104 3.03·103 

SD-SS-22.5 5.11 455.6 4.69·104  
SD-ES-22.5 4.80 455.6 4.32 ·104 2.99·103 

SD-SS-25 4.76 518.8 6.41·104  
SD-ES-25 4.48 518.8 5.95·104 2.96·103 

Table 2: Mechanical properties of the slab bridges. 

3 TRACK-BRIDGE INTERACTION 

MODEL 

For the subsequent analysis, a discrete FE 

2D track-bridge interaction model, shown in 

Fig. 3, is implemented. A three-layer discrete 
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model for the track is configured, based on that 

proposed by Zhai et al. [4], which couples a 

series of elastically or simply-supported bridge 

spans. The track admits Ahlbeck hypothesis, 

so it can be assumed that the load transmitted 

from each sleeper to the ballast coincides with 

a cone distribution. 

In the proposed model, the rail is 

represented with a Bernoulli-Euler (B-E) 

beam, where Er, Iyr, and mr stand for the rail 

Young Modulus, cross-section moment of 

inertia with respect to the Y axis and linear 

mass, respectively. Below, the vertical 

damping and stiffness of the rail pads (Cp, Kp), 

of the mobilized ballast (Cb, Kb) and of the 

subgrade (Cf, Kf) are included in the location of 

the sleepers. The continuity and coupling 

effect of the interlocking ballast granules is 

also considered in the model by means of 

spring-damper elements (Cw, Kw) that link 

relative vertical displacements between 

adjacent ballast masses. Then, Msl and Mb stand 

for the mass of each sleeper and the vibrating 

ballast mass under each support, respectively. 

Damping and stiffness on the bridge deck (Cf 
b, 

Kf 
b) are set to 0 and 100 · Kf, respectively, 

assuming that the ballast rests directly on the 

bridge deck. The longitudinal interaction 

between the rails and the deck through the 

ballast layer is disregarded in a first approach 

due to the high flexural stiffness of the bridges. 

As shown in Fig. 3, rail and track parameters 

are multiplied by a factor of two, as only one 

rail is explicitly included in the model.  

The bridge is represented by means of Nsp 

simply or elastically-supported B-E beams 

representing each span of the bridge. In the 

present paper, Nsp is set to a value of 2, as two 

identical spans are considered for each bridge. 

The vertical stiffness of the neoprene bearings 

is introduced by the constant equivalent 

vertical stiffness Kbi,dyn at each end section of 

the i-th bridge span. The parameters Lbi, Ebi, Ibi 

and mbi stand for the length, Young Modulus, 

cross-section moment of inertia with respect to 

the Y axis and linear mass of the i-th bridge 

span, respectively.  

With this configuration, the interaction 

between successive spans is only allowed by 

the continuous ballasted track. In the 

simulations, a track length of Lr,prev = 20 m is 

included before and after the bridge, which is 

considered according to previous publications 

[8]. The rail is discretized into two beam 

elements between consecutive sleepers, and so 

are the bridges. 

Figure 3: Track-bridge interaction model. 
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The train excitation is represented by means 

of a constant moving load model, which 

implies that vehicle-structure interaction 

effects are neglected. In this way, it is expected 

to isolate the effect of the track components 

affecting the dynamic behaviour of the bridge 

to investigate their influence separately.  

For the track parameters, an important 

dispersion has been found among different 

publications. Based on a review presented by 

the authors in [9], the values selected are 

shown in Table 3, expressed per rail seat. Mb, 

Kb and Kf are calculated with the equations 

given in [4]. Data from the European and 

Spanish Standards are adopted for the rail, rail 

pads and sleepers properties. In the case of the 

ballast shear stiffness and damping, the authors 

have found that most of the times these 

parameters are not considered in track models. 

In the few cases where included, the majority 

of them adopted those proposed in [4]. For this 

reason, in this work, these same values are 

employed, and its influence investigated.  

The model is implemented in ANSYS. For 

the computation of the bridges response under 

passing trains (see section 4), mass, stiffness 

and damping matrices are exported to 

MATLAB, and the equations of motion 

equations of the full model are integrated in the 

time domain applying the Newmark-beta 

constant acceleration algorithm. The time step 

for the numerical integration is set as the 

minimum between 1/50 times the smaller 

period of interest and 1/20 times the load 

travelling time between two consecutive 

sleepers. 

4 SENSITIVITY ANALYSIS: MODAL 

PROPERTIES, HARMONIC RESPONSE 

AND VERTICAL ACCELERATION 

4.1 Reference case and adopted approach 

This section presents the results for the 

sensitivity analysis regarding the influence of 

the track properties on the dynamic behaviour 

of the bridges. To this aim, individual 

variations for the track parameters are 

considered to evaluate how this impacts the 

modal properties, the harmonic response and 

the vertical acceleration on the bridge deck 

under train passage. It is also intended to 

determine what bridges are the most affected 

by these variations.  

Not. Parameter Value Unit Ref. 

Er 
Rail UIC 60 

elastic modulus 
2.1·1011 Pa 

[10] 

Iyr 

Rail UIC 60 

moment of 

inertia 

3038.3·10-8 m4 [10] 

mr 

Rail UIC 60 

mass per unit 

length 

60.21 kg/m [10] 

Kp 
Rail pad vertical 

stiffness 
1·108 N/m [11] 

Cp 
Rail pad  

damping 
7.5·104 Ns/m [4] 

Msl Sleeper mass 300 kg [12] 

Dsl Sleeper distance 0.6 m [12] 

le 
½ Sleeper 

effect. support 

length 

0.95 m [4] 

lb Sleeper width 0.3 m [12] 

 
Ballast stress 

distr. angle 
35 º [4] 

hb 
Ballast 

thickness 
0.3 m [12] 

ρb Ballast density 1800 kg/m3 [4] 

Mb 
Ballast vibrating 

mass 
317.91 kg [4] 

Eb 
Ballast elastic 

modulus 
1.1·108 Pa [4] 

Kb 
Ballast vertical 

stiffness 
1.933·108 N/m [4] 

Cb Ballast damping 5.88·104 Ns/m [4] 

Ef 
Subgrade K30 

modulus 
9·107 Pa/m [4] 

Kf 
Subgrade 

vertical stiffness 
7.399·107 N/m [4] 

Cf 
Subgrade 

damping 
3.115·104 Ns/m [4] 

Kw 
Ballast shear 

stiffness 
7.84·107 N/m [4] 

Cw 
Ballast shear 

damping 
8·104 Ns/m [4] 

Table 3: Nominal parameters for the whole model. 
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For the sake of simplicity, GD-ES-10 

bridge is set as a reference case in order to 

show the main assumptions considered in the 

analysis. Fig. 4 shows some of the natural 

frequencies and shapes obtained for this 

particular bridge. The first six global 

deformation modes are represented on the left 

(a-f), whereas (g-l) on the right side correspond 

to higher frequency modes with a predominant 

participation of the track. The mode shapes are 

similar for all considered bridges. Track 

modes, which appear in symmetrical pairs, 

start at frequencies higher than 150 Hz. The 

mode shown in Fig. 4 (l) is included due to its 

participation in the harmonic analysis 

presented in the next subsection.   

To evaluate the influence of the track 

parameters in a first approach, Table 4 shows 

the frequency variation in the GD-ES-10 

bridge for the first and second modes with 

respect to the nominal case under individual 

variations for Kp, Kb, Kf and Kw between 0.5 

and 2 times their nominal values. These results 

show that the only parameter that affects 

significantly these frequencies is the ballast 

shear stiffness (Kw). This same trend has been 

observed for higher modes and for the 

remaining bridges. In this sense, Zhai et al. [4] 

pointed out too the great influence of the 

ballast shear stiffness and damping on the 

dynamic behaviour of the track, since 

neglecting their effect could lead to an 

overestimation of the computed ballast 

vibration level. In view of this, the following 

analyses focus on the influence of these 

parameters (Kw, Cw) on the dynamic behaviour 

of the bridges. 

4.2 Influence of Kw on the bridge modal 

parameters  

     In this section the influence of the ballast 

shear stiffness on the bridge modal parameters 

is evaluated. To this aim, the first, third and 

fifth longitudinal bending modal frequencies 

are calculated under individual variations of 

Kw. Fig. 5 shows the results for all the bridges 

in the catalogue, grouped per bridge length. 

Each plot shows the ratio between the natural 

frequency fi for i = 1, 3, 5 when factors [0.0, 

0.5, 1.0, 1.5, 2.0] multiply the nominal value of 

Kw (Table 3) and that in the nominal case. 

Figure 4: Modes of the GD-ES-10 track-bridge 

system. 

Parameter f1 [Hz] Var. [%] f2 [Hz] Var. [%] 

Kp · 0.5 11.714 -0.05 36.916 -0.05

Kp · 2 11.725 0.04 36.931 0.02

Kb · 0.5 11.718 -0.03 36.920 -0.01

Kb · 2 11.722 0.02 36.928 0.01

Kf · 0.5 11.705 -0.13 36.899 -0.07

Kf · 2 11.734 0.12 36.952 0.07

Kw · 0.5 11.118 -5.14 36.33 -1.54

Kw · 2 12.858 9.71 38.008 2.93

Table 4: f1 and f2 variations for the GD-ES-10 

bridge due to the modification of Kp, Kb, Kf  and Kw. 

From the obtained results, the following is 

observed. 

- Natural frequencies increase with

Kw. Bridges with shorter spans in a

certain typology are more affected

with the variation of this parameter.

- The fundamental frequency f1
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corresponding to the first 

longitudinal bending mode is 

significantly more affected than 

higher frequencies. The effect of Kw

reduces with the frequency number. 

- Regarding the typology, girder

bridges, with lower longitudinal

bending stiffness, are affected to a

higher extent that slab bridges.

- As per the bridge supports, bridges

on elastic supports are slightly more

affected by Kw variations than

rigidly supported bridges.

Nevertheless, the difference is not

significant, especially for modes

higher than the fundamental one.

     These results are consistent in all the 

considered bridges. From the sensitivity 

analysis it is concluded that regarding the 

modal parameters, short-span elastically-

supported girder bridges are the most sensitive 

ones to the value of Kw. On this matter, the 

maximum variations for the frequency 

obtained for the first, third and fifth modes are  

20%, 6% and 3%, respectively, for the shortest 

bridge considered (GD-ES-10), and 10%, 3% 

and 1.5% for the longest one (GD-ES-25). 

4.3 Influence of Kw and Cw on the bridge 

harmonic response 

Next, the influence of the ballast shear 

stiffness and damping in the harmonic 

response of the bridges is evaluated. A vertical 

harmonic force with amplitude F0 = 210 kN is 

applied on the rail at mid-span location of the 

first span. The maximum absolute vertical 

displacement at the same section is determined 

for forcing frequencies in the range ff ∈ [1,600] 

Hz in steps of Δff = 0.1 Hz. This analysis is 

repeated for individual variations of the ballast 

shear stiffness and damping of [0.0, 0.5, 1.0, 

1.5, 2.0] · Kw and [0.5, 1.0, 1.5, 2.0] · Cw, 

respectively, being Kw and Cw the nominal 

values of these parameters.  

In Fig. 6 results from the harmonic response 

analysis are represented for four bridge 

lengths. Individual variations of Kw and Cw are 

applied in Fig. 6 (a-d) and in Fig. 6 (e-h), 

respectively. For the sake of brevity, only the 

results for the ES girder bridges are presented 

in this section for Lbi = 10, 15, 20 and 25 m, as 

no significant differences were detected in the 

trends between typologies or supporting 

conditions. From the computed solution, the 

following observations can be made: 

Figure 5: Influence of the variation of Kw in f1, f3 and f5 with respect to the frequency in the nominal case. 
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- A maximum narrow peak occurs in

the vicinity of the fundamental

frequency. Because of a greater

difference between the first and the

second frequency modes, for the

cases when Lbi = 15 and 20 m, two

peaks appear instead of one. A

wider maximum is also perceptible

close to 215 Hz coinciding with the

track mode included in Fig. 4(l).

Smaller peaks appear along the

curve coinciding with higher modes 

of the bridges with not-zero 

amplitude at mid-span of the first 

span. 

- As Kw increases so does the resonant

frequency associated to the

fundamental mode, consistently

with the variations observed in the

natural frequencies.

- The response at resonance of the

Figure 6: Influence of Kw and Cw in the harmonic response of elastically-supported girder bridges. 

𝜔f 

𝜔f 
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fundamental mode reduces with Cw. 

The effect of this parameter at 

higher frequencies is not significant.

4.4 Influence of Kw and Cw on the deck 

vertical acceleration due to train passage 

The influence of Kw and Cw on the vertical 

acceleration at the bridge deck under train 

passages is investigated in this section. To this 

aim, several dynamic analyses are carried out 

on the GD-ES-10 bridge under the circulation 

of HSLM-A1 Universal Train presented in the 

EC1 [6]. Only this bridge is selected for the 

sake of conciseness and for being the most 

influenced one by the ballast shear stiffness 

and damping properties.  

The acceleration response is calculated for 

the HSLM-A1 train in the range of velocities 

[40, 117] m/s (e.g. [144, 420] km/h) every 1 

m/s at a quarter, mid-span and three quarters of 

both spans. A Chebyshev order 3 filter is 

applied to the response in order to filter 

contributions below 1 Hz and above 60 Hz. 

Then, maximum response envelopes are 

obtained for each speed. The following 

individual variations of track parameters are 

imposed: [0.0, 0.5, 1.0, 1.5, 2.0] · Kw and [0.5, 

1.0, 1.5, 2.0] · Cw. Also, Rayleigh damping is 

assumed according to EC1 [6] for pre-stressed 

concrete bridges as 1.7% for the GD-ES-10 

bridge. This ratio is applied on the first and 

fifth natural frequencies.  

In Fig. 7 (a-b), an envelope of the maximum 

acceleration response at the bridge deck is 

represented at the most critical section which 

corresponds to the center of the second span. 

Also, and in order to visualize how the 

variation of Kw and Cw affects the bridge 

response in different situations, the 

acceleration time-history at the same section is 

represented in for three different velocities: 

second resonance speed of the first mode (e.g. 

n = 1, j = 2 in Eq. 2 [13]), which is equals to 

380 km/h (see Fig. 7 (c-d)). 

𝑉𝑛𝑗
𝑟 =

𝑑𝑘

𝑗𝑇𝑛𝑏𝑖

=
𝜔𝑛𝑏𝑖

2𝜋𝑗
, 𝑛, 𝑗 ≥ 1 (2) 

In the previous equation, dk stands for the 

characteristic distance of the HSLM-A1 train 

(18 m), Tnbi is the n-th natural period of the 

bridge and j the resonant order. Following that, 

the response is computed at 324 km/h, far both 

from resonance and from cancellation of 

resonance (see Fig. 7 (e-f)). Finally, it is 

determined for a speed near a cancellation of 

resonance condition, given by Eq. 3[13]: 

(
𝐿𝑏𝑖

𝑑𝑘

)
𝑛𝑗𝑖

𝑐

= (
𝜆𝑛

𝑛𝜋
)

2 𝑛

2𝑗𝐾𝑛𝑖
𝑐 , 𝑛, 𝑗, 𝑖 ≥ 1 (3) 

In this way, when the relation Lbi/dk 

between the length of each span and the 

characteristic distance of the train approaches 

the i-th cancellation ratio (Lbi/dk)
c given by Eq. 

3, the cancellation of the resonance is 

produced, and the vibration level gets 

significantly attenuated [13]. For the case of 

the GD-ES-10 bridge associated to the 

circulation of the HSLM-A1 train, the third 

resonance speed, equals to 253 km/h 

approaches the (Lbi/dk)
c theoretical condition of 

cancellation for this resonance (e.g. j = 3, n = 

1, i = 1, respectively, although is not coincident 

(the difference is approximately 15%). 

Nevertheless, the phenomenon is visible, 

leading to a quite reduced resonant peak. These 

results are shown in Fig. 7 (g-h). In summary, 

the subsequent observations can be made. 

- An increase in Kw leads to a rise in the

resonant velocities, in the same

proportion that the resonant frequency

is modified by this parameter (in this

particular case, neglecting or doubling

Kw entails variations of -17.4% to

+9.3% of the resonant velocity for the

nominal case). This affects similarly

different order resonances.
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- For the range of Kw values considered,

resonance at a certain speed may or

may not take place depending on Kw

(see Fig. 7(c-e)).

- Regarding the effect of the ballast shear

damping, it is only relevant at

resonance, leading to a pronounced

reduction of the acceleration response. 

In this particular case, if Cw is doubled 

with respect to its nominal value, the 

vertical acceleration reduces by a 26%. 

The effect of this parameter on the 

second peak is much higher than the 

effect on the third resonant peak. 

Figure 7: GD-ES-10 bridge. Maximum acceleration response for each velocity (a-b), and acceleration 

time-history at different speeds (c-h). 
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Nevertheless, this last peak is close to 

cancellation and no conclusions can be 

extracted in this regard.  

- Finally, for the resonance speed

approaching the cancellation 

conditions, a very significant 

attenuation of the acceleration level is 

observed. 

5 CONCLUSIONS 

The longitudinal coupling effect exerted by 

the continuity of the ballasted track in single-

track railway bridges composed by several 

isostatic consecutive spans is evaluated in this 

work. Specifically, the influence of the ballast 

shear stiffness and damping in the modal 

parameters, harmonic response and vertical 

acceleration under train passages is 

investigated.  

In the first place, a comprehensive bridge 

catalogue considering short-to-medium span 

lengths and two common bridge deck 

typologies has been prepared. Then, a 

sensitivity analysis has been performed by 

means of a 2D FE track-bridge interaction 

model, in which individual variations of the 

track parameters have been imposed, in order 

to study their influence on the dynamic 

behaviour of the bridges. The main 

conclusions for this work are summarized as 

follows: 

- In the discrete track model

presented, the ballast shear stiffness

and damping are the parameters that

affect the most the bridge response

in the frequency range of interest.

The influence of the remaining

parameters is negligible compared

to these two.

- Regarding the modal parameters of

the bridges, Kw exerts a notable

influence on them, which is stronger

in shorter bridges. When it comes to

the typology, girder-deck bridges

are the most affected due to their 

initially lower bending stiffness. 

The correlation with the flexibility 

of elastic supports is minor.  

- The influence of Kw and Cw in the

harmonic response is significant 

only at low frequencies. An increase 

of Kw leads to a rise in the resonant 

frequency for the first mode. Cw 

produces a pronounced reduction of 

the corresponding amplitude, as 

expected. Higher frequencies 

related with track deformation 

modes are not especially affected by 

these parameters.   

- With respect to the vertical

acceleration level caused by the

passage of a train, it is found that the

effect of Kw and Cw is significant,

especially at resonance. In

particular, an increment of Kw leads

to an important rise in resonant

velocity, while an increment of Cw

results into a reduction of the

resonant acceleration amplitude.

The effect of Cw far from resonance

is negligible. These results are

consistent, since, higher Kw values

lead to an increase on the natural

frequencies, especially of the

fundamental one and in the case of

short flexible structures.

- Future investigations are required in

order to understand completely the

influence of these shear parameters.

It is also needed to find clear ways

to determine their value, since their

influence on the dynamic behaviour

of railway bridges is significant and

the information about it found in the

literature is scarce. Experimentally

appraised values for these

parameters could be quite useful in

the case of using discrete track

models, which is a reasonable
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solution permitting solving the 

dynamic equations of motion in the 

time domain performing a full 

analysis in a reasonable amount of 

time.  
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Abstract. Dynamic behaviour of railway bridges is highly influenced by the speed of the train. 
This makes high speed trains an important conditioning feature for the design and maintenance 
of this type of structures. In case that vertical accelerations do not fulfil the requirements, two 
alternatives may be followed: a) oversizing the structure or b) mitigating the excessive 
vibrations via the installation of damper devices. The second option is considered hereby 
through the inclusion of a tuned vibration absorber, usually known as Tuned Mass Damper 
(TMD). The analysis accounts for an interacting coupled TMD-structure system. The structure 
is modelled as a beam and its dynamic behaviour is assumed to be characterised by its modal 
properties, and the TMD is modelled as a single degree of freedom system. This method is 
implemented in the software CALDINTAV, allowing the user to consider several scenarios and 
perform parametric analysis in a simple manner. The results obtained for high-speed trains 
running on a typical railway bridge are compared with those obtained by a 3D FE model. The 
outcomes prove that the assessment of the controlled bridge response through the simplified 
interaction model becomes easier and less time-consuming than the detailed FE models without 
losing the precision. 

Key words: Railway bridges, High-speed trains, Dynamic response, Vibration control, TMD. 

1 INTRODUCTION 

It is well known that the dynamic response 
of railway bridges induced by high-speed 
trains is an important issue for their design, as 
it is included in standards [1]. The magnitude 
of the dynamic response varies with the speed 
of the train, which can lead to resonance 
phenomena. Thus, a parametric calculation, 
including several trains and velocities, 
becomes essential. 

To control high train-induced vertical 
accelerations, greater than 3.5 m/s2 for ballast 
track and 5 m/s2 for slab track, passive inertial 
devices may be installed. Among the available 

dampers, the fairly simple but usually effective 
Tuned Mass Damper (TMD) is considered 
herein. 

Since the first theoretical approach [2], 
TMDs have proven to be feasible solutions to 
control vertical or lateral excessive vibrations 
in bridges. The principal advantage of these 
passive inertial devices is that their functioning 
is purely mechanical, so no power supply is 
necessary in contrast to semi-active or active 
control strategies. By selecting adequate 
parameters of a TMD (mass, stiffness and 
damping), a significant reduction in the 
dynamic response of the structure under the 
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action of earthquakes, wind, or 
humans/vehicles/trains, can be achieved. 
Successful applications can be found in 
references [4] and [5].  To the best of the 
author's knowledge, no real applications for 
railway bridges have been developed yet. 
However, there are numerical studies, such as 
the work of Pisal and Jangid, who developed a 
procedure for vibration control of railway 
bridge subjected to multi-axle loads using 
multiple TMDs [6]. 

In this study, a TMD is designed and 
implemented to control the excessive vertical 
vibrations of a railway bridge subjected to 
high-speed train loads. Moreover, it is 
implemented in the GUI-based software 
CALDINTAV, developed by the 
Computational Mechanics group of the 
Technical University of Madrid [7]. For this 
purpose, a modal analysis of the bridge using 
beam-type models is carried out, which allows 
fast assessment of several scenarios providing 
the critical cases that should be evaluated in 
detail. The results obtained under this approach 
will be compared with those obtained through 
a 3D FE model, which often leads to a more 
time-consuming analysis when a direct time 
integration method is performed. 

2 THEORETICAL BACKGROUND IN 

CALDINTAV 

CALDINTAV is a software developed by 
the Computational Mechanics group of the 
Technical University of Madrid. Herein, the 
dynamic calculation for railway bridge 
vibrations is addressed employing a simplified 
beam model of the structure. The forces 
produced by the train are implemented as a set 
of moving loads which are determined by the 
weights per axle of the bogies. 

The governing equation of motion under 
this set of moving loads is: 

𝜌𝑢̈ + 𝑐𝑢̇ + 𝐸𝐼
𝜕4𝑢

𝜕𝑥4
= 𝑝(𝑥, 𝑡) (1) 

with 𝜌 being the mass per unit length, 𝑐 the 
damping coefficient, 𝐸𝐼 the bending stiffness, 
𝑢 the transverse deflection and 𝑝(𝑥, 𝑡) the 
loads at distance 𝑥 and at instant 𝑡. 

This equation is solved applying the modal 
superposition technique. Under this method, 
the train excites several vibration modes 
simultaneously and the dynamic response may 
be obtained via the contribution of modal 
responses. The response, considering 𝑛 
vibration modes is: 

𝑢(𝑥, 𝑡) = ∑ 𝑞𝑖(𝑡)𝜙𝑖(𝑥)

𝑛

𝑖=1

 (2) 

where 𝑞𝑖(𝑡) are the modal generalised 
coordinates and 𝜙𝑖(𝑥) the mode shape of the 
vibration mode 𝑖 which, in case of simply 
supported beam, is calculated as: 𝜙𝑖(𝑥) =
sin(𝑖𝜋𝑥/𝐿), being 𝐿 the length of the beam. 

By substituting Equation (2) into Equation 
(1), taking into account the orthogonality 
relationship between mode shapes and 
integrating the resulting equation, yields the 
following: 

𝑞̈𝑖(𝑡) + 2𝜉𝜔𝑖𝑞̇𝑖(𝑡) + 𝜔𝑖
2𝑞𝑖(𝑡) =

=
2

𝜌𝐿
∫ 𝑝(𝑥, 𝑡)𝜙𝑖(𝑥)d𝑥

𝐿

0

 
(3) 

being 𝜉 the damping factor and 𝜔𝑖 the angular 
natural frequency. 

As it was mentioned, the load induced by 
the train is assumed to be a point moving load. 
However, the above expression is different 
depending on whether there is only one 
moving load or a set of moving loads. Figure 1 
shows both configurations. Although the set of 
moving loads is a superposition of single 
moving loads, the results are very different 
since resonance phenomena may occur due to 
the simultaneous action of the loads. 
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Figure 1: Moving load at velocity 𝑣: a) single moving 
load and b) set of moving loads. 

The last term of Equation (3), in case of a 
single moving load is: 

−
2

𝜌𝐿
𝑃𝜙𝑖(𝑣𝑡) (4) 

Otherwise: 

−
2

𝜌𝐿
∑ 𝑃𝑗𝜙𝑖(𝑥𝑘)

𝑁𝑝

𝑗=1

= −
2

𝜌𝐿
∑ 𝑃𝑗𝜙𝑖(𝑣𝑡 − 𝑑𝑘)

𝑁𝑝

𝑗=1

(5) 

being 𝑁𝑝 the number of loads. 
In order to solve Equation (3), 

CALDINTAV performs the integration based 
on the interpolation of the excitation [8]. 

Next section details the formulation of the 
TMD-structure interaction system which is 
implemented in the software. 

3 TMD-STRUCTURE INTERACTION 

MODEL 

The TMD-bridge interaction model is 
formulated applying the principle of dynamic 
equilibrium to the balance of the two sub-
models. This interaction model, depicted in 
Figure 2, is formed by the TMD sub-model and 
the structure sub-model. This interaction 
model is defined at the control point. 

The TMD is modelled as a single degree of 
freedom system which is defined by three 
following parameters: its mass, 𝑚𝑡𝑚𝑑; its 
damping, 𝑐𝑡𝑚𝑑 and its stiffness, 𝑘𝑡𝑚𝑑. 

On the other hand, the dynamic behaviour 
of the structure is assumed to be simulated 
through its modal decomposition, hence, it is 
modelled by the three following modal 
parameters: modal mass, 𝑚𝑠; modal damping, 
𝑐𝑠 and modal stiffness, 𝑘𝑠. For the sake of 
simplicity, the structure is represented by one 
vibration mode. 

Figure 2: Structure-TMD interaction model. 

From the dynamic equilibrium on both 
masses, the interaction model formulation is 
represented by the following coupled system 
of differential equations: 

𝑑2 

𝑃𝑗  𝑃3 𝑃2 𝑃1(𝑑1 = 0) 

a) 

𝑑 = 𝑣𝑡 
𝐿 

𝑃

𝐿 

𝑑3 
𝑑𝑗 

… 

b) 

𝜙𝑇 · 𝑝(𝑡) 

𝑚𝑡𝑚𝑑 

𝑚𝑠 

𝑘𝑡𝑚𝑑 𝑐𝑡𝑚𝑑 

𝑘𝑠 𝑐𝑠 

𝑢𝑡𝑚𝑑 

𝑢𝑠 
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4 

𝑚𝑠𝑢̈𝑠 + 𝑐𝑠𝑢̇𝑠 + 𝑐𝑡𝑚𝑑(𝑢̇𝑠 − 𝑢̇𝑡𝑚𝑑) + 
+𝑘𝑠𝑢𝑠 + 𝑘𝑡𝑚𝑑(𝑢𝑠 − 𝑢𝑡𝑚𝑑)

= 𝜙𝑇 · 𝑝(𝑡) 
(6) 

𝑚𝑡𝑚𝑑𝑢̈𝑡𝑚𝑑 + 𝑐𝑡𝑚𝑑(𝑢̇𝑡𝑚𝑑 − 𝑢̇𝑠) 
+𝑘𝑡𝑚𝑑(𝑢𝑡𝑚𝑑 − 𝑢𝑠) = 0

being 𝑢𝑠, 𝑢̇𝑠 and 𝑢̈𝑠 the vertical displacement, 
velocity and acceleration of the vibration 
modes of the structure, respectively, and 𝑢𝑡𝑚𝑑, 
𝑢̇𝑡𝑚𝑑 and 𝑢̈𝑡𝑚𝑑 the vertical displacement, 
velocity and acceleration of the TMD. Finally, 
𝑝(𝑡) denotes the applied force. 

The equations system (6) can be rewritten 
as follows: 

𝑚𝑠𝑢̈𝑠 + 𝑢̇𝑠(𝑐𝑠 + 𝑐𝑡𝑚𝑑) − 𝑢̇𝑡𝑚𝑑𝑐𝑡𝑚𝑑 
+𝑢𝑠(𝑘𝑠 + 𝑘𝑡𝑚𝑑) − 𝑢𝑡𝑚𝑑𝑘𝑡𝑚𝑑 =

= 𝜙𝑇 · 𝑝(𝑡) 
(7)) 

𝑚𝑡𝑚𝑑𝑢̈𝑡𝑚𝑑 − 𝑢̇𝑠𝑐𝑡𝑚𝑑 + 𝑢̇𝑡𝑚𝑑𝑐𝑡𝑚𝑑 
−𝑢𝑠𝑘𝑡𝑚𝑑 + 𝑢𝑡𝑚𝑑𝑘𝑡𝑚𝑑 = 0

It can be noticed that this equations system 
may be reorganized in a matrix form: 

𝑴 𝒖̈ + 𝑪 𝒖̇ + 𝑲 𝒖 = 𝑭(𝑡) (8) 

where: 

𝑴 = [
𝑚𝑠 0
0 𝑚𝑡𝑚𝑑

]

𝑪 = [
𝑐𝑠 + 𝑐𝑡𝑚𝑑 −𝑐𝑡𝑚𝑑

−𝑐𝑡𝑚𝑑 𝑐𝑡𝑚𝑑
] 

𝑲 = [
𝑘𝑠 + 𝑘𝑡𝑚𝑑 −𝑘𝑡𝑚𝑑

−𝑘𝑡𝑚𝑑 𝑘𝑡𝑚𝑑
]

𝒖̈ = [
𝑢̈𝑠

𝑢̈𝑡𝑚𝑑
] ; 𝒖̇ = [

𝑢̇𝑠

𝑢̇𝑡𝑚𝑑
] ; 𝒖 = [

𝑢𝑠

𝑢𝑡𝑚𝑑
] 

(9) 

𝑭(𝑡) = [𝜙𝑇𝑝(𝑥, 𝑡)
0

]

The vector 𝑭 is defined from Equations (4) 
or (5) according to the case under study. 
Equation (8) is solved in time domain using the 
𝛽-Newmark algorithm setting 𝛽 = 1/4 and 
𝛾 = 1/2 to obtain an unconditionally stable 
solution [8]. 

3.1 Design of the TMD 

The passive device, TMD, is designed to 
control the resonant vibrations associated to a 
dominant vibration mode. Therefore, the 
frequency of the TMD is adjusted to the natural 
frequency of the structure. For the optimum 
design of the TMD, the H∞ criterion proposed 
by Den Hartog [2, 3] is considered. This method 
calculates the parameters of the TMD that 
minimize the dynamic response of the 
structure under a harmonic excitation. Next, 
the steps are summarized. 

First, from the modal mass of the structure, 
mass ratio is chosen: 

𝜇 =
𝑚𝑡𝑚𝑑

𝑚𝑠
(10) 

The mass of the TMD is usually chosen in 
such a way that 𝜇 equals [0.01-0.05] (1%-5% 
of the modal mass), approximately. Anyway, 
this value should be chosen to achieve a 
vibration reduction objective. 

Then, the frequency ratio, 𝛿, and the 
damping ratio, 𝜉𝑡𝑚𝑑, are derived from the mass 
ratio: 

𝛿 =
1

1 + 𝜇
=

𝑓𝑡𝑚𝑑

𝑓𝑠

𝜉𝑡𝑚𝑑 = √
3𝜇

8(1 + 𝜇)

(11)
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Once the frequency of the TMD has been 
calculated, the parameters that characterize the 
TMD are established: 

𝑘𝑡𝑚𝑑 = 𝑚𝑡𝑚𝑑(2𝜋𝑓𝑡𝑚𝑑)2 

𝑐𝑡𝑚𝑑 = 2𝑚𝑡𝑚𝑑𝜉𝑡𝑚𝑑(2𝜋𝑓𝑡𝑚𝑑) 
(12) 

4 CASE STUDY 

The TMD design method and its 
implementation described above is applied to a 
typical box-slab bridge. It is a single track 
bridge where the loads have no eccentricity 
respect the longitudinal axis of the deck. 

The dynamic parameters to perform the 
calculation in CALDINTAV are as follows: 

- Span length: 𝐿 = 28 m.
- Bending stiffness:

𝐸𝐼 = 76.619E9 Nm2.
- Damping ratio: 𝜉 = 2%.
- Linear density: 𝜌 = 14439 kg/m.
The fundamental natural frequency of the

bridge results in: 𝑓0 = 4.62 Hz. 
The results will be compared with those 

obtained through a FE model of the bridge, 
built in Abaqus software [9]. 

The FE model, shown in Figure 3, consists 
of shell elements to model the deck and beam 
elements for the box girder. The bridge is 
assumed to be simply supported at the 
abutments. After a modal analysis is 
conducted, a natural frequency for the first 
vertical bending mode of 4.65 Hz is obtained. 
This vibration mode is the second as the first 
one (3.46 Hz) is a torsional mode. 

The results are obtained applying modal 
superposition. When the TMD is implemented, 
a direct time integration using the Hilber-
Hughes-Taylor (HHT-α) method is performed 
for this purpose. Moreover, the Rayleigh 
damping is employed to model the damping of 

the structure. 

Figure 3: FE shell model of the railway bridge. 

4.2 Dynamic response of the bridge 

The loading corresponds to the ten virtual 
train load models (HSLM-A) [1, 10]. 

In CALDINTAV, a time step of Δ𝑡 =
0.001s and 3 vibration modes are considered. 
This number is higher in the FE model since it 
has more degrees of freedom. 

Figure 4 shows, for instance, the 
acceleration envelope produced by the HSLM-
A1 load model running from 125 to 400 km/h 
in increments of 5 km/h. It can be seen that 
both curves are similar although a clear 
difference is obtained when the velocity is 
greater than 310 km/h. Nevertheless, the 
maximum vertical acceleration is about 1.8 m/
s2 in both models when 𝑣 = 295 km/h. 

Figure 4: Acceleration envelope produced by the 
HSLM-A1 load model running at different velocities 

obtained in Caldintav and in the FE model. 
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Taking the velocity when resonance effects 
occur (𝑣 = 295 km/h), the dynamic responses 
are given in Figure 5, showing a very close 
approximation between the two models. The 
maximum vertical acceleration, as indicated 
before, is about 1.8 m/s2. The large 
amplification of the response due to resonance 
is clearly observable. The maximum vertical 
displacement at mid-span is 5.5 mm. 

Figure 5: Dynamic response of the railway bridge 
under HSLM-A1 running at 295 km/h: a) vertical 

acceleration at mid-span and b) vertical displacement at 
mid-span. 

This calculation may be performed for all 
the HSLM-A load models. The acceleration 
envelope obtained in the FE shell model is 
depicted in Figure 6 and the envelope of all 
these load models in Figure 7. As it was 
expected, since the peaks between the FE shell 

model and the beam model of CALDINTAV 
were the same, both envelopes are in good 
agreement. 

Figure 6: Acceleration envelopes produced by all the 
HSLM-A load models running at different velocities. 

Figure 7: Acceleration envelope produced by all the 
HSLM-A running at different velocities. 

4.1 Implementation of the TMD 

Once the beam model employed in 
CALDINTAV has been demonstrated to be a 
good approximation to the bridge, the TMD is 
designed and implemented according to 
previous sections. 

The TMD mass is adopted following the 
recommendations of 1-5% of the generalised 
mass. In this problem, the modal mass of the 
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first bending vibration mode is 200E3 kg, 
hence, considering a 2% of this mass, the TMD 
mass results in 4000 kg. Applying Equations 
(10)-(12), the stiffness and the damping 
coefficient of the TMD are the followings: 

𝑘𝑡𝑚𝑑 = 3.22568E06 N/m 

𝑐𝑡𝑚𝑑 = 19480.5 Ns/m 
(12) 

Regarding the software CALDINTAV, the 
user is asked to enter the mass of the TMD and 
the rest of parameters are calculated (Figure 8). 
The time step and number of modes are the 
same as before. 

In Abaqus, the TMD is modelled as an 
inertial mass connected via a wire to the mid-
span of the bridge. This wire is characterised 
by the stiffness and damping given in Equation 

(12). 
The dynamic response of the bridge with a 

TMD placed at the mid-span is shown in 
Figure 9 and Figure 10 for the FE shell model 
and the beam model of CALDINTAV, 
respectively. To check the performance of the 
TMD, the results computed previously without 
the TMD are also drawn. From these two 
figures, two conclusions may be extracted. 
First, the vibration level of the bridge is 
reduced significantly due to the action of the 
device. The maximum acceleration is now 
around 0.95 m/s2, what implies a reduction of 
the 50% with respect to the initial 
configuration without the TMD. By comparing 
the root-mean square (RMS) acceleration, a 
global estimator of the dynamic response, 
between both configurations, the reduction 
given in Table 1 is achieved. 

Figure 8: GUI of CALDINTAV.
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Software Without 
TMD With TMD Reduction

[%] 
Caldintav 0.85 0.34 60.00 
Abaqus 0.81 0.34 58.02 

Table 1: RMS acceleration and reduction achieved 
with the TMD. 

Second, the simplified model leads to 
accurate results as it is demonstrated in Figure 
11. 

Figure 9: Dynamic response of the railway bridge 
under HSLM-A1 running at 295 km/h with a TMD 

implemented (FE model in Abaqus): a) vertical 
acceleration at mid-span and b) vertical displacement at 

mid-span. 

Figure 10: Dynamic response of the railway bridge 
under HSLM-A1 running at 295 km/h when a TMD is 
implemented (CALDINTAV): a) vertical acceleration 
at mid-span and b) vertical displacement at mid-span. 

Figure 11: Dynamic response of the railway bridge 
under HSLM-A1 running at 295 km/h with a TMD 

implemented: Caldintav and FE shell model 
comparison. 

When all the HSLM-A train load models are 
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considered in the study, the envelope of all the 
dynamic response represented in Figure 12 is 
achieved. The TMD leads to a reduction of the 
railway bridge vibrations for all velocities. 
Finally, the behaviour of both models is 
compared in Figure 13 where it is observed the 
good agreement between them is. 

These results allow concluding that the 
coupled TMD-structure interaction model used 
in this study is valid for this type of box-slab 
railway bridge. 

Figure 12: Acceleration envelope produced by all the 
HSLM-A running at different velocities when a TMD 

is implemented. 

Figure 13: Acceleration envelope produced by all the 
HSLM-A running at different velocities when a TMD 

is implemented. 

To close this section, some remarks are 

drawn. The mass of the TMD seems to be quite 
high, however, a steel box with dimensions 
1 × 1 × 0.5 m3 would be enough to get the 
mass the of the device. The second option may 
be to divide the TMD into two TMDs placed at 
mid-span above the deck at the lateral ends. 

In case the TMD is installed inside the box 
girder, it must be checked that the stroke is less 
than the height of the box. 

For this case study, when the HSLM-A1 
runs at 𝑣 = 225 km/h, the maximum 
displacement of the TMD is 8 mm. The 
HSLM-A10 running at 𝑣 = 225 km/h (its 
resonant peak) causes a maximum 
displacement equals to 17 mm. In both cases, 
the result is much smaller than the inner depth 
of the box girder. Therefore, there is enough 
space for installation and movement of the 
inertial device. 

Although it is not discussed here, the 
requirements of the Ultimate Limit State 
(ULS) must be verified again once the TMD is 
installed. 

Finally, the computational cost of both 
methods is compared. A 64 Gb of RAM 
computer with a 3.40 GHz processor has been 
used for both calculations. The simplified 
model of CALDINTAV lasts about 10 minutes 
whilst the FE shell model in ABAQUS has a 
duration of 5 hours for all trains and velocity 
range. 

5 CONCLUSIONS 

A simplified TMD-railway bridge 
interaction model has been presented and 
implemented in this paper. It consists of two 
sub-models, one accounting for the structure 
and other for the passive inertial device. The 
first one has been defined through its modal 
properties and the second one modelled as a 
single degree of freedom system defined by its 
mass, stiffness and damping coefficient. 

The performance of this simplified 
interaction model has been validated through 
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its application to a railway bridge subjected to 
a series of high-speed load models. A clear 
reduction of the vertical acceleration of the 
bridge has been calculated. In addition, the 
results have been compared with those 
obtained by modelling the structure through a 
3D FE model, giving as conclusion that the 
simplified model represent a good 
approximation to the problem with less 
computational cost. 

Further research may be undertaken 
focusing on skew bridges or with eccentric 
loads where torsion arises, and more than one 
device should be installed. 
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Abstract. The authors have carried out an extensive experimental campaign in several 

railway bridges in Spain with the purpose of characterising the structures including the soil 

properties and the bridge dynamic responses under railway traffic. The response of isostatic 

steel and concrete bridges located in high-speed and conventional lines have been measured 

and analysed. Six bridges have been experimentally studied: i) Bracea: is an isostatic concrete 

double-track bridge composed by two identical S-S bays of 15.25 m equal spans; ii) Algodor: 

is an isostatic double-track concrete bridge composed by three S-S bays of 10 m equal spans; 

iii) Guadiana: is an isostatic single-track concrete bridge composed by two S-S bays of 12 m

equal spans; iv) Jabalón I: is an isostatic double-track concrete HST bridge composed by three

S-S bays of 20 m equal spans and v) Jabalón II is a steel truss single-track bridge composed by

three of 25 m equal spans. The study includes: bridge modal parameters and dynamic soil

properties identification, vibration levels corresponding to actual railway traffic, differences

between the structural behaviour of structures for the same traffic and estimation of the response

associated to the train speed.

Key words: railway traffic; bridge; experimental results; dynamic response; vibrations. 

1 INTRODUCTION 

The construction of the trans-European 

network (RTE-T), based on the 

interconnection and interoperability of the 

corresponding national systems, including the 

railway network, is of paramount importance 

for the economic competitiveness of the 

European Union (EU) and its balanced and 

sustainable development. The European 

Commission [1], in 2010, in the con- text of 

establishing a single European railway space, 

defines the railway transport mode as “an 

environmentally friendly mode of transport 
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which can contribute to establishing new forms 

of mobility that are energy-efficient and limit 

the risks of aggravating pollution, congestion 

and climate change”. Therefore, developing a 

sustainable transport system has become a 

strategic priority in the long-term, to meet 

future requirements and challenges in 

mobility. The European Commission [1] 

adopts a strategy with the aim of “promoting 

the development of an effective EU rail 

infrastructure, establishing an attractive and 

truly open rail market, removing admin- 

istrative and technical barriers, and ensuring a 

level playing field with other transport modes”. 

Thus, it is intended to increase by 30 to 50 

percent the passenger transport by 2050 [2]. 

Despite the growth indices in the railway 

sector and despite of the clear advantages that 

a single European railway area would entail, 

the researchers of this work detect 

uncertainties in relation to the changes in the 

operating conditions of the railway lines, that 

will require an adequate maintenance of the 

infrastructure to ensure the levels of quality, 

safety, and reliability of rail transport. 

Therefore, expanding the capacity of the lines 

will require a much more detailed study and 

characterization of the dynamic effects that 

occur in the infrastructure. Specifically, the 

Spanish railway network currently has a total 

of 135 km of track that runs over more than 

6000 bridges. Yearly, infrastructure 

maintenance includes the auscultation of 250 

bridges and conducting 25 to 30 load tests. 

This situation may also be perfectly applicable 

to other EU countries. 

The dynamic response of a bridge under the 

circulation of a railway convoy is complex and 

it is affected by several factors. The most 

obvious ones are the bridge properties, the 

geometric scheme of train axles and the speed 

of circulation, being also those that less 

uncertainty entails its determination [3]. 

Additionally, there are other factors which 

determination is much more uncertain that 

significantly affect the response of the bridge 

such as structural damping and various 

interaction mechanisms which modelling is not 

trivial and is currently under investigation, 

being the most relevant vehicle-structure, rail-

structure and soil-structure interaction effects 

[4]. In engineering consultancies, simplified 

numerical models that generally disregard 

these mechanisms are usually used, given the 

uncertainties that their modelling entail and the 

considerable computational cost involved. 

Several works showed the importance of 

having available experimental measurements 

on bridges. Although there is a significant 

number of papers on this topic, researchers do 

not al- ways find available experimental 

measurements for their own purpose. 

Therefore, the need for such studies justifies 

the work presented in this paper. A 

comprehensive experimental campaign in 

several railway bridges in Spain is presented in 

this work. The tests include the identification 

of the modal parameters of the structures, the 

characterization of the soil surrounding the 

bridge and the bridge dynamic responses under 

railway traffic. Five bridges were tested: i) Old 

Guadiana Bridge: a double-track simply-

supported bridge with two 12 m equal spans 

composed by two adjacent single-track decks 

with continuous ballast; ii) Jabalón High-

Speed Bridge (Jabalón HSL from now on): an 

isostatic bridge of three S-S bays of 20 m equal 

spans composed by a double-track pre-stressed 

concrete girders deck; iii) Algodor Bridge: an 

isostatic double-track bridge with three S-S 

bays of 10 m equal spans and a pseudo-slab 
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concrete deck; iv) Jabalón conventional Line 

Bridge (Jabalón from now on): a steel truss 

single-track structure composed by three 25 m 

equal spans; and v) Tinajas Bridge: a steel-

concrete composite single-track bridge with 

three bays of 25, 35 and 22 m spans, 

respectively. 

2 EXPERIMENTAL SET-UP 

In April and May 2019 the authors 

performed an experimental campaign on 

several railway bridges with the purpose of 

characterizing the structure and soil dynamic 

properties along with the bridge dynamic 

response under railway traffic. As per the 

acquisition equipment, a portable acquisition 

system LAN-XI of Brüel & Kjaer was used.  

The acquisition system fed the sensors 

(accelerometers) and an instrumented impact 

hammer in the case of the soil tests. It also 

performed the Analog/Digital conversion 

(A/D). The A/D was carried out at a high 

sampling frequency that avoided aliasing 

effects using a low-pass filter with a constant 

cut-off frequency. The sampling frequency 

was fs = 4096 Hz. The acquisition equipment 

was connected to a laptop for data storage. 

Endevco model 86 piezoelectric 

accelerometers were used with a nominal 

sensitivity of 10 V/g and a lower frequency 

limit of approximately 0.1 Hz. The acquisition 

system was configured to avoid the sensors’ 

overload. Nevertheless, in some cases, the 

signals were overloaded. In the case of Tinajas 

Bridge, Etna stations of Kinemetrics with 

internal triaxial accelerometers with a nominal 

sensitivity of 1.25 V/g were used. Here, the 

sampling frequency was fs = 250 Hz. 

The modal parameters of the bridges were 

identified from ambient vibration data by the 

stochastic subspace identification technique 

[5]. The ambient vibration response was 

acquired during the tests while the trains were 

not crossing the bridges. Data were decimated 

to carry out data analysis in the frequency 

range of interest (0 to 30 Hz). The signals were 

filtered applying two third-order Chebyshev 

filters with high-pass and low-pass frequencies 

of 1 Hz and 30 Hz, respectively. 

The dynamic characterisation of the soil 

was carried out by the seismic refraction and 

the Spectral Analysis of Surface Waves 

(SASW) tests. The seismic refraction test 

allowed the identification of the P-wave 

velocity (Cp) of the soil layers. The SASW test 

was used to determine the S-wave velocity 

(Cs) and the material damping ratio of the soil 

layers (β) [6]. 100 hammer impacts were 

applied to a 50 cm x 50 cm x 8 cm aluminum 

foundation anchored to the soil surface. The 

instrumented hammer included a PCB 086D50 

force sensor. The vertical free field response 

was recorded by means of accelerometers 

anchored to the soil surface every 2 m (2 m to 

72 m). Steel stakes of cruciform section and 30 

cm of length were driven into the ground 

surface and each of the accelerometers was 

screwed to a stake. After each impact, a time 

signal of 16348 samples (4 s) was stored. The 

force channel was used as a trigger, a pre-

trigger of 1 s, and a post-trigger of 3 s. The 

signals were decimated (order 4), filtered with 

a third-order Chebyshev filter with a high-pass 

frequency of 1 Hz and a low-pass frequency of 

100 Hz. 

3 RAILWAY BRIDGES 

In Dinest 2021 conference, the specificities 

of the experimental set-ups and the 

experimental measurements recorded in Old 

Guadiana, Jabalón HSL, Jabalón, Algodor and 

Tinajas bridges will be outlined. Here, the first 
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case is presented in detail. 

3.1 Old Guadiana Bridge 

3.1.1 Description of the structure 

This first bridge under study crosses Old 

Guadiana River in the conventional railway 

line Madrid-Alcazar de San Juan-Jaén, in the 

Alcázar de San Juan-Manzanares section (see 

Figure 1). It is a double track concrete bridge 

composed by two identical simply-supported 

bays. The horizontal structure is formed by two 

structurally independent although adjacent 

decks, one for each track, sharing the ballast 

layer. Each deck is composed by a concrete 

slab resting on five pre-stressed concrete 0.75 

m  0.3 m rectangular girders with no transverse 

stiffening elements. The longitudinal girders 

rest on the two abutments and on a central 

support through neoprene bearings. Each deck 

accommodates a ballasted eccentric track with 

Iberian gauge (1668 mm), UIC60 rails and 

mono-block concrete sleepers separated 0.60 

m. 

Figure 1: Old Guadiana Bridge (39◦17′37.8”N 

3◦12′22.5”W). 

The vertical acceleration response was 

measured at 18 points of the lower flange 

lower horizontal face of the pre-stressed 

concrete girders. The accelerometers were 

attached to the girders using circular aluminum 

plates with 9 cm of diameter and 6 mm of 

thickness fixed with epoxy resin to the 

concrete surface which was previously treated 

for proper adherence. The response at points of 

the two decks in both spans was recorded. 

3.1.2 Modal parameters identification 

Ten modes have been identified from the 

ambient vibration recorded during 3600 s 

corresponding to the vertical bending and 

torsion of the decks. The lowest one in 

frequency order correspond to the first bending 

mode. The second one is a torsional mode that 

involves both decks because the tracks 

components cause the deck coupling. 

Nevertheless, the third mode corresponds to 

the torsion of each deck independently. 

Bending and torsional behaviours can be 

observed in the rest of the mode shapes. The 

identified damping for the fundamental mode 

reaches 2.3%, higher value than that prescribed 

by standards for design purposes for this length 

and bridge typology (1.5% as per [7]). 

The damping ratio estimation was deeply 

analysed. The damping ratios were obtained 

using the response to the wind load and also 

from 10 s of free vibration after the train 

passages. The amplitude of the oscillations 

is rather higher in the later case. The 

damping ratio estimations are presented in 

Figure 2. The obtained results for the same 

vehicle crossing the bridge for the same 

track are consistent. As a general 

conclusion, it can be mentioned that the 

damping ratios from the response to train 

loads were higher than those obtained from 

the ambient response. Notwithstanding the 

uncertainties, the estimations from the 

railway traffic were done under op erational 

conditions of the bridge and can represent 

better the actual behaviour of the structure. 
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Figure 2: Old Guadiana bridge: estimated damping 

ratios from (red circle) ambient vibration and (grey 

crosses) train passages. The (blue square) mean value 

and (blue line) the mean value the standard deviation 

are also presented. 

3.1.3 Response due to train passages 

The circulations took place on the 6th of 

May between 12:18 and 17:38 hours. The 

structural response to different vehicles at 

around 160 km/h has been measured. 

Figure 3 shows the bridge response at points 

5, 17, 8 and 15 due to a Renfe Altaria train on 

tracks 1 and 2 at v=160 km/h and v=155 km/h, 

respectively. It should be mentioned that the 

resonant speeds for mode 1 and resonance 

order 3 is v1,3 = 9.8 x 13.1/3 x 3.6 = 154 km/h, 

very close to the actual speeds. The damping 

ratios for mode 1 obtained from the free 

response after the trains left the structure were 

2.5% and 5.0%, respectively for the two train 

passages. The response at points 5 and 17 

present a similar behaviour when the trains 

cross the bridge along the tracks 1 and 2. The 

response at point 5 when the train was on track 

2 is like the response at point 17 when the train 

was on track 1. The contribution of modes 1 

and 3 is clearly observed in the responses. 

Moreover, the characteristic vehicle frequency 

v/d = 160/3.6/13.1 = 3.4 Hz and its second 

harmonic can be also observed in the 

observation points close to the track which the 

train was travelling. The train crossing the 

bridge along the track 2 induces a higher level 

in the deck 2, although the deck 1 is also 

excited. The maximum amplitude in the deck 

1 is about the 45% of the highest value in deck 

2. The response at point 8, at the edge of the

deck 2, presents the highest level for the train

on the track 2. The mode 4 also contributes to

this response. The decks responses are clearly

coupled through the ballast track.
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Figure 3: Old Guadiana Bridge: (a-d) time history and (e-h) frequency content of the acceleration at points 5, 17, 8 

and 15 induced by Renfe Altaria train with 9 coaches (black line) at v = 160 km/h circulating on track 2 and (red line) at 

v = 155 km/h circulating on track 

4. CONCLUSIONS

An experimental campaign was performed

at several railway lines in Spain in order to 

characterize the soil and the bridge dynamic 

behaviour induced by train passages. The 

results allow a better understanding of the 

structural performance of these short bridges, 

which can be helpful for the development and 

updating of numerical models useful for 

practical applications. 
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Abstract. Fixed structures are commonly used to shelter port basins and vessels from extreme 

wave conditions. Nonetheless, in port basins and harbours with mild wave conditions, floating 

solutions represent an interesting alternative due to their lower cost and impact on the seabed. 

Numerical modelling of wave-structure interaction is of paramount importance since the 

dynamic behaviour of any floating structure determines key issues such as the mooring 

arrangement and the module connection system. This work deals with the numerical modelling 

of a modular breakwater in Asturias (Spain), which has suffered frequent structural failures in 

the module connection elements after extreme wind-sea wave conditions. The dynamics of the 

floating structure are analysed by means of a panel model that applies the boundary element 

method (BEM) to solve the linear radiation-diffraction problem. The hydrodynamic coefficients 

of the modular pontoon are used to define the response amplitude operators and, subsequently, 

identify the natural modes of oscillation. 

Key words: Pontoon breakwater, marine structures, numerical simulation, BEM. 

1 INTRODUCTION 

Wave dissipating structures are needed to 

shelter the vessels at port from the oncoming 

waves. Although most of these structures are 

fixed to the seabed, floating breakwaters are 

commonly used in locations with mild 

environmental conditions. The latter are a low-

cost environmentally friendlier alternative 

since they reduce current affection and its 

associated sediment transport [1]. 

The modular concrete floating breakwater 

of the Port of Figueras is a prime example of 

these structures (Figure 1). This port is located 

within the Ria of Eo, an estuary that separates 

the coastlines Galicia and Asturias, two 

northern regions of Spain. 

134



2nd Conference on Structural Dynamics (DinEst 2021)  

Gijón, 22 -23 July 

Figure 1. Location of the Port of Figueras (left) and panoramic view of the floating breakwater (right). 

Over the last years, this breakwater has 

frequently suffered the breakage of the 

connections between the concrete modules and 

the corresponding cascade of structural failures 

(Figure 2). Once the connection elements are 

broken, incoming waves induce large relative 

motions on the unrestrained modules, which 

tend to hit each other. This situation leads not 

only to structural failures (including concrete 

cracking), but also to losses of the 

breakwater’s wave dissipation efficiency that 

reduce port operability. 

Figure 2. Breaking of the connectors and damage on the 

concrete modules. 

These structural failures are associated to 

harsh environmental conditions dominated by 

strong southern winds. Given the considerable 

fetch length in the South-North direction, 

strong wind seas are frequently generated 

within the estuary (Figure 1). These wave 

conditions are particularly adverse during high 

tides and cause violent strokes of the 

breakwater and docks. The failure of the 

connections is presumed to occur under these 

conditions due to the excessive forces they 

must withstand, but it requires confirmation by 

a comprehensive analysis. 

Advanced engineering techniques are 

required to properly estimate the forces acting 

on these floating structures.  A usual approach 

is to conduct the experimental testing of these 

structures in wave flumes or basins, were 

scaled models are tested [2]. Although these 

results are difficult to extrapolate to full-size 

structure, they can be used to calibrate 

numerical models [3].  

As for today, numerical models are a 

feasible approach to address the dynamics of a 

floating structure under complex 

environmental actions. The first numerical 

studies regarding floating breakwaters applied 

the potential flow theory to simplified 2D 

geometries [4]. Recent studies applied models 

that solve the Navier-Stokes equations, both 

from an eulerian [5] and lagrangian [6] 

perspective. The most innovative methods 

entail high computational costs, making them 

unsuitable for a comprehensive analysis of a 

structure as complex as the dynamics of a 

floating breakwater. The 3D panel models, 

based on the potential flow theory, are a 

compromise between accuracy and 

computational cost [7]. 
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The purpose of this work is to present a first 

approximation of the dynamic behaviour of 

one of the modules of the breakwater of the 

Port of Figueras. It is achieved through 

advanced simulation techniques that feature a 

3D panel numerical model. This analysis 

provides an estimation of the hydrodynamic 

coefficients that govern the dynamic response 

of the structure. These coefficients could be 

used in a further, more complex, analysis of 

these structures. 

Figure 3. General schematics of the floating breakwater (upper panel) and dimensions of a single modules (lower panel). 
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2 FLOATING BREAKWATER 

DESCRIPTION 

The complete structure of the Figueras 

breakwater has a 198.45 m length and consists 

of 15 prefabricated concrete modules (Figure 

3). Each module is a SF BW-300 model, 

manufactured by SF Marina. These modules 

are connected by two connections, each 

consisting of two steel braid cables. This 

arrangement provides enough stiffness to make 

the complete breakwater function as a whole. 

Each module is also moored to the seabed by 4 

steel chains that are anchored by concrete 

blocks. 

The modules are pontoon-type hollow 

structures, with the following dimensions: a 

12.00 m length (X direction), a 3.00 m beam (Y 

direction), a 1.80 m height (Z direction), a 

0.40 m freeboard and a 24 t displacement 

tonnage. 

2 FREQENCY DOMAIN NUMERICAL 

MODELLING 

The wave forces acting on a floating 

structure are dependent on its characteristic 

dimensions (D) as well as the wavelength (λ) 

and wave height (H) (Figure 4). According to 

the on-site wave conditions (Hs = 0.76 m and 

Tp = 3.41 s) [8], the water depth (d = 8.50 m) 

and the characteristic dimension of the 

modules (D = 3.00 m), this case study 

corresponds to a region II wave force regime, 

in which diffraction forces are dominant.  

ANSYS Aqwa was used to analyse the 

fluid-structure dynamic interaction between a 

single module and the oncoming waves. A 

diffracting behaviour of the modules of the 

breakwater was assumed.  

This simulation environment has been 

already applied to other marine structures, such 

as floating drilling platforms [10], Mid Water 

Arch submarine structures [11] or wave energy 

converters [12]. It has also been employed in 

floating breakwaters [13]. 

Figure 4. Regions of dominant wave forces [9]. 

Aqwa Line applies the potential flow 

theory; thus, the fluid is considered to be ideal 

and the flow irrotational. The floating body is 

assumed to be rigid, with no forward speed and 

small enough motions so that the boundary 

conditions are met around the equilibrium 

position. Under these hypotheses and the 

cartesian coordinate system X = (X, Y, Z), the 

flow around the floating body is defined 

through the velocity potential, 

( , ) Re[ ( ) ]i tt e−=X X
  , (1) 

where: t is the time, ω is the angular frequency, 

Re implies “the real part of”, and φ is the 

velocity potential in terms of the spatial 

coordinate. This potential satisfies the Laplace 

continuity condition, 

2 2 2
2

2 2 2
( ) 0

X Y Z

  


  
 = + + =

  
X , (2) 

through which the linearity of the solution is 

guaranteed for all the fluid domain. For 

convenience’s sake, the potential can be 

expressed through three different terms: the 

incident potential (φI), the diffracted potential 

(φd) and the radiated potential (φrm). This last 

term is radiated by the m structure, due to its 

movements in the j degree of freedom (DoF), 
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for all M interacting structures. This velocity 

potential can be therefore expressed as follows 

6

1 1

M
i t i t

I d rm jm

m j

e x e    − −

= =

 
= + + 
 

 , (3) 

where xj is the motion for the j DoF. 

Several methods can be used to solve the 

velocity potential, being the Boundary 

Element method (BEM) one of the most used. 

This method transforms this problem into 

partial derivatives in integrable surfaces, 

where loads are applied through the pulsating 

Green's function in finite depth water [14]. The 

following conditions must be met: 
- Free surface (Z = 0) condition,

2 0g
Z


 


− + =


, (4) 

where g is the gravitational acceleration. 

- The rigid body is impermeable and

therefore the velocities of the flow

particles that are in contact with the surface

of the body are equal to the velocity of the

body (u),

/ n  = u n , (5) 

where ∂/∂n is the derivation throughout the 

direction normal to the body, and n is a unit 

vector normal to the body surface. 

- Seabed surface condition at a depth of

Z = d,

0
Z


=


. (6) 

- Far apart from the floating body, the

perturbation on the fluid is dissipated,

meaning that the potential becomes zero,

( )lim 0
R

φ
→

= , (7) 

for R = (X2 + Y2)0.5. 

A computational mesh was used to 

determine the velocity potentials over a 

floating module. The mean wet surface (S0) 

was discretized in similarly sized 

quadrilaterals (Figure 5). 

Figure 5. Mesh of diffracting panels over the mean wet 

surface (S0). 

Once the velocity potentials are obtained, 

the dynamics of a free-floating body under the 

action of waves can be analysed as a mass-

spring system. 

The equation of motion of the floating body 

in the frequency domain is 

2 ( ) ( )i   − + − +  = M A B C χ f , (8) 

where: M is the structural mass matrix; A is the 

added mass matrix; B is the damping matrix; C 

is the hydrostatic stiffness matrix; χ is the 

amplitude of motion of the rigid body in its 6 

DoF´s; and f(ω) are the frequency dependent 

unitary forces and moments. Each of these 

terms will be described at length hereunder. 

When a floating body is in motion, it 

induces accelerations to its surrounding fluid 

particles. This effect may be represented 

considering that said floating body has an 

added mass (A) in every one of its DoF´s. 

A free-floating body also generates waves 

due to its very own motions. The phenomenon 

where energy is dissipated through radiation is 

known as hydrodynamic damping. The matrix 

B represents this phenomenon for every DoF.  

Both matrices can be obtained through the 

radiation forces of the body as  

 
0

Im r
S

dS





= A n (9) 

and 

 
0

Re r j
S

dS = − B n , (10)
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where ρ = 1027 kg/m3, a typical seawater 

density. The values of A and B are not only 

dependent on the geometry, but also on water 

depth, as it influences the wave fronts that 

ultimately interact with the structure. Both A 

and B are symmetrical if there is no forward 

speed and in absence of water currents [15]. 

The hydrostatic stiffness matrix (C) is only 

dependent on the geometry (due to the position 

of the centre of gravity and S0) and the fluid 

density. 

The term f(ω) stands for the forces and 

moments vector that acts over the mean wetted 

surface of the body. This vector encompasses 

different force types. These are the incident or 

Froude-Krylov forces fI(ω), the diffraction 

forces fd(ω) and the radiation forces fr(ω). The 

first two are considered exciting forces 

whereas the last one exists due to the motions 

of the body in all of its 6 DoF´s. All these 

forces may be expressed as functions of the 

velocity potentials of the fluid 

0

( )I I
S

i dS  = −  nf , (11) 

0

( )d d
S

i dS  = −  nf , (12) 

0

( )r rn m
S

i dS  = −  nf . (13) 

Once the harmonic response of a floating 

body is solved, it can be expressed by means 

on its Response Amplitude Operators (RAO). 

These are defined as the response amplitude of 

a floating body for a certain DoF j divided by 

a wave height (H), that is 

RAO 2


=
j

j
H

. (14) 

The RAO may be used to identify the 

natural oscillation modes of the floating body, 

for which the response amplitude will be 

maximum. The natural periods of a free-

floating module will tend to infinity for all 

DoF´s in the horizontal plane (surge, sway and 

yaw), as the restoring forces are negligible 

[16]. 

Even if the moorings were considered, the 

natural periods would still be very high, far 

away from the periods that should be expected 

from a wind sea state. Therefore, only low 

period oscillations or long waves could be able 

to excite these structures [17]. As for the DoF 

contained in the vertical plane, the natural 

periods will be low, similar to those of the 

waves, with or without the contribution of the 

mooring system. This is because gravity will 

always act as a restoring force. 

3 RESULTS 

One of the main outputs of the frequency 

domain analysis was the obtention of A(ω) and 

B(ω), both 6x6 matrices. Since the modules are 

symmetric with respect to the vertical planes 

XZ and YZ, the terms outside the main diagonal 

are zeroes. The resulting added mass and 

damping matrices are 

11 15

22 24

33

42 44

51 55

66

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

A A

A A

A

A A

A A

A

 
 
 
 

=  
 
 
  
 

A (15) 

and 

11 15

22 24

33

42 44

51 55

66

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

B B

B B

B

B B

B B

B

 
 
 
 

=  
 
 
  
 

B . (16) 

 Figure 6 shows the variation of the terms in 

the added mass matrices for different values of 

angular frequency. The first three terms in the 
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main diagonal relate translations in the 

directions of the coordinate axis with forces in 

the same direction. Regarding these terms, the 

highest added mass corresponds to the vertical 

mode or heave (A33).  

For this mode, the virtual mass is kept 

constant at 50.00 t for angular frequencies 

above 2.00 rad/s. For frequencies below this 

value, the virtual mass increases its value 

inversely proportional to the frequency until it 

reaches a maximum value of 111.56 t.   

The term corresponding to the sway 

motions of the body (A22) shows a maximum 

value of 58.81 t for ω ≈ 1.54 rad/s. Above this 

frequency, the added mass is drastically 

diminished while under it, the added mass is 

reduced to 40.14 t. The added mass for surge 

motions (A11) presents the lowest values, being 

always below 1.00 t for any of the analysed 

frequencies. This is because the module has a 

smaller exposed surface in this particular 

direction.  

As for the rotation terms of the main 

diagonal, the highest value of added mass was 

found for the pitch motion (A55), with 

626.89 t∙m2/rad around the ω = 1.25 rad/s 

frequency. This result is explained by the 

inertias of the module. The yaw term (A66) 

shows a 454.35 t∙m2/rad maximum value, 

around the ω = 2.00 rad/s frequency. In both 

cases, the added mass drastically plummets for 

higher frequencies. Finally, the added mass for 

the roll motions (A44) presents a value 

somewhat constant throughout the analysed 

range of frequencies. This value slightly varies 

around 30.00 t∙m2/rad. 

 Figure 6 also shows the translational added 

mass in each of the horizontal axis. These are 

induced by the rotations around the horizontal 

axis perpendicular to them and are represented 

by the terms A15 and A24. Since the body has no 

forward speed and no currents were defined, 

the matrix is symmetrical for these 

components, meaning that: A15 = A51 and 

A24 = A42. The rotational added mass A15 

Figure 6. Terms of the added mass matrix in the 

frequency domain: components of the main diagonal 

(upper and middle panel) and components outside the 

main diagonal (lower panel). 
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reaches a peak value of 30.56 t∙m for 

ω = 1.26 rad/s. This value rapidly decreases 

for lower frequencies until reaching a value of 

12.00 t∙m. As for the A24 term, its maximum 

values are significantly lower than those of the 

previous term, reaching a value of 21.08 t∙m 

around 1.73 rad/s. For ω > 2.00 rad/s, both 

parameters tend to align and for frequencies 

above ω = 3.54 rad/s, A24 yields the higher 

values. 

Figure 7 shows the terms of the 

hydrodynamic damping matrix (B) in the 

frequency domain. The pontoon-type shape of 

the analysed module is designed to amplify the 

damping in sway motions. These designs are 

meant to attenuate waves and have a high wave 

transmission coefficient to protect the 

sheltered docks and vessels. The highest values 

obtained in the hydrodynamic damping matrix 

were associated to the sway terms (B22), 

reaching a value of 87.87 kN·s/m for 

ω = 2.00 rad/s. A remarkable damping was 

also found associated to the yaw motions (B66), 

for similar angular frequencies, with a 

maximum value of 833.18 kN∙m∙s/rad. 

As seen in Figure 7, two other modes show 

significant hydrodynamic damping: the heave 

and pitch modes.  Both present a similar 

pattern, with maximum values of B33 = 

43.98 kN∙s/m and B55 = 385.56 kN∙m∙s/rad 

around ω ≈ 1.50 rad/s. 

As for the surge and roll modes, their 

damping is comparatively inferior for the 

whole frequency domain, being almost 

negligible in the roll modes. Roll damping is 

usually underestimated in potential theory 

codes, so additional damping is introduced to 

reproduce the motions realistically. This 

additional damping is achieved through a 

linear stiffness matrix with a single value of 

20.00 kN·m/rad·s in the corresponding roll 

term. This value is based on an average added 

mass of 30.00 tm2/rad, the inertia around the X 

axis, and considering 15% of the critical 

damping. 

Figure 7. Terms of the hydrodynamic matrix in the 

frequency domain: components of the main diagonal 

(upper and middle panel) and components outside the 

main diagonal (lower panel). 

141



Cebada-Relea, A.J., López, M., Claus, R., Aenlle, M. 

The variation of the components outside the 

main diagonal can be seen in the lower panel 

of Figure 7. The rotational damping in the 

longitudinal axis due to pitch motions shows a 

maximum value of B15 = 36.50 kN∙m for 

ω ≈ 3.64 rad/s. In this mode, lower frequencies 

while for higher frequencies, the value 

stabilizes at B15 ≈ 15.00 kN∙m. 

The rotational damping in the transversal axis 

due to roll motions reaches a maximum value 

of B24 = 13.28 kN∙m for ω ≈ 2.20 rad/m. 

Finally, the hydrostatic stiffness matrix was 

obtained 

33

44

55

0 0 0 0

0 0 0 0

0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 00

0

0

0 0

0

0

C

C

C

 
 
 
 

=  
 
 
  
 

C (17) 

Figure 8. RAO vs angular frequency (ω) for the analysed floating module.
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where C33 = 361.86 kN/m; C44 = 212.11 

kN·m/rad; and C55 = 4283.11 kN·m/rad. Since 

the centre of gravity is vertically aligned with 

the centre of floatation, C = CT. Moreover, 

given the symmetry of the floating modules 

with respect to both vertical planes, all C terms 

are zero except for those corresponding to 

motions in the vertical planes of the main 

diagonal.  

Once the values of A, B and C were known, 

the modal response of the free-floating 

pontoon was computed. Figure 8 shows the 

RAO obtained for each DoF and each of the 

defined wave directions. These directions (ϴ) 

are 0º, 45º and 90º with respect to the X 

horizontal axis. These outcomes can be used to 

estimate the natural frequencies of the floating 

module, as a first approach to assess the 

hydrodynamic behaviour of this structure. 

For the heave and roll motions, the natural 

frequencies are around ω = 2.00 rad/s. In both 

cases, the RAO quickly diminish outside this 

frequency. For low frequencies, the vertical 

motions of the structure (heave) are paired with 

the oncoming waves since the RAO match the 

wave amplitudes. For both heave and roll 

motions, the RAO is greater for the ϴ = 90º 

wave direction.  

As for the pitch motions, the natural 

frequency has a slightly higher value of 

ω ≈ 2.50 rad/s, where a damped oscillation 

mode of 0.50 rad/m appears. Furthermore, the 

values of the RAO are higher for the ϴ = 45º 

wave direction, lower for ϴ = 0º and zero for 

the ϴ = 90º wave direction. This is explained 

due to the symmetry of the module with 

respect to its transversal plane. 

On the other hand, no natural frequencies of 

oscillation were identified for the surge, sway, 

and yaw motions. This is due to the free-

floating nature of the body. Since no moorings 

were considered in this stage of the analysis, 

the RAO corresponding to surge and sway tend 

to infinity as frequencies tend to zero. Greater 

values are obtained, for a given frequency, 

when the wave front is aligned with each of 

these motions.  

4 CONCLUSIONS 

A linear hydrodynamic model of single 

pontoon floating breakwater placed in the Port 

of Figueras (Spain) was carried out. The model 

applies the potential theory throughout the 

Boundary Element Method. The 

hydrodynamic coefficients and the harmonic 

response were solved in the frequency domain. 

The conclusions of the analysis are 

summarized below: 

- For translations and rotations about X

axis (surge and roll) the added mass can

be neglected. In other DoF´s the

highest value of the added mass

appears at low frequencies (ω

< 2.0 rad/s), and for upper frequencies

added mass tends to stabilize.

- The hydrodynamic damping of the

translations and rotations about X axis

also can be neglected, but at least its

necessary introduce an additional

linear damping. In this case is

remarkable the damping of the

translations about Y axis, in which the

highest values appear over

2.0 ≤ ω ≤ 4.0 rad/s.

- Three natural modes of the pontoon

were identified throughout the

Response Amplitude Operator on each

DoF. The modes relative to the heave

and roll appear around 2.00 rad/s,

especially when the wave incidence

angle is transverse to the pontoon. In

oblique wave conditions another

damped mode also appears in pitch

rotation near the frequency of

2.50 rad/s.

- To get a more realistic approximation

of the behaviour of the set of pontoons,

an exhaustive analysis in the time
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domain is required, considering the 

mooring and anchoring forces and the 

representative wave conditions of the 

site. 
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Abstract. Floating photovoltaic (FPV) systems raise as a promising alternative to ground 

mounted. Nonetheless, due to the absence of a standardized calculation procedure for this 

technology, the industry has focussed on simple designs for continental sheltered waters. In this 

work, a verification procedure for marine FPV structures is proposed and applied to a novel 

concept that consists of a top-of-pole solar panel mount attached to a tension leg platform 

(TLP). The procedure comprises the definition of test cases, the dynamic response analysis of 

the floating structure and the verification of its main components. Key guidelines regarding the 

design of similar structures, as well as future research lines are presented. 
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1 INTRODUCTION 

Floating photovoltaic (FPV) systems have 

been installed on freshwater bodies over the 

last decade with a growing rate of 133 % [1]. 

This growth was possible due to the 

advantages that FPVs pose over ground-

mounted photovoltaic systems. These have 

been analysed by many authors [2]–[4]. Some 

of them are: 

- the cooling effect of the water [5],

- water availability for cleaning [6],

- absence of shadowing effects due to the

presence of obstacles [7],

- evaporation prevention [8],

- algae  reduction [9]

- synergies with hydropower plants [10].

The main components of a FPV system are

the photovoltaic (PV) modules, the floating 

system, the supporting structure, the mooring 

system, and the anchoring (Figure 1). 

Figure 1: Main components of a generic FPV system. 

There are different designs when it comes to 

FPV structures. A classification based on 

materials, floatation systems, configuration 

and moorings was proposed by [11]. A 

classification based on the most deployed 

designs, from a structural point of view, was 

done by [12]. However, despite the large 

number of proposed concepts, the FPV 

industry has committed to the simplest designs 
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and the safest locations. The vast majority of 

FPV projects are cheap, simple solutions 

deployed in freshwater bodies [13]. The risk 

associated with these projects is still high and 

the lack of standards, as well as the maturity of 

the technique, hinder the expansion of this 

technology. This is specially the case when 

environmental actions gain relevance, since 

they compromise the structural reliability of 

FPVs. The offshore environment represents a 

vast untapped source of renewable energy [14], 

but to make it fully accessible for the FPV 

technology, further research is needed. Some 

marine FPV projects were recently launched 

with that objective [15]–[17], but the fully 

commercial deployment of these designs is yet 

to be developed.  

Very few publications regard the structural 

analysis of FPVs. Some authors have applied 

analytic static approaches to analyse these 

structures [18], [19]. However, this approach 

ignores the dynamic response of the structure 

as well as non-linear behaviours. Other authors 

have applied a complex fluid-structure 

interaction approach to analyse  FPV structures 

[20]. This approach considers the dynamic 

response of the structure but is 

computationally very expensive and unsuitable 

for a comprehensive analysis. Some authors 

have applied the finite element method (FEM) 

to these structures [21], but have greatly 

simplified the environmental loading on the 

structure. To properly address the analysis of a 

FPV structure, the implemented approach must 

be both sufficiently realistic and 

computationally reasonable. A rigid body 

dynamics analysis meets both requirements. 

The purpose of this work is to present a 

structural verification procedure for FPV 

systems and to implement it to a novel concept 

designed to harvest solar energy in semi-

sheltered coastal waters. The dynamic 

response analysis of the structure is carried out 

for generic environmental conditions of waves, 

wind, and water levels. 

The reminder of this paper is structured as 

follows: Section 2 details the calculation 

procedure, describes the analysed device and 

discloses the environmental conditions 

considered. Section 3 presents and discusses 

the main outputs of the implementation of this 

procedure, namely the motions and loads on 

the structure and the structural verification of 

its main components. Finally, key conclusions 

of this work are summarized in Section 4 and 

some future research lines are presented. 

2 MATERIALS AND METHODS 

2.1 Proposed procedure 

In this work, a procedure to assess the 

environmental and site conditions for the 

design of FPV systems is presented. This 

method is suitable to evaluate the main 

environmental actions (namely wind, waves, 

and tides) and their effects on these floating 

structures. There are four general approaches 

regarding the estimation of marine 

environmental loads: 

- the static/quasi-static approach [18],

- the rigid body dynamics approach,

solved through the Boundary Element

Method (BEM) [22],

- the hydroelastic approach [23],

- the Computational Fluid Dynamics

approach (CFD) [24].

Due to the stochastic nature of the 

environmental actions and the complex 

interactions between the water, the floating 

structure, and the mooring system, FPVs are 

structures with a significant dynamic response. 

This discards static and quasi-static approaches 

or at least it limits them to preliminary 

analysis. Most FPV structures can be properly 

modelled by connected rigid bodies. Unless 

structural deformation was a paramount 

feature of the analysed FPV design, 

hydroelastic approaches can also be discarded 

due to computational costs. CFD techniques 

are only suitable if viscous flow separation, 
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wave breaking, and wave overtopping are 

relevant phenomena since they would 

otherwise be unreasonably expensive. Since 

these non-linear phenomena are comparatively 

not relevant, this procedure will be based on 

rigid body dynamics.  

The proposed calculation and optimization 

procedure goes as follows. First, the geometry 

is modelled by means of either diffracting 

elements or Morison elements, depending on 

the relative size of the bodies. Then, a fluid-

structure interaction analysis is undertaken. If 

the model has diffracting elements, a 

frequency domain dynamic analysis followed 

by a time domain dynamic analysis is 

performed through the potential flow theory 

and the BEM. If the structure was modelled 

without any diffracting elements, the 

frequency domain analysis can be disregarded. 

In any case, movements, forces, and moments 

can be obtained in each time step of this 

analysis. Subsequently, structural verifications 

of the elements of the FPV can be performed 

through standard methods. Elements can be 

structurally optimized but note that, since this 

implies changes in the geometry, the complete 

analysis must be overtaken in an iterative 

process. 

2.2 Description of the device 

The described procedure has been applied 

to a novel design of marine FPV system 

intended for harnessing solar energy in semi-

sheltered coastal waters, such as port basins, 

bays, and estuaries (Figure 2). 

The concept is at an early development 

stage (TRL 1-2), requiring basic technology 

research. The proposed concept consists on 

attaching a top-of-pole solar panel mount to a 

tension leg platform (TLP). Given that large 

structure motions due to environmental loads 

can impact reliability as well as production, the 

structure has its vertical motions partially 

restrained with taut mooring lines. 

The key and differentiating feature of this 

device is that the PV modules are installed at a 

height that prevents their undesired interaction 

with waves. Another interesting feature is the 

built-in double-axis tracking system that both 

maximizes the energy harvest and can be used 

as a defence mechanism against violent wind 

conditions. This design can be divided into two 

separate parts:  

- a superstructure, consisting of all the

structural members that hold the PV

modules, and

- a substructure, a TLP consisting of a

post, four legs and the mooring system.

Figure 2: Schematics and main dimensions of the 

device (units in m). 

The superstructure holds the PV modules 

and accommodates the tracking systems. It is 

based on a top-of-pole solar panel design. It 

consists of a V shaped element that holds the 

main beams, in which the secondary beams are 

laid out to support the PV modules. The 

vertical and horizontal trackers are installed 
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immediately below and above the V shaped 

element, respectively. This allows the rotation 

of the full superstructure around the vertical 

axis and the inclination of the array of PV 

modules.  The design holds up to 138 typical 

industrial use panels (196 x 99 cm2) in 6 rows 

of 23 PV modules each. The total weight of the 

superstructure is 11.6 t, where 4.8 t 

corresponds to the V structure and the 

remaining 6.8 t to the beams and modules. The 

main material for the device was structural 

steel (properties in Table 1), but it is prone to 

be changed after the full optimization process.  

Structural steel mechanical properties 

Density 7850 kg/m3 

Young’s module 210000 MPa 

Poisson’s ratio 0.30 

Tensile strength 250 MPa 

Tensile ultimate strength 460 MPa 

Compressive strength 250 MPa 

Table 1: Mechanical properties of the structural steel. 

Data extracted from the ANSYS engineering library. 

The purpose of the substructure is to keep 

the superstructure afloat and safe. The 

substructure consists of a post and a TLP. The 

post is a 16.5 m long hollow cylinder made of 

structural steel. Its purpose is to maintain the 

panels at a safe height from the waterline, even 

during spring tide events. It has a 2 m diameter 

and a 1 cm thickness. The four legs are 6 m 

long hollow beams, also made of structural 

steel. They have a 1 x 1.6 m2 rectangular cross 

section and a 1 cm thickness. The mooring 

lines are 23.5 m long vertical taut steel cables 

that connect each leg end to the seabed. They 

are made of AISI316 stainless steel, and their 

mechanical properties are summarized in 

Table 2. The weight of the substructure is 18.1 

t, where 9.7 t corresponds to the legs, 8.1 t to 

the post and 0.3 to the mooring system. 

The device has been tested for offshore 

conditions of wind and waves. The forces and 

moments acting on the structure were obtained 

and used as input data for the subsequent 

structural verification. The main components 

of the substructure have been analysed, and 

some iterations of the optimization process 

were performed. 

Stainless steel AISI316 mechanical properties 

Elastic modulus 130 GPa 

Nominal diameter 26 mm 

Weight 3.30 Kg/m 

Section 399 mm2 

Breaking load 533.66 kN 

Maximum tension 1570 MPa 

Table 2: Mechanical properties of the stainless steel 

AISI316 wire rope [25].   

2.3 Modelling of the geometry 

To adapt the real geometry to a 

hydrodynamic model, the whole structure must 

be divided into elements. Then, said elements 

must be simplified into 1D or 2D geometries. 

This comprises line bodies and surface bodies, 

that can also be 3D hollow objects. To properly 

model these elements, the Chakrabarti’s [26], 

Morison’s [27] or the DNV’s [28] method may 

be used to determine the most suitable wave 

regimen for wave force estimation. The 

relationship between the wave height (H), the 

wavelength (L) and the characteristic 

dimension (D) determine whether the element 

is in a diffracting, a Froude-Krilov or a 

Morison regime. Diffracting regimes 

(D/L > 0.2) are dominated by diffraction and 

radiation forces and are typical for large 

structures with a small variation of their wet 

surface. Slender elements and small structures 

usually fall in a Morison regime (D/L < 0.1), 

were inertia and drag forces are dominant. 

Intermediate elements could fall in a Froude-

Krilov regime (0.1 > D/L > 0.2), were neither 

diffraction forces nor the wet surface variation 

can be neglected.  

Elements that will not interact with the 

water may be synthesized through their mass 

points, buoyancy points and aerodynamic 
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coefficients. The mass, inertial and 

aerodynamic properties can be therefore 

associated to an interacting structure to 

minimize computational costs.  

In the analysed design, the post was 

modelled as a Morison slender element since 

its characteristic dimension was small with 

respect to the waves it interacted with. The legs 

were also modelled as Morison slender 

elements for the same reasons. Finally, since 

the superstructure does not interact with the 

waves, it was modelled through its 

aerodynamic coefficients and mass points. 

Aerodynamic coefficients were extracted from 

Eurocode 1 (wind force coefficient method). 

2.4 Load estimation 

The approach to analyse the fluid-structure 

interactions that define the load estimations is 

dependent on the nature of the modelled 

elements. If a structure has diffracting 

elements, a harmonic response analysis is 

performed, followed by a time domain 

dynamic analysis. If the whole structure was 

modelled using only Morison elements, the 

frequency domain analysis can be omitted. The 

frequency domain analysis provides 

interesting results, such as the natural 

frequencies of the structure and the response 

amplitude operators as well as the 

hydrodynamic coefficients for the subsequent 

time domain analysis. In the time domain 

analysis, loads on the structure are estimated 

for each time step of the simulation. In this 

case, the time response dynamic analysis is 

enough to properly assess the loading on the 

structure. The Aqwa Naut code was used to 

perform the analysis of this novel device.  

The time domain analysis provides the 

forces and moments on the structure for each 

time step of the simulation. In this analysis, all 

connections and moorings are considered, and 

the wet surface is recalculated at each time 

step. This allows for the Morison and the 

hydrostatic forces to be accurately computed in 

every time step. Specific wave, wind and 

current actions may be defined in this analysis 

through the definition of their magnitude and 

spatial and temporal distribution. Note that the 

wave theory to be used must also be defined at 

this point. The airy or linear theory is the most 

used in technical standards [29]. However, this 

theory is not usually the most suitable. An 

appropriate theory can be selected through the 

Le Méhauté abacus [30]. This method was 

applied to the studied case and the Second 

Order Stokes wave theory was found to be the 

most suitable approach.   

The time dependent motions of a general 

floating structure are governed by the 

following function 

𝐌𝐱̈(𝑡) = 𝐟ℎ(𝑡) + 𝐟𝐼(𝑡) + 𝐟𝑑(𝑡) + 𝐟𝑟(𝑡) 

+ 𝐟𝑗(𝑡) + 𝐟𝑚(𝑡) + 𝐟𝑤(𝑡) + 𝐟𝑐(𝑡) ,
(1) 

where: M is the mass matrix, x(t) is the 

position of the structure, fh(t) is the non-lineal 

hydrostatic force, fI(t) are the forces due to the 

incident waves, fd(t) are the diffraction forces, 

fr(t) are the radiation forces, fj(t) are the forces 

on joints, fm(t) are the forces on the structure 

due to the mooring system, fw(t) are wind 

induced forces and fc(t) are current induced 

forces. 

However, since the analysed design is fully 

non-diffracting, the loading due to waves can 

be obtained through the semi-empirical 

Morison equation  

𝐅𝑀 = 𝜌𝑉𝑢̇ + 𝜌𝐶𝑎𝑉(𝑢̇ − 𝑣̇)

+
1

2
𝜌𝐶𝑑𝐴(𝑢 − 𝑣)|𝑢 − 𝑣|,

(2) 

where: ρ is the fluid density, V is the volume of 

the body, u is the flow velocity, Ca is the added 

mass coefficient, v is the velocity of the 

moving body, Cd is the drag coefficient and A 

is the reference area (e.g. the cross-sectional 

area of the body perpendicular to the flow 

direction). The inertia coefficient, directly 
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related to the added mass coefficient, and the 

drag coefficient are estimated empirically and 

are influenced by several parameters, 

including the Reynolds number and the 

Keulegan-Carpenter number. In this case, 

standard values provided by [31] are used, but 

experimental analysis could be perform to 

obtain these parameters.  

Once the acting forces on the structure have 

been defined, the dynamic response is solved 

through the integration of the time motion 

equation. This can be performed by means of a 

predictor-corrector algorithm. The first stage 

of this algorithm is to obtain the total forces 

acting on the structure at a given time step. 

Newton’s second law is applied to obtain the 

accelerations, which are used to predict the 

velocity and position of the structure. The 

second stage recalculates the forces for the 

next time step based on these predictions, thus 

obtaining the accelerations. Then, the velocity 

and position are corrected using Taylor’s 

theorem. The structure is moved to its new 

position and the algorithm reiterates. 

2.5 Structural analysis 

The outputs from the previous stage are the 

6 degree of freedom (DOF) time-dependent 

rigid body motions of the structure and the 

forces and moments acting on it. The structural 

verification of the FPV may be performed for 

each time step of the simulations through 

analytic methods, such as the classic 

mechanics of materials approach or the FEM 

approach. The first approach may be applied 

through a spreadsheet or a programming code. 

The FEM approach is a numerical method for 

solving differential equations generated by 

theories of mechanics and can be used to assess 

complex geometries, dynamic responses, 

stability, and non-linear behaviour. 

Regardless of the adopted approach, the 

results of this analysis can be used to perform 

a structural verification. These outputs are the 

input for the optimization process, where the 

geometry is adapted to endure more efficiently 

the loads acting on it. Note that significant 

changes on the geometry will affect critical 

parameters such as buoyancy or wave 

exposure, modifying the hydrodynamic model. 

This means that the iterative process also 

encompasses the redefinition of the model and 

the rigid body dynamic analysis. Iterations are 

performed until a satisfactory design is 

achieved.  

The post, legs, and moorings of the analysed 

device were structurally verified using the 

mechanical properties of these components. 

The classic mechanics of materials approach 

was applied, and the structural verification was 

performed through an ad-hoc Matlab code. 

This code applied the Euler-Bernoulli beam 

theory, as well as the formulation provided by 

the Eurocode 3 to the components of interest. 

These were structurally verified for each time 

step of each of the performed simulations. 

2.6 Test cases 

The device was tested for 108 test cases 

with a 100 s duration and a 0.01 s time-step. 

This duration allowed the stabilization of the 

dynamic response, so results could be retrieved 

once the motion was harmonic. These test 

cases resulted from combining the following 

parameters (summarized in Table 3): 

- Horizontal tracker (α): The device was

tested for 3 positions of the horizontal

tracker (0°, 20° and 40 °). Each position

implied a different set of aerodynamic

coefficients.

- Leg position (β): The device was tested

for 2 leg positions (Figure 3): aligned

with the main and secondary beams

(0°) and oblique to them (45°).

- Water depth (d): To replicate the effect

of tides, two different water depths

were studied: 35 and 30 m (Figure 4).

- Wind speed (U): The device was tested
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for constant wind speeds of: 30, 15, 10 

and 0 m/s. Each one corresponds to the 

maximum wind speed that the system 

should endure for each position of the 

horizontal tracker.   

- Wind direction (θ): The device was

tested for the 2 wind directions with

greater wind force coefficients (Figure

3). These are θ = 0° and θ = 180°.

- Wave height (H): The device was

tested for regular waves with a 2 m

wave height and for no waves at all.

- Wave period (T): The wave period

associated to the waves with a 2 m

wave height was 7 s.

- Wave direction (δ): The device was

tested for 4 wave directions. The wave

front could be aligned with the wind

front or perpendicular to it.

Parameter Test values Units 

Horizontal tracker (α) 0, 20, 40 deg 

Leg position (β) 0, 45 deg 

Water depth (d) 30, 35 m 

Wind speed (U) 0, 10, 15, 30 m/s 

Wind direction (θ) 0, 180 deg 

Wave height (H) 0, 2 m 

Wave period (T) 7 s 

Wave direction (δ) 0, 90, 180 deg 

Table 3: Values of the parameters for the simulations. 

Figure 3: Wind/wave directions (left) and positions of 

the vertical tracker (right), on the hydrodynamic model. 

Figure 4: Mooring lines, water depths (d), wave height 

(H) and position of the horizontal tracker (α).

3 RESULTS AND DISCUSSION 

The main outcomes of the implementation 

of the proposed procedure to the TLP device 

are the 6-DOF rigid body motions, the loads on 

the structure and the structural verification of 

its main components, namely the post, legs and 

mooring system. These values were retrieved 

once the motions of the device were stationary.  

3.1 Motions of the floating structure 

The motions of the device were registered 

for all test cases. As an example, Figure 5 shows 

the motions of the device for a certain test case. 

In this case, wind forces are responsible for surge 

motions and waves forces are responsible for 

sway motions. Heave motions are proportional to 

the horizontal displacements but are overall 

restrained. In the first instants of the simulation, 

the surge motion peaks, inducing a maximum 

value for the heave value as well. Surge stabilizes 

to a constant value while sway oscillates 

harmonically, due to the nature of the forces 

responsible for these motions. As for rotational 

motions, yaw is clearly the most relevant. It 

peaks in the first instances of the test due to an 

insufficient ramping process but stabilizes into a 

harmonic oscillation. This motion is governed by 

the forces acting on the device and the restoring 

moment of the mooring system.  
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Figure 5: Motions for α = 20°, β = 0°, d = 30 m, U = 

15 m/s, θ = 180°, H = 2 m, T = 7 s, and δ = 90°. 

The maximum 6-DOF motion amplitudes 

of the device, as well as the test case that led to 

them, are presented in Table 4. Some 

conclusions may be drawn from these results. 

The maximum surge motion was registered 

with the horizontal tracker tilted at the most 

exposed position (45°), even though the wind 

speed was inferior to the defined for any other 

inclinations. This 5.8 m value was registered 

for θ = 180°, due to the higher aerodynamic 

coefficients of the structure for this wind 

direction. The maximum surge motion also 

required the evaluated actions to be aligned, 

although wind is still responsible for the main 

component of this motion. An interesting 

conclusion is that the maximum surge was 

registered for a low water depth. This is 

because the TLP resists surge and sway 

motions through overbuoyancy, and low tides 

diminish the buoyancy of the floating 

structure. The maximum sway motion was 

comparatively smaller due to the reduced wind 

exposure, reaching a value of 1.7 m. The main 

contribution to this displacement were the 

wave loads. Again, a low tide scenario was 

required, for the same reasons. Note that the 

position of both trackers as well as the 

influence of the wind loads was of little 

relevance since all cases with the same wave 

direction and water depth showed similar 

maximum sway values. As for heave, the 

maximum value was registered for the exact 

same scenario that led to the maximum surge, 

where it sank 0.7 m with respect to its 

equilibrium position. This is due to the very 

nature of the TLP. To move the structure away 

without stretching the mooring lines implies to 

slightly sink the structure.

Motion Value 
Test conditions 

α β d U θ H δ 

Surge 5.8 m 40° 45° 30 m 10 m/s 180° 2 m 180° 

Sway 1.7 m 20° 45° 30 m 15 m/s 180° 2 m 90° 

Heave −0.7 m 40° 45° 30 m 10 m/s 180° 2 m 180° 

Roll 1.4° 20° 45° 35 m 15 m/s 180° 2 m 90° 

Pitch 7.8° 40° 0° 30 m 10 m/s 180° 2 m 180° 

Yaw 12.5° 20° 0° 35 m 15 m/s 180° 2 m 90° 

Table 4: Maximum motion amplitudes of the device.
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However, the heave motions are heavily 

restricted, as expected in a TLP design. An 

interesting aspect regarding the position of the 

legs is that it barely has any influence on the 

maximum displacements of the floating 

structure. This is beneficial since it provides 

alternative positions without compromising 

the station-keeping function of this design.  

As for the rotational motions, roll is 

irrelevant when compared to pitch. The 

maximum pitch reached a value of 7.8°. Higher 

values could compromise the stability of this 

system, and this aspect should be carefully 

studied in the optimization process. Wind 

forces are the main reason for this phenomenon 

and that is why the most limiting test 

conditions are similar to those responsible for 

the maximum surge. Limiting wind exposure 

can significantly reduce the maximum pitch. 

The position of the legs also plays a significant 

role on this motion, since the alternative 

position yielded a smaller result. The low tide 

scenario was also required to reach the 

maximum pitch value, since it greatly reduces 

stability. 

Yaw motions are barely relevant for most 

test cases, but they reached an unusually high 

value for a particular combination of wind and 

wave directions. This value is not dependent 

on the position of the tracking systems, but it 

did require a high tide scenario. These yaw 

motions could affect productivity, but they 

hardly reduce structural safety. Since their 

occurrence is very circumstantial, they are not 

considered a mayor issue. If they were, they 

could be limited by designing longer legs. 

3.2 Loads and structural verification 

The structural verification of the main 

components, as well as the test cases that led to 

them, are presented in Table 5.  

The maximum tension on the post (75 MPa) 

was achieved due to the combination of axial 

and flexural tension. This tension increases 

from the upper cross-sections to the lower 

ones. This maximum tension was registered for 

the position of the horizontal tracker that 

resulted in the maximum wind exposure. The 

wind direction that implied the highest force 

coefficient was also required. Wind loads are 

the main contribution for these maximum 

tensions. A low tide scenario was also required 

for these values since this contributes to a 

higher bending moment. Although the wave 

loads alone did not procure high tensions, the 

alignment of wave and wind loads resulted on 

tensions 50 % greater than those generated by 

the wind loads alone. The position of the legs 

had a smaller influence, being the 45° position 

slightly more restrictive. The shear and torsion 

forces on the post are negligible. 

Component Verification 
Maximum 

value 

Safety 

factor 

Test conditions 

α β d U θ H δ 

Post 
Flexion - axial 

(tension) 
75 MPa 3.3 40° 45° 30 m 10 m/s 180° 2 m 180° 

Post 
Shear - torsion 

(force) 
119 kN 48.4 40° 45° 30 m 10 m/s 180° 2 m 180° 

Leg 
Flexion - axial 

(tension) 
65 MPa 3.9 40° 0° 35 m 10 m/s 180° 2 m 180° 

Leg 
Shear - torsion 

(force) 
219 kN 21.1 40° 0° 35 m 10 m/s 180° 2 m 180° 

Moorings 
Maximum load 

(force) 
322 kN 1.7 40° 0° 30 m 10 m/s 180° 2 m 180° 

Table 5: Structural verification of the main components of the device.
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The maximum tension on the legs was also 

achieved due to the combination of axial and 

flexural tensions. These values were higher 

near the joint that connected the legs with the 

post. The leg position was very relevant in this 

analysis since the highest tensions (65 MPa) 

were registered when the legs were aligned 

with the wind and wave actions (0° position). 

Again, the alignment of wind and wave loads 

was required even if wind loads were the main 

contribution to this tension. Wind and wave 

directions were therefore the same as the ones 

responsible for the higher tension values in the 

post. However, the water level had a reduced 

relevance. Again, the shear and torsion forces 

on the legs are comparatively negligible. 

The mooring system endured the loads with 

a safety factor of 1.7. Before running this 

analysis, the overbuoyancy of the structure was 

assumed to be the main issue concerning the 

mooring system. This overbuoyancy was to be 

countered by the mooring lines alone and it 

greatly increased with high tides events. 

However, the highest cable loading (322 kN) 

was registered during a low water level test 

case. The fact that the mooring lines need to 

endure higher loads in the high tide scenarios 

holds true under no external actions. However, 

with wind and wave forces acting on the 

structure, the excess of buoyancy can aid the 

mooring system by limiting horizontal 

motions. This contribution overcomes the 

additional tension transmitted to the mooring 

lines due to overbuoyancy. This happens 

because, in this case, environmental forces are 

more impactful on the mooring system than 

overbuoyancy. The maximum values of the 

mooring line loading were registered under the 

same conditions that yielded the maximum 

tension values on the post. The 0° legs position 

registered higher values due to its alignment 

with wind and wave loads.  

4 CONCLUSSIONS 

On account of the lack of publications that 

address the structural verification of FPV 

systems, a procedure based on rigid body 

dynamics was presented and applied to a novel 

FPV technology. The motions, moments and 

forces acting on the structure were obtained for 

a total of 108 different combinations of 

environmental and site conditions. These 

outcomes were used to structurally verify the 

main components of this device. The main 

conclusions of this work are summarized: 

- The procedure was fully applicable to

the device, allowing the analysis of its

dynamic response.

- The device structurally withstood all

the test cases.

- The maximum motions of the structure

did not compromise its stability.

- Wind induced forces were dominant

over wave induced forces, given the

geometry of the device.

- The overbuoyancy of this design does

not compromise the mooring system. In

fact, the additional stability prevents

excessive loading.

- The position of the legs hardly affects

the structural response of the device.

Future research lines are presented., both 

for the applied procedure and the analysed 

device: 

- This approach could be applied to other

FPV technologies to prove its

feasibility.

- Given the lack of specific standards, a

full methodology for the structural

analysis and optimization of FPV

structures could be proposed.

- This device should be structurally

optimized in its further development.

- This research could benefit from

experimental analysis to validate the

numerical models.
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Abstract. Vibration Serviceability Limit State due to human-induced vibrations is an 

important requirement that increasingly influences the sizing of current long-span floors. 

Usually, structural designers tend to overcome this issue by stiffening the floor to avoid any 

low-frequency response in resonance with human footfalls. An alternative solution to this one 

consist of increasing the floor’s damping to enhance its dynamic performance.  

This paper experimentally studies the effectiveness of a Constrained Layer Damping (CLD) 

treatment applied along the whole length of a typical composite floor beam. The aim of the 

paper is to quantify the additional damping ratio provided by this damping technique. To 

reduce the economical and time effort involved in a Full-scale experimental campaign, two 

reduced-scale models (RSMs) were developed with and without any CLD treatment. Those 

models were designed to exhibit the same amount of extra damping ratio when treated with 

the same CLD configuration to be used in Full-scale specimens. Once the RSMs were 

designed and built, free-response tests were performed to derive their natural frequencies and 

the relation between their damping ratio and the vibration amplitude. 

Key words: Constrained Layer Damping, Floor vibration, Viscoelastic materials, 

Experimentation, Composite structures. 

1 INTRODUCTION 

Nowadays, architectural trends in office 

buildings demand open-plan spaces that 

minimize the presence of non-structural 

elements (avoiding vertical partitions, heavy 

furniture, paper cabinets, etc.) [1]. In this 

context, steel-concrete composite floor 

systems have become a common structural 

solution for these spaces. The use of stronger 

steel beams reduces the floor’s weight and 

increases its strength, which enables it to be a 

competitive solution especially for long spans 

between 8 and 15 m [2]. Typically, the 

structural design of floor structures has been 

governed by the Deformation Serviceability 

Limit State, however, since these modern and 

long-span floors became a widespread 

solution, their dynamic performance begun to 

worry structural designers [3].  

As a result of all mentioned, current open-

plan office floors have less self-weight, less 

dead loads, and less inherent damping, and 

therefore, their performance against dynamic 
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loads (such as those induced by humans at 

walking) has deteriorated. Modern floors are 

“livelier” than in the past. Furthermore, the 

tolerance vibration levels related to offices are 

quite restrictive (around 0.04 m/s2), as they 

are classified as calm spaces. All this has led 

to consider the Vibration Serviceability Limit 

State (VSLS) as an important requirement 

that these floors must fulfil to be functional 

[4].  

Most of the guidelines focused on 

assessing the VSLS of floors [4],[5],[6] 

usually classify them into two types according 

to their fundamental natural frequency: low 

frequency floors (LFFs) and high-frequency 

floors (HFFs) by setting the limit at 10 Hz. 

This approach is based on floors’ dynamic 

response to human-induced vibration. LFF 

tend to develop remarkable resonant 

responses with higher harmonics of the 

human load (between 5 and 8 Hz), whereas 

HFF responses are predominantly non-

resonant presenting a peak in the transient 

regime. Currently, many long-span composite 

floors tend to be LFF and thus, VSLS check is 

even more crucial at the design stage [7]. 

When facing the design of a “lively” LFF, 

structural engineers usually tend to overcome 

the VSLS through enlarging the steel 

members, and thus, increasing the system 

stiffness until the dynamic response predicted 

by a footfall analysis is below the required 

tolerance limit [8]. This implies to oversize 

the floor in terms of strength, decreasing a lot 

its section utilization. This approach is not 

beneficial in terms of CO2 credentials, even 

less so when considering that floors may 

represent up to the 30% of the embodied 

carbon footprint of a steel framed building 

[9].  

The dynamic performance of a LFF may 

also be considerably improved through 

increasing its damping, as this parameter is 

inversely proportional to the steady-state 

response of the system. There are different 

technologies that can be implemented for that, 

such as for example inertial dampers [10] 

(commonly known as Tuned Mass Dampers 

or TMDs), viscous dampers or active 

solutions that mitigate the vibration in real 

time [11]. In addition to these, in 2006 ARUP 

came up with a new damping solution called 

“Resotec” that integrated Constrained Layer 

Damping (CLD) into composite floors. This 

system is based on the use of a thin layer of 

high-damping viscoelastic (VE) material 

(around 1 mm thick) comprised between two 

thin steel sheets. This 3-layer element is 

integrated between the concrete slab and the 

steel member of a composite beam for a 

certain proportion of its length near the 

support. Along this portion, the steel beam 

and the concrete slab are disconnected to 

shear as depicted in Figure 1. When the floor 

vibrates in a bending mode, the slab slips with 

respect to the steel beam and the intermediate 

VE layer develops a shear hysteretic 

behaviour in which mechanical energy is 

dissipated [12].  

Willford et al. provided the description, a 

brief analysis and a full-scale experimentation 

of "Resotec" for a composite beam specimen 

of 12 m span. They reported a 2% damping 

ratio increase for a “Resotec” application 

along the 50% of the specimen length (50%-

CLD). The authors consider that despite the 

results obtained by Willford et al. are 

encouraging, the research community has not 

focused enough attention on this topic. As a 

consequence, the results provided in [12] are 

considered to be limited and insufficiently 

contrasted.   
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This paper is focused on the development 

of experimental tests to validate the use of 

CLD systems in LFFs. Since the construction 

of a full-scale long-span composite floor 

prototype is costly and difficult, reduced scale 

models have been developed by means of 

scaling laws. The study is based on two 

reduced-scale composite specimens of 3,60 m 

long. The first one called 0%-CLD does not 

incorporate any damping treatment, so the 

concrete slab and the steel beam are 

connected by means of studs. The second one 

called 100%-CLD incorporates CLD 

treatment along its entire length. 

The remainder of this paper is organized as 

follows: In Section 2 the mechanical 

behaviour of a VE material is described. 

Section 3 explains the different techniques to 

increase the damping through integrating VE 

materials within a structural matrix. Section 4 

exposes the development of the reduced 

scales models employed in the paper. Section 

5 describes the experimental test performed 

and Section 6 provides the results obtained. 

Finally, Section 7 outlines some conclusions.  

2 MECHANICAL PROPERTIES OF VE 

MATERIALS 

The mechanical properties of VE materials 

are time-dependent. These properties are 

mainly characterized by two rheological 

phenomena: relaxation and creep [13]. 

Indeed, this fact enables to analyze the VE 

mechanical behavior in the frequency domain 

thanks to the Fourier transform.  This means 

to study the response of a VE material to 

harmonic excitations (such as a cyclic stress 

or a harmonic imposed strain). This approach 

results in a stress-strain relation defined by a 

Frequency Response Function (FRF) in the 

j  domain. When performing this study for 

shear stresses and strains this FRF is defined 

as follows:  

( )
*( ) '( )(1 ( ))

( )

j
G j G j

j

 
   

 
= = + (1)

*( ) '( ) ''( )G j G jG  = + (2) 

Figure 1 CLD treatment integrated into a composite floor beam for 50 % of its length. 
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3
m

m
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where *( )G j  corresponds to the complex 

FRF usually called complex shear modulus. 

'( )G   is its real part referred as the ‘storage 

modulus’ due to it represents the elastic 

component of the VE behavior. ''( )G   is the 

so called ‘dissipation modulus’ as it plays the 

role of the viscous component. Additionally, 

( )   represents the phase of this FRF and it 

is named ‘loss factor’. The higher the phase 

between strain and stress the higher the 

energy dissipated per vibration cycle as 

depicted in Figure  2. The amplitude or gain 

of this FRF may be computed as follows: 

( ) ( )( )
22

*( ) '( ) ''G G G  = + (3) 

Additionally, VE mechanical behavior is also 

influenced by temperature. In fact, an analogy 

can be stablished between temperature and 

frequency dependent properties, the so called 

‘Time-Temperature equivalence’. This 

enables to sum up the mechanical properties 

of a certain VE material in a single abacus 

called ‘Nomogram’ [14]. Figure  3 depicts the 

correct way of reading a Nomogram for a 

given temperature and frequency, the 

provided is from the HIP2 from (Heathcote 

Figure  2 Shear stress and shear strain relation for a certain frequency 

Figure  3 Nomogram of HIP2, the VE material used for the experimental tests presented in the paper [15]. 
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Industrial Plastics) material used in this paper 

[15]. 

DAMPING INCREASE WITH 

LAYERS OF VE MATERIAL 

VE materials have been mainly used in 

aircraft and mechanical engineering to 

mitigate undesired vibrations. Their use was 

then extended to civil engineering in the form 

of the well-known VE dampers. These 

devices concentrated their action into a single 

structural point, where the VE material was 

located acquiring a great shear strain. They 

have been widely used for cancelling seismic 

and wind-induced vibrations  as Figure  4 

depicts [16]. 

In addition to this damping technology, VE 

materials have been successfully applied as 

thin layers or ‘tapes’ glued to a bending-

vibrant surface on a wide variety of 

mechanical systems [17]. In these cases, they 

are intended to dissipate energy through 

normal or shear stress loading cycles. Hence, 

two types of treatments may be differentiated: 

Unconstrained Layer Damping (ULD): 

consists in attaching a VE layer to an 

eccentric surface of the structural element to 

be treated. ULD enables additional energy 

dissipation through extensional hysteresis of 

the VE tape. The additional damping achieved 

with this technique is usually small (Figure  

5.a).

Constrained Layer Damping (CLD): 

consists in constraining a layer of VE material 

between two bending elements. In this case 

the layer must be located as closer as possible 

to the sectional centroid of the element to be 

treated, as the energy dissipation is achieved 

through a shear hysteresis. This treatment 

usually provides greater damping 

improvements than the ULD. It is important 

to note that in CLD treatments there exists an 

optimum geometry (thickness and width) of 

the VE layer that provides a maximum 

damping increase (Figure  5.b). 

Both damping treatments are depicted in 

Figure  5 which also includes the rules of 

thumb for efficiently designing them. As 

mentioned before, this paper is about the 

integration of a CLD treatment into composite 

floor systems.  

Figure  4  VE Dampers (c) applied in high rise 

buildings to mitigate wind-induced (a)  and seismic 

vibrations (b) [16]. 

a) 

b) 

c)
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4 DEVELOPMENT OF REDUCED 

SCALE MODELS  

From now on, the text will refer to two 

different concepts, "Full-scale model” (FSM) 

which refers to the system for which 

predictions have been made, and "Reduced-

Scale model" (RSM) which refers to the 

model itself that has been used to reproduce 

the first one. 

The FSM studied is a long-span composite 

floor beam of 12 m span. The objective of the 

paper is to know the additional damping ratio 

provided by a 100%-CLD treatment applied 

along the whole length of the studied beam. 

Thus, ideally, two FSMs would be tested with 

and without CLD. The beam without any 

damping treatment would be expected to be 

stiffer, hence its fundamental natural 

frequency would be higher, as the concrete 

slab would be connected to the steel profile 

through shear studs, however, its damping 

ratio would be considerably lower.  

The RSM proposed has been intended to 

provide the same amount of additional 

damping ratio when treating it with the same 

CLD configuration that would be applied to 

the FSM. This has enabled to perform the 

same experimental test as those that would 

have been performed in the FSM but without 

so much time, economical and facility 

resources.  

The conceptual design of the RSM was the 

same as the FSM’s one: a composite beam 

consisting in a concrete slab and a steel 

profile beam. This decision was adopted for 

the RSM to be representative, thus, for 

preserving certain realism. Both concrete and 

steel mechanical properties were considered 

identical for FSM and RSM.  

The following subsection describes the 

methodology used to obtain the final 

geometry of the equivalent RSM.  

Figure  5 ULD (a)  and CLD (b)  damping treatments [17]. 

ULD treatment

Greater extensional strains

Far from neutral axis

Antinodal regions
Less efficient

CLD treatment

Greater shear strains

Close to neutral axis
Nodal regions

More efficient

a)

b)
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4.1 Methodology adopted to compute the 

RSM adequate dimensions 

The following methodology is based on an 

analytical solution developed by Mead for the 

study of simply-supported beams with 100%-

CLD treatment [17]. This solution enables 

knowing the extra damping ratio provided by 

the CLD treatment and it is based on two 

dimensionless parameters. These can be 

computed from the beam’s mechanical and 

geometrical properties (outlined in Figure  

6.a).

The ‘geometric parameter’ Y  which 

represents the loss of beam’s bending 

resistance when the 100%-CLD treatment is 

applied, 

( )

2

321 1 1 3 3

1 1 3 3

,
t

d E A E A
Y

EI E A E A

 
=  

+ 
(4) 

and the ‘modified shear parameter’ ig that 

indicates the shear stiffness of the constrained 

VE layer for a given vibration mode of the 

beam, 

2

2 2

2 2

2 1 1 3 3

' 1 1
,b

i

G b L
g

i h E A E A

 
= + 

 
(5) 

where, 1E , 1A and 1I are the Young modulus, 

the area and the moment of inertia of the steel 

profile and 3E , 3A and 3I are the same for the 

concrete slab, 321d is the distance between the 

sectional centroids of the concrete slab and 

steel beam, tEI is the beam’s bending 

stiffness when the slab and the profile are 

disconnected to shear and bend as 

independent elements, 2'G is the ‘storage 

modulus’ of the VE material, 2b and 2h are

the width and the height of the VE layer, 

respectively, i  indicates the vibration mode to 

be  analyzed and 
b

L the length of the beam. 

Mead’s solution allows computing the 

additional modal damping ratio of the treated 

beam as a function of Y , ig and 2  (the loss 

factor of the VE material used) as follows: 

( ) ( )( )( )
2

2 2

22 1 2 1 1

i
i

i i

g Y

g Y g Y







+ + + + +

(6) 

As the formulation provided by Mead is 

dimensionless, it can be used to develop some 

scaling laws for obtaining the adequate 

geometry of the RSM. Those scaling 

equations need to be intended to achieve a 

reasonable similarity between the FSM and 

the RSM. Therefore, since the damping 

increment provided by the CLD treatment is 

the fundamental parameter to be studied in 

this paper, the first scaling equation used was 

the following one: 

1 1FS RS = (7) 

where 1RS and 1FS are the extra damping 

ratio of the RSM and of the FSM respectively, 

and they need to be equal. 

To achieve a higher degree of similarity, a 

second scaling equation was imposed. The 

aim of this second condition was to make a 

RSM with the same loss of bending resistance 

when the CLD would be applied. Thus, it was 

expressed as follows: 

RS FSY Y= (8) 

where RSY and FSY are the ‘geometric 

parameter’ for the RSM and FSM, 

respectively.  
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Finally, the following equations were 

imposed to achieve that the CLD 

configuration and the mechanical properties 

of the materials used were the same for RSM 

and FSM.  

2 2 ,RS FSh h= (9) 

2 2 ,RS FSb b= (10) 

1 1 ,RS FSE E= (11) 

3 3 .RS FSE E= (12) 

Some additional constraints were imposed 

on the RSM design. First, its length ( bRSL ) 

should be lower than 4 m, to minimize its 

impact on the laboratory, 

4 .bRSL m (13) 

Second, the fundamental natural frequency of 

the RSM with 0% CLD ( 1 0%RSf − ) should be

lower than 20 Hz, to ease its testing with an 

electrodynamic shaker: 

1 0% 20RSf Hz−  (14) 

Additionally, the mechanical properties of 

the VE layer need to be considered in the 

design. These depend on frequency and on 

temperature. Hence, a certain temperature 

should be chosen for computing the 

equivalent RSM. The temperature at which 

RSM and FSM are equivalent was decided to 

be 20º C. For the experimental test, this value 

was assured by means of a thermostat. In 

addition, the VE mechanical properties also 

rely on frequency. The fundamental natural 

frequency of the specimen must be used to 

compute them as the additional modal 

damping ratio to be studied corresponds to a 

fundamental bending mode. It should be 

noted that none scaling condition was 

imposed with respect to 1 100%RSf − .

Figure  6  FSM (a) and RSM (b) geometry and CLD details. 

CLD Steel Sheet CLD VE layer

CLD Steel Sheet CLD VE layer
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Consequently, the resulting 1 100%RSf − is

considerably higher than 1 100%FSf − . This

means that the VE properties of the RSM (

2' RSG  and 2RS ) are different to those of the 

FSM ( 2' FSG  and 2FS ). This fact could not be 

avoided as bRSL needed to achieve a 

frequency value identical to 1 100%FSf − would

have been much higher than 4 m. 

Mead also provided an approximated way 

of computing the natural frequency of a 

100%-CLD beam according to the following 

equation:  

( )4 2

100% 24

*
1

4
*

t

i

t b

b

i EI g Y
f

m L i
g

L




−

 
 
 

= + 
  +    

, 

(15) 

where tm is the mass per unit of length of the 

beam and *g  is the so called ‘shear 

parameter’ computed as follows: 

2 2

2 1 1 3 3

' 1 1
*

G b
g

h E A E A

 
= + 

 
(16) 

The determination of the natural frequency 

of a VE damped structure is a convergent 

iterative process in which the properties of the 

VE material vary and at the same time modify 

the natural frequency of the overall system. 

This iterative procedure is shown in Figure  7 

and it is used in this paper. 

4.2 FSM to be reproduced, geometry and 

mechanical properties 

The FSM chosen is intended to be a typical 

composite floor beam used for long-spans. It 

consists in a 12 m span beam composed by an 

IPE 450 S355 steel profile and a concrete slab 

of 3 m width by 0.15 m height as the one 

shown in Figure  6.a. The concrete Young 

modulus chosen is 30 GPa and the steel 

modulus is 210 GPa. The width of the 

integrated CLD is 200 mm and the height of 

its VE layer is 0.5 mm. Furthermore, the 

thickness of the constraining steel plates 

belonging to the CLD is also 0.5 mm.  

The VE material used is the HIP2, a 

polymer manufactured by Heathcote 

Industrial Plastics whose properties are 

defined in the nomogram depicted  Figure  3. 

The predicted natural frequencies and 

additional damping of the FSM are the 

following ones: 

Table 1 Dynamic properties of the FSM. 

1 0%FSf −

[Hz] 

1 100%FSf −

[Hz] 

1FS

[%] 

4.86 4.34 7.30 

4.3 RSM designed, geometry and 

mechanical properties 

To design the RSM, the following strategy 

was adopted. First, four varying geometrical 

parameters were defined for combining them 

and achieve and adequate design: a steel 

profile ranging between the UPN 140 and the  

Figure  7 Convergent iterative process for determining the natural frequency of a VE damped structure. 

( )

2
′

2
( )

( )− ( + 1)

Beginning

= | |

2
′= ( )

2= ( )

160167167167



Carlos M. C. Renedo, Wilson P. Ortega, Iván M. Díaz and Jaime H. G. Palacios

UPN 240, the width of the concrete slab 

( RSbc ) defined between 0.2 and 0.4 m, the 

slab height  ( RShc ) limited between 0.05 m 

and 0.15 m due to constructive reasons, and 

the beam span ( bRSL ) ranged from 1 to 4 m. 

Those combinations of UPN, RSbc , RShc and 

bRSL  complying with the scaling laws exposed 

from Equations (7) to (12) were obtained by 

performing an iterative computation. The 

mechanical properties of the steel and the 

concrete were assumed to be identical to those 

used in the FSM. Finally, those successful 

geometrical layouts were filtered according to 

the natural frequency constrain exposed in 

Equations (14).  From among the finalist 

equivalent geometries the authors chose the 

one with a lower natural frequency and a 

feasible concrete height from a constructive 

point of view.  

The final RSM obtained by means of the 

described procedure is presented in Figure  6 

and its estimated dynamic properties are 

outlined in Table 2. It consists in a 3.60 m 

span composite beam with an UPN 200 steel 

profile and a small concrete slab of 0.24 m 

width by 0.07 m height. The geometry of the 

CLD treatment used for the RMS is identical 

to the one assumed in the FSM (Figure  6.b).  

5 EXPERIMENTAL TESTS 

5.1 Experimental tests performed 

In the present study, free vibration 

response tests of the RSMs against an 

impulsive load provided using an elastic-tip 

hammer were performed. Impulsive loads 

were located next to the mid-span section. An 

accelerometer was placed at mid span to 

obtain the beam’s free response in terms of 

acceleration. The transducer used was a PCB 

393B12 accelerometer with a sensitivity of 

1V/m/s2 and a measurement range of ±5 m/s2. 

The measurements were acquired using a NI 

CompactRIO 9066 with a NI 9234 acquisition 

module for reading IEPE Voltage signals. A 

sampling frequency of 1000 Hz was used.  

Three experimental tests were developed, 

one for 0%-CLD beam, and two tests for the 

100%-CLD mode (a first one at 10º C and a 

second one at 20 ºC). These free vibration 

tests were performed hitting the models with 

the hammer several times during a single 

measurement that lasted 200 seconds. After 

each hit the beam was left vibrating freely 

until the vibration was completely damped. 

Once recorded, the signal was divided into 

several free-decay ‘subtests’ which were 

analyzed independently. 

5.2 Experimental data processing 

Two types of data processing were 

performed for each free-decaying ‘subtest’. 

First, the damping ratio of the studied 

Table 2 Detailed dynamic properties estimated for the RSMs developed. 

Beam 

[Prof] 
RSbc x

RShc

[mm2] 

bRSL

[m] 

RSY

[-] 

1RSg

[-] 

2' RSG

[Mpa] 

2RS

[-] 

1 0%RSf −

[Hz] 

1 100%RSf −

 [Hz] 

1RS

[%] 

UPN 

200 
240 X 70 3.60 1.64 1.38 0.80 1.01 18.04 15.10 7.30 
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specimen was computed as a function of the 

vibration amplitude. For that, the damping 

ratio was estimated from the logarithmic 

decrement at each vibration cycle for a given 

number of subsequent vibration cycles, as 

follows: 

1
ln

2

i

i N

u

N u


 +

 
  

 
,  (17) 

where N  is the number of vibration cycles 

chosen to compute the logarithmic decrement 

(3 in this paper), iu is the amplitude of

vibration the first vibration cycle and i Nu + the

amplitude of the last cycle.  

Secondly, the frequency spectrum for each 

‘subtest’ was derived by means of a Fast 

Fourier Transform. The peak-picking method 

was used to determine the natural frequency 

of the studied specimen. Finally, all the 

computed values were averaged to determine 

the final value of the fundamental natural 

frequency.  

6 RESULTS 

The results of the experimental natural 

frequencies for the RSMs are given in Table 

3. Figure  8 provides the results related to the

damping ratio of the models. Polynomial

tendencies have been included in this Figure.

In terms of natural frequencies, the 

experimental results are quite similar to those 

predicted. The lower natural frequency of the 

0%-CLD specimen is probably due to the 

concrete-steel shear connection which is not 

perfectly rigid as it was assumed. In addition, 

for the 100%-CLD beam it can be observed a 

decrease in the natural frequency as the 

temperature increases, which seems to be 

logical as the shear modulus of a VE material 

tend decrease with temperature.   

Figure  8  Damping ratio against acceleration for the 

three studied RSMs. a) 0%-CLD b) 100%-CLD at 10ºC 

and c) 100%-CLD at 20ºC. 
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Results provided in Figure  8 provide clear 

information about the RSM behavior in 

relation to damping ratio. First, for the 100%-

CLD model, the higher the amplitude of 

vibration the higher the damping ratio as 

usually happens. For the 0%-CLD beam the 

relation between damping and amplitude is 

not so clear. 

For higher accelerations (above 0.2 m/s2), 

the VE layer seems to be ‘switched on’ and 

consequently dissipates additional energy 

through shear hysteresis. For lower 

amplitudes, this dissipating mechanism does 

not seem to be activated, and thus the 

damping ratio decreases. This might suggest 

that HIP2 mechanical properties could also 

depend on the amplitude of the excitation. 

Further characterization of this material 

would be needed to confirm this. For higher 

amplitudes, the experimental results match 

well with the additional damping ratio 

predicted (around 7%).  

Table 3 Experimental frequencies of the RSMs tested. 

1 0%RSf −

[Hz] 

1 100%RSf −

at 10ºC 

[Hz] 

1 100%RSf −

at 20ºC 

[Hz] 

16.70 15.43 15.00 

7 CONCLUSIONS 

This paper has presented an experimental 

study related to composite floor beams with 

integrated CLD. The damping treatment 

studied is like the one proposed by Willford et 

al. in 2006, in which a thin VE layer is 

constrained between the concrete slab and the 

steel profile of a composite beam. The paper 

aims to experimentally quantify the additional 

damping ratio provided by a CLD treatment 

applied along the whole length of a floor 

beam (100%-CLD). 

To reduce the amount of economical, time 

and facility resources to be involved in the 

experimental campaign, the authors decided 

to develop two RSMs with and without CLD 

treatment. These models reproduce the 

dynamic behavior of a Full-Scale composite 

beam (named as FSM) of 12 m span. They 

were designed to achieve the same amount of 

additional damping ratio as the FSM with the 

same CLD configuration. The proposed 

scaling laws to design the RSM geometry are 

based on a dimensionless analytical solution 

provided by Mead for 100%-CLD beams.  

Free-decay test have been performed by 

means of hammer impacts and the measured 

acceleration responses have been analyzed. 

The fundamental natural frequencies of the 

RSMs and the relation between their damping 

ratios and the amplitude of vibration have 

been derived. Finally, as a conclusion, it can 

be said that the results obtained corroborate 

the validity of Mead’s dimensionless solution 

and thus, the scaling procedure developed in 

the paper.  Therefore, it can be concluded that 

a 100%-CLD treatment applied to a 

composite floor beam (like the one proposed 

in this paper) may provide a remarkable 

increase in the damping ratio.  
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Abstract. A tuned vibration absorber, usually known as tuned mass damper (TMD), is an 

effective solution for control vibration in civil structures. When they are perfectly tuning, the 

relative movement of the inertial mass with regarding the structure movement is 90º, as a result, 

the inertial control force opposes harmonic excitations at the tuning frequency. For slender 

structures, in which human activities may excite several modes simultaneously, the TMD loses 

efficiency. When dealing with vibration control of lightweight structures subjected to human-

induced vibrations, several modes can be excited, and modal parameters of the human-structure 

system may change over time. Thus, TMDs suffer detuning issues and do not perform well. 

Then, semi-active TMD (STMD) may alleviate this problem. However, a smart damper 

properly controlled should be employed. A magnetorheological (MR) damper can be used for 

this purpose. In this paper, firstly an MR damper is identified and secondly, a STMD is applied 

to a lightweight structure model considering an ideal semi-active damper and a “real” one, i.e., 

the identification model is considered. The identification of the MR Damper uses a genetic 

algorithm for fitting a Bingham and a Kelvin-Voigt model. Each configuration of the TMD and 

the STMD are analyzed through a sensitivity analysis and for excitation forces induced by 

human actions. 

Key words: Tuned vibration absorber, Semi-active vibration control, Magnetorheological Damper, Genetic 

Algorithms. 

1 INTRODUCTION 

The new tendencies forward sustainable 

structures make the use of lightweight 

structures common. Thus, these structures are 

susceptible to suffer excessive vibrations. 

A lot of research has been developed about 

vibration control devices in structures, where 

the most popular is known as tuned vibration 

absorber also known as tuned mass damper 

(TMD) [1-2], which is a passive control 

device. TMDs can control the harmonic 

vibration responses associated with a specific 

frequency. In structures where the natural 

frequencies are variable or unpredictable, the 

TMD tends to be detuned, losing effectiveness. 

The addition of smart dampers in the design 

of a TMD allows increasing the range of 
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controlled frequencies. Thus, developing a 

new generation of TMDs is known as Semi-

Active Tuned Mass Dampers (STMD) [3]. 

STMDs are usually implemented using 

Magneto-Rheological (MR) dampers, which 

show the advantage of low current 

consumption, high force response, and rapid 

transient response. 

An appropriate control law must be defined 

to achieve the correct working of the STMD. 

Koo et al [4], proposed a control method for 

Semi-active tuned vibration absorbers, using 

the “groundhook” concept, also known as 

phase control (ON-OFF). In this case, the 

damping force depends on the velocity or 

displacement of the structure and the relative 

velocity between the inertial mass and the 

structure. Moutinho [5] modified this control 

law, substituting the parameter of the 

displacement of the structure by the 

acceleration of the structure, and neglecting the 

structure velocity with respect to the TMD 

velocity, which leads to practical 

implementation for control in structures. The 

phase control has been studied in some 

experimental and numerical research, in 

STMD [6], and in base isolation seismic 

devices [7]. 

When an ideal viscous damping model for 

the smart damper is assumed, the STMD 

performs really well when canceling harmonic 

vibrations. However, unfortunately, the model 

that represents the constitutive equation of the 

MR is highly non-linear. Thus, in order to 

carry out the realistic and reliable simulation, 

the real MR model should be identified 

previously. Amongst the MR models found in 

the literature, phenomenological models are 

preferred if one wants to look for optimal 

properties for the damper. Spencer et al [8] 

studied the Bingham and Bouc-Wen models 

among others, to represent a numerical 

approximation for the behavior of this device. 

Varela [9] considered a constitutive model for 

shear yield stress of the magnetorheological 

fluid. Weiss [10] has examined the viscoelastic 

behavior in Magneto and Electro-Rheological 

fluids, remarking that the magneto-rheological 

fluids exhibited the pre-yield properties within 

the range exhibited by common viscoelastic 

solids. Kwok et al [11] studied the 

identification of the parameters of an MR fluid 

damper using genetic algorithmic, Marzuki 

[12] used dynamic neural networks for the

identification of the nonlinear parameters of

the MR damper, among other researches.

This paper analyzes the performance of a 

footbridge recently constructed in the 

laboratory with a TMD and a STMD 

implemented. The STMD is studied under two 

configurations i) considering an ideal behavior 

for the damping parameter (I-STMD), and ii) 

using a numerical model that represents an 

approximation for a real magnetorheological 

damper (MR-STMD). The experimental test 

carried out on the MR damper (RD-8041-1 of 

Lord Corporation) is fully explained in Section 

3. Then, the device is identified considering

two phenomenological models: Bingham and

Kelvin-Voigt models. Afterward, a sensitivity

analysis is developed for each studied

configuration considering the phase control for

the I-STMD and MR-STMD. Finally, some

concluding remarks are pointed out.

2 PASSIVE AND SEMI-ACTIVE TUNED 

MASS DAMPERS 

The passive version of the TMD is 

described in section 2.1, In section 2.2 the 

STMD is presented together with the control 

law. 

2.1 Tuned Mass Damper 

The TMD is composed of an inertial mass, 

a spring, and a viscous damper, which is 

incorporated into a structure that has a 

vibration mode to be controlled. The inertial 

mass movement of the TMD, when perfectly 

173



Christian A. Barrera-Vargas, Iván M. Díaz, Jaime H. Garcia-Palacios and José M. Soria. 

tuned, should present a delay of 90 degrees 

with respect to the structure movement. 

A structure with a TMD can be simplified 

as a system of two degrees of freedom as 

shown in Figure 1, in which m, c and k are the 

mass, damping coefficient and stiffness 

respectively, and the sub-indexes “s” and “t” 

indicated the structure and the TMD. 

Figure 1: Representation of a Structure with a TMD. 

The equation of motion of a structure with a 

TMD is: 

𝑚𝑠𝑥̈𝑠 + 𝑐𝑠𝑥̇𝑠 + 𝑘𝑠𝑥𝑠 − 𝑐𝑡(𝑥̇𝑡 − 𝑥̇𝑠) 

−𝑘𝑡(𝑥𝑡 − 𝑥𝑠) = 𝐹, (1) 

where 𝑥̈, 𝑥̇ and 𝑥 are acceleration, velocity and 

displacement, respectively, and F is the 

external force, while the equation of motion for 

the degree associated with the TMD is as 

follows: 

𝑚𝑡𝑥̈𝑡 + 𝑐𝑡(𝑥̇𝑡 − 𝑥̇𝑠) + 𝑘𝑡(𝑥𝑡 − 𝑥𝑠) = 0, (2) 

2.2 Semi-active Tuned Mass Damper 

The STMD is a passive TMD with a real-

time damping variation (see Figure 2). The 

response of the MR damper is controlled 

through a control law, which analyzes the 

structure and inertial mass movement at each 

time instant. 

Figure 2 : Representation of a structure with a STMD. 

The equation of motion of the structure with 

a STMD is similar to the equation (1), 

changing the parameter ct by ct(t), it happens 

similarly with the equation of motion of the 

STMD, as presented in the next equation: 

𝑚𝑡𝑥̈𝑡 + 𝑐𝑡(𝑡)(𝑥̇𝑡 − 𝑥̇𝑠) + 𝑘𝑡(𝑥𝑡 − 𝑥𝑠) = 0, (3) 

where ct(t)( 𝑥̇𝑡 − 𝑥̇𝑠)  is the damping force (Fd) 

for the I-STMD. For the MR-STMD, Fd 

corresponds with the force obtained from the 

phenomenological model studied, and a new 

equation should be added to set the value of 

ct(t) with respect to the system kinematic.  

2.3 Semi-active Tuned Mass Damper 

The semi-active ON-OFF control law 

proposed by Koo [4], has been analyzed, 

considering each step of movement for the 

system of two degrees of freedom as shown in 

Figure 3.  

(a) (b) 

(c) (d)  
Figure 3 : Illustration of the phase control logic. 
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According to Moutinho [5], the phase 

control can be rewritten, substituting the 

displacement of the structure by the 

acceleration of the structure, the modified 

equation that the represents the control law 

becomes: 

{
𝑥̈𝑠 ∙ (𝑥̇𝑡 − 𝑥̇𝑠) ≤ 0 → 𝑐𝑡(𝑡) =  𝑐𝑚𝑖𝑛

𝑥̈𝑠 ∙ (𝑥̇𝑡 − 𝑥̇𝑠) > 0 → 𝑐𝑡(𝑡) =  𝑐𝑚𝑎𝑥
, 

(4) 

where cmin and cmax are the minimum and 

maximum damping coefficients achieve by the 

semi-active device in the case of the I-STMD. 

For the MR-STMD these parameters change to 

Vmin and Vmax respectively. The minimum 

value corresponds with the normal functioning 

while the maximum value is the blocking 

functioning. In equation (4), 𝑥̇𝑠 may be 

neglected if the movement of the structure is 

much smaller than the one of the inertial mass. 

Although ON-OFF control laws are 

recommendable when dealing with non-linear 

smart damper, one should account for this 

nonlinear control law that may introduce 

chattering problems once implemented. 

3 IDENTIFICATION EXPERIMENTAL 

TEST 

The MR Damper studied is an RD-8041-1 

of Lord Corporation. The piston was attached 

to a concrete block and the cylinder to a 

hydraulic jack as shown in Figure 4. This 

hydraulic jack has the characteristic of 

generating displacement at a given frequency 

initially defined. To achieve this, the jack 

applied the necessary force to get the desired 

displacement. Different combinations of 

frequency and displacement can be defined 

within the range of the jack capacity. 

The MR damper is characterized by 

modified its viscosity with the presence of 

voltage. Thus, front low and high voltage 

values, the MR damper develops normal 

functioning and blocking functioning 

respectively. 

Figure 4 : View of the MR Damper, joining to the 

concrete block and the hydraulic jack. 

3.1 Configuration of the Experimental 

Test 

The experimental test carried out to identify 

the MR damper consisted in applying a series 

of sinusoidal displacement-controlled tests, 

associated with frequencies of [0.5, 1, 2, 3, and 

5 Hz]. Each frequency has been combined with 

sinusoidal amplitudes of ± 1mm, ±2mm, and 

±10mm making a total of 15 tests. These 15 

configurations were repeated for voltages of 

0.5, 1, 2, 3, 4, and 5 V applied to the MR 

damper covering the voltage range of the MR. 

Figure 5 shows the first configuration studied. 

Figure 5 : Experimental test for the frequency of 0.5 

Hz, with ± 1mm displacement and variable voltages. 
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3.2 Identification process 

Once the 15 tests are carried out, the model 

parameters are identified, minimizing the 

mean square error between the estimated (𝐹̂) 

and measure (𝐹𝑒𝑥𝑝)  damper force, as follows:

𝐽(𝑧,𝑉,𝑥) =
1

𝑁
∑ (𝐹̂ − 𝐹𝑒𝑥𝑝)2𝑁

𝑖=1 , N=1…15  (5)

   𝐽(𝑧,𝑉,𝑥)𝑧
𝑚𝑖𝑛 , 

in which 𝑧 is the vector of the model 

parameters, V is the voltage applied, and x is 

the rod displacement measured by the testing 

machine. 

All experimental tests are summary in 

Figure 6, where the value for the maximum 

force produced by the MR damper depending 

on the voltage applied, the frequency of the 

movement applied, and the amplitude of 

displacement is show for each test. 

Figure 6 : Summary experimental test: The sizes of the 

points indicate the test to 10mm, 2mm, and 1mm. 

Figure 6 shows that the reaction force 

produced by the MR damper depends on the 

three variables described (displacement 

amplitude, the frequency content of the 

displacement, and input voltage). As a first 

approach to the identification process, it is only 

considered the voltage variable as an 

independent variable.  

The optimization process (5) has been 

solved using a metaheuristic algorithm (Mono-

objective genetic algorithm) to assure that the 

global minimum is achieved. It is assumed that 

have a polynomial depending on voltage  

𝑧 = 𝑧(𝑣). Thus, two phenomenological models 

are identified: i) the Bingham model, and ii) 

the Kelvin-Voigt model, which is described in 

equations (6) and (7) respectively. 

𝐹 − 𝑓0 = 𝐹𝑐 ∙ 𝑠𝑔𝑛(𝑥̇) + 𝑐𝑜 ∙ 𝑥̇, (6) 

𝐹 − 𝑓0 = 𝑘 ∙ 𝑥 + 𝑐 ∙ 𝑥̇, (7) 

where F and fo, are the total force of the MR 

damper and the force due to the preload 

introduced by the pressurized gas, 

respectively. For the Bingham model, fc and co 

are the friction force and the damping 

coefficient, while the Kelvin-Voigt model, k 

and c are the stiffness and the damping 

coefficients respectively.  

The following dependencies on the voltage 

have been assumed: the parameters fc, co, k, and 

c are defined with a voltage-dependent 

polynomial function: 

𝐹𝑐 = 𝑎0(𝑉) ∙ 𝑉 + 𝑎1(𝑉) ∙ 𝑉2 + 𝑎2(𝑉) ∙ 𝑉3, (8) 

𝑐𝑜 = 𝑏0(𝑉) + 𝑏1(𝑉) ∙ 𝑉, (9) 

𝑘 = 𝑐0(𝑉) + 𝑐1(𝑉) ∙ 𝑉 + 𝑐2(𝑉) ∙ 𝑉2 + 𝑐3 (𝑉) ∙ 𝑉3, (10) 

𝑐 = 𝑑0(𝑣) + 𝑑1(𝑣) ∙ 𝑣 + 𝑑2(𝑣) ∙ 𝑣2 + 𝑑3(𝑣) ∙ 𝑣3. (11) 

Thus, 𝑧 = [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖] is finally the vector of 

parameters that are obtained the minimum of 

the function 𝐽(𝑧,𝑉,𝑥). 

The optimization process is carried in two 

steps: i) For each of the 15 tests, the 

optimization process is running, and a vector 

of parameters 𝑧 is obtained. and ii) for all 

parameters obtained for each test, a second 

optimization process is carried out, assuming 

each parameter as a polynomial voltage-

depended, as follows: 

𝑎0(𝑉) = 𝑎0,0 + 𝑎0,1 ∙ 𝑉 + 𝑎0,2 ∙ 𝑉2

+𝑎0,2 ∙ 𝑉2 + 𝑎0,4 ∙ 𝑉4 + 𝑎0,5 ∙ 𝑉5,

(12)
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This step is repeated for all the parameters of 

𝑧. Table 1 summarizes the values obtained 

after step 2 is carried out.   
(v)5 (v)4 (v)3 (v)2 (v) const.

a0 -0.27 3.81 -19.54 43.59 -39.83 12.72 

a1 0.16 -2.39 13.45 -33.64 35.34 -9.97

a2 - - -0.15 1.57 -5.23 5.57

b1 0.18 -2.20 10.96 -24.44 23.11 -6.78

b2 - -0.19 2.31 -9.79 16.05 -7.28

Table 1 Summary of coefficients for the parameters 

of the polynomial adjusted with the Bingham model. 

The mean relative error obtained for the 

Bingham and Kelvin-Voigt model is, 46% and 

139% respectively. 

4 DESIGN OF TUNED MASS 

DAMPERS SYSTEMS 

The design of the TMD consider three types 

of configurations, i) a TMD designed under the 

criteria proposed by Den Hartog [1], ii) an I-

STMD with a phase control law, and iii) the 

MR-STMD with a phase control. The 

effectivity for these configurations is analyzed 

using a sensitivity analysis. 

4.1 Excitation 

To carry out the design of the structure with 

a TMD or an STMD, two excitation forces are 

considered.  

- The first excitation corresponds to a chirp

signal with an amplitude of 770 N, and

with linear frequency variation from 0.1

Hz to 10 Hz.

- The second excitation is a sinusoidal

signal that corresponds with the second

harmonic of the walking effect, as defined

in [13], with a frequency of 2.5 Hz acting

in the second mode (nf = 5 hz, αn,v = 0.10

and G = 700 N).

4.2 Sensitivity Analysis 

In this section, the pedestrian bridge 

presented in [14] is analyzed, considering that 

has a TMD, an I-STMD, and a MR-STMD 

(using the identified Bingham model). In table 

2, the modal parameters of the structure and 

each TMD is defined. 
Modal Parameters 

Structure Value 

ms Mass 838 kg 

fs Range frequency [3.50 to 6.50] Hz 

ζs Damping ratio 2 % 

ks Stiffness 8.27x105 N/m 

cs Damping 1053.1 kg/s 

η fs / ft [0.70 to 1.30] - 

TMD Value 

µ Mass ratio 1 % 

mt Mass 8.38 kg 

ft Frequency 5.15 Hz 

kt Stiffness 8789.1 N/m 

ζ t Damping ratio [0.1 to 25] % 

ct Damping [0.54 to 135.7] kg/s 

I-STMD Value 

cmin Damping OFF ct kg/s 

cmax Damping ON 200∙ct kg/s 

MR-STMD Value 

vmin Voltage [0.50-2.50] V 

vmax Voltage 5 V 

Table 2: Parameters for the sensitivity analysis 

The different systems are analyzed 

considering variation in the damping 

coefficient of the TMD and the I-STMD, also 

the variation in the frequency of the structure 

is taking into account, keeping fixed the tuned 

frequency of the TMD. This relation is 

represented by the symbol 𝜂 =
𝑓𝑠

𝑓𝑡
⁄ . Figure 7 to 

9 shows the behavior for maximum 

acceleration of the structure and maximum 

displacement of the TMD for each 

configuration.  

Figure 7 shows that the optimal 

performance is obtained when the TMD has a 

damping coefficient between 5% and 10%, 

with a frequency of the structure close to the 

tuned frequency of the TMD. If the frequency 

of the structure change, the system presents 

detuning. 
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(a) Acceleration      (b) Displacement

Figure 7: Contour plots of the peak acceleration and peak displacement of TMD.

(a) Acceleration      (b) Displacement

Figure 8: Contour plots of the peak acceleration and peak displacement of I-STMD.

(a) Acceleration (b) Displacement

Figure 9: Contour plots of the peak acceleration and peak displacement of MR-STMD. 
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Figure 8 shows the behavior with an I-

STMD. In this case, the semi-active damper 

generates a robust control with a lower 

damping coefficient. Furthermore, the I-

STMD has developed better performance than 

the passive TMD, but with a range width of 0.9 

to 1.1 of 𝜂 

The addition of the MR damper in the 

STMD is analyzed with the same phase control 

used in the I-STMD but varying the value for 

the minimum voltage (Vmin). The response in 

the acceleration of the structure and the 

displacement of the MR-STMD are shown in 

Figure 9, where it is exhibited that the optimum 

response is obtained for low values of voltage. 

5 RESULTS AND ANAYSIS 

The optimal parameters obtained in the 

sensitivity analysis are presented in Table 3. 

Besides, the peak acceleration for each system 

is presented in two situations, i) considering a 

forcing frequency of 2.5 Hz, exciting the 

structure with the second harmonic, and the 

TMD or the STMD tuned for the frequency of 

the structure, and ii) changing the frequency of 

the structure to 4 and 6 Hz, with a forcing 

frequency of 2 and 3 Hz, exciting the structure 

with the second harmonic. The second 

situation has considered the case when the 

TMD or STMD could be detuning regarding 

the frequency vibration of the structure, below 

or above. 

Optimal Parameters 
fs 

(4 Hz) 
fs 

(5 Hz) 
fs

(6 Hz) 

System 
ft 

(Hz) 

ζ 

(%) 

Vmin max 

|Acc| 

max 

|Acc| 
max 

|Acc| 
Structure - 2 - 2.07 2.07 2.07 

TMD 5.15 7.21 - 1.75 0.95 1.60 
I-STMD 5.15 2.13 - 1.02 0.97 1.05 

MR-STMD 5.15 - 0.58 1.73 0.97 0.90 

Table 3 : Optimum results obtained from the 

sensitivity analysis. 

The vibration dose value (VDV) is also 

considered to understand the response of each 

system. The VDV is a parameter that considers 

the accumulated magnitude of the vibration 

along time and is given by the next equation:  

𝑉𝐷𝑉 = (∫ 𝑥̈𝑠
4(𝑡)𝑑𝑡

𝑡

0

)

1
4⁄

. 
(13) 

Figures 10 and 11 represent the acceleration 

and VDV respectively for the first situation. 

These figures show that the TMD passive, the 

I-STMD, and MR-STMD, have similar

behavior under a tuned control.

Figure 10 : Acceleration response of the systems 

tuned to 5Hz. 

Figure 11 : VDV of acceleration response for each 

system tuned to 5Hz. 
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Figures 12 to 15 show the acceleration and 

VDV respectively under a detuned control 

(second situation).  

Figure 12 : Acceleration response of the systems 

detuned to 4Hz 

Figure 13 : VDV of acceleration response for each 

system detuned to 4Hz. 

Figures 12 and 13 show that the three 

configurations lose effectiveness. However, 

the I-STMD keeps better behavior regarding 

the TMD or the MR-STMD, and the structure 

without control. 

Figure 14 : Acceleration response of the systems 

detuned to 6Hz 

Figure 15 : VDV of acceleration response for each 

system detuned to 6Hz. 

Figures 14 and 15 show as the MR-STMD 

develop a better behavior when the is detuned 

below the frequency vibration of the structure, 

matching the behavior of the I-STMD. 

Figure 16 shows the same results 

represented previously, but in root mean 

square (RMS) value, for the two situations, 

tuned and detuned. 
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Figure 16 : RMS values for each system studied. 

6 CONCLUSIONS 

This paper studied the design of a structure 

with a vibration control based on tuned 

vibration absorbers type TMD or STMD, 

considering the semi-active device in two-

states, i) with an ideal damping behavior, and 

ii) analyzing the numerical model behavior of

a MR damper.

An experimental setup has carried out to 

calibrate the MR damper, using genetic 

algorithms to obtain a numerical model, which 

represents an approximation of the results 

obtained in laboratory. The following remarks 

can be extracted. 

- The MR Damper RD-8041-1 of Lord

Corporation presents a behavior that

depends primarily on the induced

voltage, but the displacement and

frequency of excitation could be also

considered in the process of the

identification. Thus, the Bingham

model must be modified considering the

incorporation of these parameters.

- The TMD under a tuned excitation or

response of the structure generates an

excellent control, even better to the

studied MR-STMD. However, in the

situation where the frequency of the

structure is detuned, the STMD device

has better response behavior.

- The phase control (ON-OFF) used in the

I-STMD has the capacity to control the

vibration for the two studied excitations.

On the contrary, this control law

couldn't be the most proper for the case

of the MR-STMD.

- The implementation of a continuous

control law to govern the behavior of the

MR-STMD could be a great solution,

allowing change between different

values of voltage as required at each

time interval.

Future works will focus in improving the 

identification model for the MR Damper and 

the development of the continuous control law. 
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Abstract. The purpose of this work is the design and implementation of an active mass damper 

(AMD) for vibration mitigation in slender structures using a standard actuator (APS 400) 

commanded by a low-cost processor (NI myRIO-1900). The control law is experimentally 

validated on a 13.5-meter lively footbridge and has been formulated assuming a reduced 

mechanical model of the structure (just considering its first mode).  

As it is known, problems related to vibrations produced by human locomotion in slender, 

lightweight and low damped structures could require systems to mitigate the movement of the 

structure, which can be large around its natural frequencies. In those conditions, the AMD must 

guarantee the comfort and fulfil the serviceability conditions for the pedestrian use according 

to some design guides.  

After the dynamic identification of the actuator, the procedure consisted in the experimental 

characterization and identification of the modal properties of the structure (natural frequency 

and damping ratio) associated to its first mode. Once the equivalent state space system of the 

structure is obtained, the design of the control law is developed, based on state feedback, which 

was deployed in the low-cost controller. Finally, experimental adjustments (filters, gains, …) 

were implemented and the validation test carried out.  

The system performance has been evaluated using different indicators both in the frequency 

and time domain and under different loads scenarios, including pedestrian transits to 

demonstrate the feasibility and robustness of the proposed system. 

Key words: Active control, Vibration mitigation, Active Mass Damper, Low-Cost processor, 

Footbridge 

1 INTRODUCTION 

Recent advances in structural technologies, 

including new construction materials and more 

innovative design technologies, promote the 

trend toward designing lighter and slenderer 

structures with fewer nonstructural elements, 

giving them a more cost-effective and 

architecturally attractive approach. 

However, these structures exhibit much 

lower inherent damping and lower natural 

frequencies than in past constructions, making 

them more susceptible to be excited by 

pedestrians walking on them [1]. 

Induced vibrations may cause a service 

problem in terms of discomfort to users, 

although they will rarely affect the service life 
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or the safety of the structures. 

Regarding pedestrian walkways, the trend 

has been toward increased spans and the use of 

high-performance materials and sophisticated 

design techniques. Consequently, stiffness and 

mass have decreased, resulting in smaller 

natural frequencies and a greater propensity to 

dynamic loading. 

One of the usual approaches in footbridges 

for the mitigation of these pedestrian-induced 

vibrations are passive control systems, namely 

TMD (Tuned Mass Dampers). These consist of 

a mass-spring-damper device whose natural 

frequency is tuned to "match" with the 

frequency of the footbridge. This system has 

the advantage of having a minimum cost, due 

to its small size (its mass ranges between 0.15 

and 2 % of the structure mass) and its easy 

implementation in the existing structure. 

However, despite reducing the response of the 

footbridge to excitations close to its natural 

frequency, it still allows a relatively large 

response to impulsive actions. 

When high performance is required, it is 

more convenient to use an active control 

device. These systems are able to adapt the 

response of the structure during dynamic loads, 

applying control actions at each instant in 

response to the load, reaching high levels of 

efficiency in vibration mitigation. In addition, 

active systems enable the simultaneous control 

of several vibration modes with a single 

device, which makes this system an interesting 

solution for reducing the response of low 

damping flexible structures characterized by 

several modes of vibration modes that 

contribute significantly to the overall 

dynamics. Furthermore, active systems are 

versatile, have no tuning problems and can be 

unconditionally stable by adopting a properly 

designed control system [2]. However, active 

control may not be an attractive solution in 

terms of cost because it requires a higher level 

of technology and maintenance than other 

control systems. 

Also, it often requires expensive devices as 

well as power supply systems, and may have 

reliability problems under certain 

circumstances. 

For the design of an active control system, 

two critical issues need to be considered. The 

first is that it will be necessary to create a 

structural control algorithm that is sufficiently 

robust to compute the control force to be 

applied on the structure in real time, since 

instabilities may result in fatal damage to the 

structure itself. The second issue relates to the 

need for an actuator capable of applying the 

desired control force on the structure with an 

admissible error in real time. 

With regard to the control strategy, two 

radically different approaches may be 

considered: feedback and feedforward [3]. The 

principle of feedback control is depicted in 

Figure 1; system output is compared with the 

reference signal, obtaining the error signal 

(Error = Output - Reference). This signal is 

transmitted to a compensator and its result is 

applied to the system. The design problem in 

these control systems is to find the right 

compensator so that the closed-loop system is 

stable and behaves optimally. On the other 

hand, the principle of feed-forward control is 

shown in Figure 2. This method is based on the 

availability of a reference signal correlative to 

the main disturbance, this signal is passed 

through an adaptive filter, whose output is 

applied to the system by secondary sources. 

The main limitation of this control strategy lies 

in the need of requiring a signal related to the 

system perturbation, which is not always 

feasible. 

In relation to the second question, one of the 

commonly used actuators to apply forces to 

mechanical systems are the Active Mass 

Damper (AMD), since they can be placed in 

the most favorable positions regarding the 

most significant vibration modes and can be 

and can be easily concealed within the 

structure. 
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Figure 1: Structure of feedback control 

Figure 2: Structure of feedforward control 

This paper presents the design and practical 

implementation of an inertial mass-based 

active damping device, in order to cancel 

excessive vertical vibrations on a footbridge. 

Experimental validation of this system was 

performed on a 13.5 m long wooden platform 

at laboratory scale, whose first natural 

frequency is around 2 Hz, so that it can be 

excited by walking. The developed system is 

focused on the vibrations mitigation in a range 

close to the first natural frequency, considering 

the structure as a single degree of freedom 

system. The control law of the feedback 

control system has been designed using genetic 

algorithms to minimize the response of the 

closed-loop system, using as AMD a 

commercial electrodynamic inertial actuator 

(APS 400 ELECTRO-SEIS with a moving 

mass of 31.2 kg) controlled by a low-cost 

processor (NI myRIO 1900). 

This document continues with the 

description of the test structure, the 

identification of its modal parameters and the 

creation of the associated model. The 

dynamics of the actuator used and the creation 

of its model are described in section 3. The 

design and development of the AMD are 

presented in section 4. The experimental 

results conducted to assess the performance of 

the closed-loop system is presented in section 

5, where several loading scenarios, in order to 

validate the damping device both in time and 

frequency domain were used. Finally, some 

discussions and conclusions, together with 

suggestions for future work, are given in 

section 6.  

2 STRUCTURE DYNAMICS AND 

GENERATION OF THE SDOF MODEL 

This section describes the test structure and 

the identification of its modal parameters. This 

identification consisted in performing an 

experimental modal analysis (EMA) for 

obtaining the experimental frequency response 

function (FRF) at the point of maximum 

amplitude of the first bending mode. 

Afterwards, the modal parameters of the first 

mode of the structure (frequency, damping and 

generalized mass) were extracted from these 

FRFs. Finally, these modal properties were 

used to obtain the state-space representation of 

the system. 

2.1 Description of the structure 

The structure to be used is a wooden 

platform (GLULAM 24h) of 13.5 m long and 

1 m wide. It is made from ten independent 

beams of 13.5 × 0.1 × 0.14 m connected by 

thirteen threaded rods located every 1.11 m. 

The platform is placed on two fixed supports at 

the at the ends. In the central section 6 springs 

(3 on each side of the platform, with a stiffness 

constant of 6600 m) are arranged in order to 

increase the stiffness of the structure. A picture 

of the footbridge is shown in Figure 3. 

The system itself is very flexible and with 

low damping, which means that the response 

of the structure to disturbances close to its 

natural frequencies remains high. Figure 4 

shows the theoretical bending modes of the 

footbridge, which have been extracted from the 

model of the structure in the finite element 
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software SAP 2000. 

Figure 3: Picture of the test structure 

Figure 4: Theoretical bending modes of the structure 

obtained via SAP 2000 model.  

2.2 Experimental modal analysis 

In order to carry out the process of obtaining 

the experimental frequency response function 

(FRF) of the structure, the inertial mass 

actuator was used to induce forces on the 

structure placing a piezoelectric accelerometer 

on its moving mass so that the applied force is 

known (𝐹 = 𝑀 ∙ 𝐴). A second accelerometer 

has also been placed on the footbridge to 

measure its response. Figure 5 shows the 

experimental set-up implemented. 

The exciter has been controlled by feeding 

it with a white noise signal with an amplitude 

of ±2 volts in a frequency range between 0 and 

30 Hz commanded through the software 

implemented in the myRio. Data acquisition 

was carried out using a Dewesoft data 

acquisition card, with a sampling frequency of 

1 KHz. 

The acquired data have been postprocessed 

using Matlab software to estimate the 

experimental FRFs by executing the tfestimate 

function, selecting a Blackman window with a 

size of 150,000 points. Figure 6 shows the FRF 

obtained, representing the system accelerance 

between 0 and 25 Hz. 

Figure 5: Experimental set-up used for structure 

identification. 

Figure 6: Accelerance of the structure between 0 and 

25 Hz. 

2.3 Modal properties extraction and model 

generation 

A curve fitting optimization algorithm has 

been used to extract the modal properties of the 

first mode of the structure, in such a way that 
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the error between the experimental and 

analytical FRF in the frequency range close to 

the first mode (1.5-4 Hz) is minimized.  

With the aim of determining the analytical 

frequency response functions of the system, its 

state space representation was used (Eq. 1), 

where the input of the system (𝑓(𝑡)) correspond 

with the force applied on the structure, and the 

output (𝑦(𝑡)) with the response acceleration 

that the structure will experience at its 

midpoint, 𝑥(𝑡) denotes the vector formed by the 

state variables of the system, selected to 

correlate with the position and velocity of the 

structure’s midpoint (Eq. 2).  

𝑥̇(𝑡) = 𝐴𝑠𝑠𝑥(𝑡) + 𝐵𝑠𝑠𝑓(𝑡) (1) 

𝑦(𝑡) = 𝐶𝑠𝑠𝑥(𝑡) + 𝐷𝑠𝑠𝑓(𝑡) 

𝑥1(𝑡) = 𝑢(𝑡) (2) 

𝑥2(𝑡) = 𝑢̇(𝑡) 

The matrices Ass, Bss, Css and Dss are chosen 

to satisfy the equation of motion of the 

structure according to its modal properties (Eq. 

3). Hence, they are expressed according to the 

equations presented in (Eq. 4). 

𝑢̈ + 2𝜉0𝜔0𝑢̇ + 𝜔0
2𝑢 =

1

𝑚
𝑓(𝑡) 

(3) 

𝐴𝑠𝑠 = [
0 1

−𝜔0
2 −2𝜉

0
𝜔0

] 
(4) 

𝐵𝑠𝑠 = [
0
1

𝑚

] 

𝐶𝑠𝑠 = [−𝜔0
2 −2𝜉

0
𝜔0]

𝐷𝑠𝑠 = [
1

𝑚
] 

For obtaining the analytical FRFs, the 

Matlab function ss is used to create the state 

space model, introducing the parameters of the 

matrices of the state space representation, and 

the freqresp function is then applied on the 

model created, indicating the desired 

frequency range. Following this process, the 

three modal parameters were optimized by 

applying a genetic optimization algorithm 

whose fitness function consisted in minimizing 

the error between the FRF of the experimental 

system and the one obtained with the modal 

parameters of each iteration. 

The modal parameters obtained are 

expressed in (Eq. 5), in addition, Figure 7 

shows the comparison between both 

experimental and analytical frequency 

response functions for the first mode of the 

structure. 

𝜔0 = 2.147 𝐻𝑧 

𝜉0 = 0.406 %

(5) 

𝑚 = 520.879 𝑘𝑔 

Figure 7: Comparison between simulated and 

experimental FRF of the sdof system. 

3 INERTIAL-MASS ACTUATOR 

DYNAMICS 

For developing an AMD system that 

operates optimally, it is essential to obtain a 

model that describes the behavior and 

dynamics of the inertial mass actuator that will 

be used to feedback forces into the system, 

allowing to accurately predict how it will 
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behave according to the signal it is fed with. 

The actuator used will be the same as the 

one shown in Figure 5 that was applied for the 

experimental FRF extraction of the structure. It 

consists of an inertial actuator, which works by 

generating inertial forces on the structure on 

which it is placed without the need for a fixed 

reference. The actuator consists of a mobile 

reaction mass (31.2 kg) attached to a current 

coil that moves in a magnetic field created by 

an array of permanent magnets. The moving 

mass is connected to the frame by a suspension 

system. This exciter is powered by an electrical 

signal that varies in voltage between ±2 V, it 

also has an amplifier that allows to change the 

gain that reaches the system by a manual 

control. 

The dynamics of an inertial mass actuator 

can be described [4] according to the third 

order transfer function given in (Eq. 6), where 

𝐾𝐴 corresponds with the transducer constant (in 

N/A), 𝜔𝐴 is the natural frequency associated 

with the suspended moving mass system, 𝜉𝐴

represents the damping coefficient and the pole 

at 𝜀 accounts for the low-pass filtering property 

of these instruments, absorbing frequencies 

higher than the cut-off frequency 𝜀 (in rad/s),  

𝐺𝐴(𝑠) = (
𝐾𝐴𝑠2

𝑠2 + 2𝜉𝐴𝜔𝐴𝑠 + 𝜔𝐴
2) ∙ (

1

1 + 𝜀
) 

(6) 

The process of obtaining the model 

consisted in optimizing the parameters of the 

transfer function applying a genetic algorithm 

so that the experimental and simulated FRFs 

had a minimum error. Eq. 7 displays the 

obtained transfer function, where the values 

determined for each parameter are (𝐾𝐴 =

9348.52 𝑁/𝐴,  𝜔𝐴 = 13.69 𝑟𝑎𝑑/𝑠, 𝜉𝐴 = 0.26 and 𝜀 =

78.23 𝑟𝑎𝑑/𝑠. Figure 8 shows the comparison 

between the experimental and the modelled 

FRF. 

𝐺𝐴(𝑠) =
9348.52𝑠2

𝑠3 + 85.44𝑠2 + 751.8𝑠 + 14660

(7) 

Figure 8: Comparison between simulated and 

experimental FRF of the sdof system. 

4 CONTROLLER DESIGN 

This section will describe the design of the 

developed controller. A state feedback control 

structure will be used, whose basic scheme of 

operation is shown in Figure 9. This control 

structure consists of multiplying the state 

variable vector by the feedback gain, obtaining 

the signal in volts to be applied on the actuator. 

The design of the control law will consist in 

selecting the feedback gain Kr so that the 

closed-loop system performs as efficiently as 

possible, this will be done by applying genetic 

algorithms to optimize this behavior. 

Nevertheless, in the experimental system no 

devices are available to measure the position 

and velocity of the structure (state variables), 

only accelerometers are at disposal, so it will 

be necessary to implement a state estimator 

(Figure 10). 

Figure 9: Block diagram of the state feedback control 

system. 
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Figure 10: Block diagram of the state feedback control 

with the state estimator. 

4.1 State Estimator 

The estimator development process has 

consisted of two phases: design and 

implementation. 

Parting from a block diagram as shown in 

Figure 11, where the matrices Ass, Bss, Css and 

Dss represent the state space matrices of the 

open-loop system (Eq. 4), xest represent the 

estimation of the space state variables (position 

and velocity), yest is the estimate acceleration 

and Ke and Kc are constant matrices of 

dimensions [nss × pss] and [mss × nss], 

respectively, where nss represents the number 

of state variables of the open-loop system, mss 

the number of inputs, and pss the number of 

outputs. So Ke is a [2 × 1] matrix that multiplies 

the error signal between the measured and 

estimated acceleration and Kc is a [1 × 2] 

matrix that multiplies the estimated state 

variables converting them to force units. 

Figure 11: Block diagram representation of the state 

space estimator. 

In this design phase, the objective will be to 

establish the values of Ke and Kc so that, in the 

second implementation phase, the estimator 

may work as desired. For this purpose, the 

estimator can be represented as a state space 

system, where the input would be the measured 

acceleration (y), the output would be the 

estimated acceleration (yest), and the state 

variables would be (xest). 

According to the block diagram shown in 

Figure 11 the state equation for this system can 

be obtained (Eq. 8), as well as the coefficients 

of the space state matrices of the system, that 

can be denoted as Aest, Best, Cest and Dest (Eq. 

9), and the output equation (Eq. 10). 

𝑥̇𝑒𝑠𝑡 = 𝐴𝑠𝑠𝑥𝑒𝑠𝑡 − 𝐵𝑠𝑠𝐾𝑐𝑥𝑒𝑠𝑡 − 𝐾𝑒𝐶𝑠𝑠𝑥𝑒𝑠𝑡 −
−𝐾𝑒𝐷𝑠𝑠𝐾𝑐𝑥𝑒𝑠𝑡 + 𝐾𝑒𝑦(𝑡) 

(8) 

𝐴𝑒𝑠𝑡 = (𝐴𝑠𝑠 − 𝐵𝑠𝑠𝐾𝑐 − 𝐾𝑒𝐶𝑠𝑠 − 𝐾𝑒𝐷𝑠𝑠𝐾𝑐) (9) 

𝐵𝑒𝑠𝑡 = 𝐾𝑒

𝐶𝑒𝑠𝑡 = 𝐴𝑒𝑠𝑡(2, : ) 

𝐷𝑒𝑠𝑡 = 0 

𝑦𝑒𝑠𝑡 = 𝐶𝑒𝑠𝑡𝑥𝑒𝑠𝑡 + 𝐷𝑒𝑠𝑡𝑥𝑒𝑠𝑡 (10) 

Then the optimization algorithm was 

applied so that the error between the measured 

acceleration (system input) and the estimated 

acceleration (system output) is minimized, for 

this, Ke and Kc were optimized so that the FRF 

of the system is as close as possible to a line of 

constant unit value in the frequency range 

corresponding to the first mode of the structure 

(1.5-4 Hz). The optimized values obtained are 

represented in Ec. 11, Figure 12 shows the 

frequency response function of the estimator 

space state system and Figure 13 shows the 

validation of the estimator in the temporal 

domain, confirming that the error between 

measured and estimated acceleration is 

minimal. 
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𝐾𝑐 = [0.0001 10.7464]

𝐾𝑒 = [
−8.8555
−0.0001

]

(11) 

Figure 12: Estimator FRF compared to the target FRF

Figure 13: Validation of the estimator on the temporal 

domain 

Once the estimator has been designed and 

the matrices Ke and Kc have been determined, 

the implementation process consists of 

changing the system output to be the estimated 

state variables of the structure (Figure 14) 

rather than the estimated acceleration, 

modifying the system output equation in the 

state space representation of the estimator, thus 

changing the matrices Cest and Dest (Eq. 12). 

𝐶𝑒𝑠𝑡 = [
1 0
0 1

] 

𝐷𝑒𝑠𝑡 = 0

(12) 

Figure 14: Block diagram representation of the state 

space estimator. 

4.2 Control law design 

The controller feedback gain has been 

designed using a genetic optimization 

algorithm, so that the criteria defined below are 

used as the fitness function, including the 

additional requirement that the closed loop 

system poles must be located in the negative 

semi-plane of the real axis, in order to 

guarantee the stability of the system. 

1. Minimization of the maximum value of

the FRF of the closed-loop system.

2. Minimization of the area below the FRF of

the closed-loop system.

3. Minimization of the real part of the closed-

loop system pole of higher value.

4. Minimization of the product of the

absolute values of the poles of the closed-

loop system.

5. Minimization of the temporal response of

the closed-loop system to a chirp input

oscillating between 1.5 and 4 Hz.

6. Weighted combination of criteria 1 and 2.

The values for the gain obtained after 

executing the algorithm are as shown in Eq. 13. 

Subsequently, the closed-loop performance of 

the system is tested for the different calculated 

values. Figure 15 displays the FRFs obtained 

for these systems. The appearance of two 

190



César Peláez, Álvaro Magdaleno and Antolín Lorenzana. 

peaks instead of one may be observed, this can 

be explained by the coupling between the 

dynamics of the first mode of the structure with 

those of the exciter itself, since both systems 

exhibit very close natural frequencies (2.15 vs. 

2.17 Hz).  

The performance of these systems has also 

been evaluated for a step input of amplitude 

1 N. The settling times are shown in Table 1, 

where the maximum value of FRFs as well as 

its value at the resonance frequency of the 

structure for the different criteria are also 

displayed. 

Finally, the gain obtained by criterion 5 has 

been chosen since it presents a fairly fast 

settling time, besides a stable behavior in the 

whole frequency range. 

𝐾1 = [−213.14 −5.02]

𝐾2 = [−634.41 −25.12]

𝐾3 = [−227.10 −14.40]

𝐾4 = [−52.44 0.77]

𝐾5 = [−277.91 −4.57]

𝐾6 = [−421.05 −16.75]

(13) 

Figure 15: Closed-loop FRF for different feedback 

gain values. 

Criteria 
Settling 

time [s] 

Maximum 

amplitude 

[m/s2 N] 

Amplitude 

at structure 

resonance 

[m/s2 N] 

Open-loop 96.96 0.17 0.17 

1 5.02 0.0066 0.0035 

2 

3 

4 

5 

6 

114400 

15.73 

4.18 

4.52 

9.64 

1.61 

0.017 

0.015 

0.0082 

0.0094 

0.0011 

0.0025 

0.016 

0.0028 

0.0016 

Table 2: Evaluated performance for the different 

closed-loop systems considered. 

4.3 System deployment in the controller 

For the implementation of the system in the 

myRIO 1900 low-cost controller, a transfer 

function has been used to generate the voltage 

signal sent to the actuator according to the 

acceleration measurement provided by a 

MEMS digital accelerometer ADXL355, as 

shown in Figure 16. 

This transfer function (Eq. 14) has been 

calculated as the product of the feedback gain 

and the state estimator, and has been 

discretized using a first order hold method with 

a sampling time of 0.001 s. 

The system has been deployed in the 

controller using Labview 2019 software. In 

addition, a low pass filter has been included to 

avoid instabilities due to the dynamics of the 

structure associated with high frequencies, 

since the control system does not take into 

account these dynamics when modeling only 

its first mode. A point-by-point finite impulse 

response filter has been used, applying a 

Welsch window with a cut-off frequency of 24 

Hz and 50 taps. 
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Figure 16: Block diagram representation of the closed 

loop system. 

𝐹𝑇𝐶(𝑠) =
2461𝑠3 + 3.947 ∙ 106𝑠2 − 1.074 ∙ 107𝑠 − 1.75 ∙ 106

𝑠4 + 3222𝑠3 + 2.596 ∙ 106𝑠2 + 8.005 ∙ 105𝑠 + 6.171 ∙ 104

𝐹𝑇𝐶(𝑧) =
0.7679𝑧4 − 1.238𝑧3 + 0.07964𝑧2 + 0.4815𝑧 − 0.09068

𝑧4 − 2.399𝑧3 + 1.838𝑧2 − 0.479𝑧 + 0.03986

(14) 

5 SYSTEM VALIDATION 

The efficacy of the active control system 

developed will be assessed in this section.  

For this purpose, the behavior of the open 

and closed loop systems was compared both in 

the frequency domain, calculating their 

respective frequency response functions, and 

in the temporal domain, measuring the time 

taken for both systems to return to the initial 

stationary position starting from the same 

initial conditions. Finally, both systems have 

been evaluated under load, carrying out 

walking tests on the structure at its resonance 

frequency. 

5.1 Frequency domain validation 

The frequency response functions were 

experimentally performed via impact, 

measuring the induced force with a Mutronic 

load cell with a capacity of up to 500 kg and 

with a sensitivity of 2 mV/V. 

Figure 17 and 18 shows the comparison of 

open-loop and closed-loop systems, both in the 

whole frequency domain and in the frequency 

range around the first natural frequency of the 

structure, for which the control system has 

been designed. 

It can be appreciated that at the structure's 

natural frequency, the system response is 

reduced from 0.662 to 0.006055 m/s2N when 

applying the control system, representing a 

decrease of 99.09%. Furthermore, the 

maximum value of the controlled system 

presents an amplitude of 0.02207 m/s2N at a 

frequency of 2.95 Hz, which also represents a 

reduction of 96.67 % with the maximum value 

of the uncontrolled system. 

Figure 17: Uncontrolled and controlled system 

frequency response functions between 0 and 30 Hz. 

Figure 18: Uncontrolled and controlled system 

frequency response functions between 1.5 and 4 Hz. 

5.2 Temporal domain validation 

Further, the performance of the feedback 

system in the time domain is studied compared 

to the uncontrolled system. The response of the 

systems to a step input is analyzed. The same 

initial conditions are used to compare the time 

taken for the two systems to return to rest 
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position. The maximum displacement of the 

platform at its midpoint has been limited, so 

that when a person jumps off the structure, the 

system starts from a position of constant 

displacement and zero velocity, making the 

experiment repeatable for both systems.  

Figures 19 and 20 shows the results of this 

experiment, it is observed that the initial 

excitation of both systems is practically the 

same, however, the controlled system stops 

significantly earlier than the uncontrolled 

system, specifically, the uncontrolled system 

takes 121.4 s to reach an acceleration of less 

than 2% of the initial impulse, while the 

controlled system takes 4.2 s, which means a 

reduction of 96.54 %. 

Figure 19: Time response to a step input. 

Figure 20: Time response to a step input. 

5.3 In-transit validation 

A walking test was carried out to assess the 

efficacy of the control device designed. It 

consisted of walking from one extreme to the 

other of the footbridge at 2.15 Hz, matching it 

first vibration mode. The pacing frequency was 

controlled using a metronome set to 129 beats 

per minute (bpm).  Test was repeated four 

times, waiting until the platform had 

completely decelerated between each trial. All 

the tests were carried out by a person of 

approximately 700 N. 

The results are compared by means of the 

maximum peak acceleration and the maximum 

transient vibration value (MTVV) computed 

from the 1‐s running root mean square (RMS) 

acceleration [5], and they are displayed in 

Figures 21 and 22. A reduction of 66.07% 

(from 2.412 to 0.8183 m/s2) when applying the 

control system may be observed. 

Figure 21: Walking response at 2.15 Hz. 

Figure 22: Walking response at 2.15 Hz. 
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6 DISCUSSION, LIMITATION AND 

CONCLUSIONS 

Throughout this paper the mitigation of 

human-induced vibrations on a lab-scale 

footbridge using an active control system has 

been addressed. Once the dynamic properties 

of both the structure and the actuator were 

identified after performing an experimental 

modal analysis, the design and implementation 

of an active control system were carried out 

based on a state feedback strategy. 

The reduction made of considering the 

structure as a sdof system limits the control 

system designed to only mitigate the vibrations 

associated with the structure’s first mode, 

achieving a 99.09 % reduction in the amplitude 

response at the first resonant frequency, as well 

as a 66.07 % MTVV reduction when walking 

at this frequency. The efficiency of the system 

has also been validated by evaluating the 

settling time for a step input, obtaining a 

96.54% reduction with respect to the 

uncontrolled system. 

As a consequence of just modeling the 

structure performance in a frequency range 

around its first mode, it has been necessary to 

implement a low pass filter in the controller in 

order to avoid instabilities due to the dynamics 

associated to the high frequencies that are 

beyond the designed model. 

This filter restricts the controller's 

processing time, which limits the cycle time 

chosen in the system. Lowering this cycle time 

(currently it is fixed in 1 ms) will make the 

system act faster, resulting in better 

performance. Future work in this direction will 

be to model the structure as a multi-degree-of-

freedom system, in order to remove the signal 

filter, as well as to make the control system 

able to mitigate several modes simultaneously. 

Furthermore, this work has focused on 

using low-cost means, employing a NI MyRIO 

1900 controller, whose cost is 83% lower than 

other traditional systems of the same brand, 

such as the Compact RiO-9030 (608€ vs. 

3677€). The accelerometers used (MEMS 

ADXL355BEZ also represent an important 

saving of 87% with respect to piezoelectric 

accelerometers KS76C10 (44€ vs 360€). 

However, the exciter used is a high-cost 

commercial device (around 25000€), so that 

another future line of work is the development 

of a low cost inertial mass exciter. 
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Abstract. The New Robotic Telescope is designed to be a 4-meter class telescope allowing 

rapid follow up of transient events, having a pointing time of 30 seconds or less. To achieve 

this, the structure needs to settle quickly after moving, thus requiring it to be sufficiently rigid. 

At the same time, it is useful to keep the overall weight low, to lower costs and minimize drive 

requirements. In this study we present a parametric model of the NRT mount made with 

PyMAPDL, a new wrapping of the Ansys Mechanical APDL interface, and discuss de 

advantages of using such tools. 

Key words: Telescope mount, New robotic telescope (NRT), Finite element Analysis (FEA), 

PyAnsys. 

1 INTRODUCTION 

The exploration of transient astronomic 

events such as Supernovae or Gamma Ray 

Bursts (GRBs) is reaching a new age due to the 

construction of large-scale survey telescopes 

(eg. Vera Rubin Observatory LSST) and the 

observation of new phenomena, such as the 

gravitational waves detected by LIGO. 

These transient events will require quick 

follow up, as many of them are faint and fade 

quickly. The NRT is posed to be a 4-meter 

autonomous telescope, allowing quick 

response to these rapidly fading transients and 

other explosive phenomena [1]. The NRT will 

be located at Roque de los Muchachos on La 

Palma, Canary Islands. 

The telescope consists of a Ritchey-

Chrétien design with a 4.18 m of diameter 

primary mirror, consisting of 18 hexagonal 

segments and a focal ratio of f/7.5. These 18 

segments and their sub-assemblies will have a 

weight of approximately 150 kg each, 

amounting to a weight of approximately 

2700kg. 

The Optical Support System (OSS) 

comprises this primary mirror (M1), a 

secondary mirror (M2), the tube that separates 

both mirrors, the assemblies that support them, 

an acquisition and guidance box, and the 

telescope instruments. While some details are 

yet to be defined, for the purposes of this study, 

the weight of the OSS will be of 20 tonnes. 

This OSS will be mounted on an altitude-
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azimuth mount, following a conventional fork 

configuration that most telescopes of this size 

use. This configuration consists of a base 

mounted on top of an Azimuth ring, which 

allows rotation on the azimuth plane; and two 

yokes coming up from the base, which attach 

through the elevation motors and bearings to 

the OSS, allowing rotation on the altitude 

plane. 

Figure 1: 3D model of the mount. 

The telescope is required to be able to 

respond to ultra-rapid events, which require 

that the pointing operations occur within 30 

seconds. A key structural aspect to achieve this 

pointing time is the Locked rotor resonance 

frequency of the telescope. In order to improve 

the design of the mount, this paper focuses on 

the first few modes that the mount exhibits, as 

an indicator of overall behaviour and stiffness. 

A common goal for telescopes of this size is to 

achieve a first mode greater than 10 Hz. 

This mount is parametrized with 

PyMAPDL. The following sections will delve 

deeper into PyMAPDL, its advantages respect 

other parametrization tools and plain 

Mechanical APDL scripting.  Finally, some 

initial results derived from the models are 

presented, although the design and 

optimization of this mount is an ongoing work. 

2 MATERIALS AND METHODS 

2.1 PyMAPDL 

All the geometries, meshes and simulation 

results presented in this article have been made 

with the use of the PyMAPDL library, which 

has been used in terms of parametrize every 

aspect of the model. 

It is important to note that Ansys already 

provides a Python interface through Ansys 

ACT. The possibility of using this interface for 

the NRT design was discarded due to ACT 

being based on IronPython 2.7, which is based 

on an old implementation of Python that is not 

compatible with most current libraries. 

In terms of parametrization, Ansys 

Mechanical already offers many capabilities 

with the added benefit of offering a GUI, but 

with the downside of having less 

interoperability with external tools. 

PyMAPDL is part of the larger PyAnsys 

effort to facilitate the use of Ansys directly 

from Python [2]. It is based around the package 

ansys-mapdl-core, which provides: 

- Scripting interface, both a pythonic

one and pure APDL tools.

- Plotting of geometry, FEM mesh and

results using VTK.

- Access to inputs and results as numpy

arrays.

These functionalities tie the well stablished 

functionalities and solvers within Mechanical 

APDL with the vast amount of open source and 

scientific libraries that are available in Python. 

This allows different pre-processing pipelines, 

better handling of the results, the application of 

a wide variety of readily available optimization 

algorithms, among many other things. 
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Another positive point of PyMAPDL is its 

open-source nature, which allows and 

encourages collaboration, facilitating rapid 

development and addition of features when 

needed by the users themselves. This 

materializes in a quick update cycle, where 

some specific issues with the library get fixed 

within hours of their discovery. 

PyMAPDL is based on gRPC or CORBA 

depending on the version of Ansys it is being 

used with. These technologies allow the use of 

the solver as a server, to which the clients send 

commands, facilitating the use of Mechanical 

APDL instances running elsewhere. 

Despite all these positive points, the use of 

PyAnsys comes with a few drawbacks, first of 

which is the lack of a GUI, which makes it so 

all the work in the FEM stage is code based.  

Being a relatively new library, it is very 

much in development, which means some of 

its core functionalities are liable to change. 

Also, the user base is still small, so community 

support falls upon less people than with other 

more widely used tools. The documentation is 

rapidly developing and improving, but it is 

important to know that the use of PyMAPDL 

needs some background of pure APDL, of 

which there are many resources. 

2.2 Visualization tools 

Due to the freedom that the use of 

PyMAPDL provides, any python visualization 

tool can be used. For the figures presented in 

this paper the main 2 libraries used are 

Holoviews and Pyvista. 

The use of Pyvista for the handling of the 

3D datasets is natively supported within 

PyMAPDL, and grants easier and prettier 

visualizations than the native APDL ones. It 

also allows easy ways to export results to 

VTK/VTU, which is easily read with many 

scientific visualization programs, such as 

Paraview, to allow further postprocessing 

within a GUI interface. 

As for Holoviews [3], it is a library that 

builds on top of other common plotting 

libraries such as Bokeh, Matplotlib and Plotly. 

This library is picked mainly for two of its data 

representations: holomaps and dynamicmaps. 

Holomaps are explorable multi-

dimensional dictionaries of Holoviews objects. 

These objects are usually plots, that thanks to 

the holomap are able to be updated with the use 

of sliders. This allows for easier exploration of 

model results, which can be highly 

dimensional due to the many parameters that 

can be modified in the mount model. 

Dynamicmaps are objects very similar to 

the Holomaps explained above, but instead of 

taking a dictionary of plots, it takes a function 

that returns these plots. This coupled with the 

ability of wrapping entire models within a 

single function, provides a tool to interface 

with the model creation directly, and seeing the 

output plots as soon as they are ready. This 

could allow for the creation of future web 

applications, that interface with a server 

instance of Mechanical APDL in order to 

provide a simple way to explore the effect of 

various parameters without the need for the 

user to know have any coding skills. 

3 MOUNT MODEL 

The mount FEA model consists mainly of 

SHELL281 elements that are used to represent 

the geometry of the mount, having a single 

MASS21 element representing the OSS. This 

point mass element is then attached to the rest 

of the structure through MPC184 elements, 

which represent a rigid beam. These elements 

connect to the structure in the trunnion holes. 

It is important to note that the elevation axis 

rigidity is overvalued in this model due to the 

use of infinitely rigid elements. Later iterations 

of the telescope models will have to include 

bearing and motor stiffness in some way. 

However, for the purposes of this study, which 

197



César Rodríguez, Javier Gracia, Ali Ranjbar and Fernando Sánchez 

aims to optimize the LRF, this infinite rigidity 

is considered adequate. 

The boundary condition for the model 

consists of a circular surface on the bottom 

plate with Ux = Uy = Uz = 0. This fixed surface 

represents the union with the azimuth ring that 

is below the base. In a similar way to the 

elevation axis, the behaviour of this surface 

will be less stiff in the actual telescope, and 

correctly representing the bearing stiffness is 

among the future tasks that will be carried out. 

The complete mount model, from geometry 

creation to result extraction has been compiled 

into a Python function with 40 parameters. 

These parameters are divided in: 

- 1 mechanical APDL instance (mapdl).

- 28 parameters defining the geometry

of the mount.

- 8 parameters defining the various steel

plate thicknesses

- 1 parameter defining the OSS

properties

- 2 parameters that control number of

modes to be extracted and element

size.

All these parameters have a predefined 

value (based on the original mount design), 

except for the mapdl instance. This allows for 

easy wrapping of the function, in order to work 

with a lesser number of parameters each time. 

The usefulness of having the Mechanical 

APDL instance as a parameter when 

encapsulating a model within a function can’t 

be understated: this allows a flexibility in the 

number of instances running within a single 

environment and is necessary in order to run 

large batches of models with a parallel pool of 

instances. 

By running the function with its default 

values, we get the following mesh (Fig. 2). 

Running the function solves the model, but the 

results of this (and other models) will be 

discussed in the following section. 

Figure 2: FEM mesh. The floating point is attached 

through MPC elements to the trunnion 

4 RESULTS 

As the design and modelling of the NRT 

structure is still an ongoing effort, the results 

presented here are partial and preliminary. 

Only a few test cases have been run, but in this 

section we explore the following results: 

- Running the function with its default

values (that correspond to the

preliminary design from [1])

- Simple exploration of the effect

overall height has on modal

performance.

- Parametric sweep over many

combinations of different plate

thicknesses

4.1 Preliminary design 

The preliminary mount design has been 

previously tested with FEA[1], although due to 

the nature of design, some of the aspects that 

were tested have changed. Running a modal 

analysis for this mount design yields the 

following mode shapes (Fig. 3 and 4). 
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Figure 3: First mode shape (16.09 Hz). 

Figure 4: Second mode shape (24.33 Hz). 

The first mode is found at 16.09 Hz, the 

second mode at 24.33 Hz and the third one at 

37 Hz, for a mount weight of 45 tonnes. Going 

forward only the first two modes will be 

considered, as the third mode is composed of 

local vibrations, that would not affect the 

whole structure. 

It is important to know that these values are 

overshooting the results a full model of the 

telescope would give, because of the 

representation of the OSS as a point mass. 

Even if its approximate inertia value has been 

considered, not representing the tube makes 

the structure stiffer, specially in the second 

mode, to which the tube of the telescope would 

contribute. Thus, even if these values greatly 

exceed the 10Hz goal that was mentioned in 

the introduction, the structure would be closer 

to that performance. 

Early testing with a simple tube concept 

shows both these modes decrease to about 12 

and 15 Hz respectively, suggesting that a first 

mode of 15 Hz could be a good objective for 

this model. 

4.2 Effect of overall yoke height 

To illustrate and quantify the effect of 

changing the yoke size, two more models have 

been run in the same batch as the model from 

the previous section. In these models the height 

of each yoke layer height is increased or 

decreased by 20 %, keeping the proportions the 

same, but changing the overall height. 

Figure 5: 20 % shorter mount (left) and 20% taller 

mount (right). 

After running these models we get the 

following results (Table 1) 

Yoke 

height 

First mode 

[Hz] 

Second mode 

[Hz] 

Mass 

[t] 

Short 21.1 30.9 42.8 

Regular 16.1 24.3 45.0 

Tall 13.4 21.7 48.3 

Table 1: Modal performance by yoke length. 

As expected, the shorter mount performs 

better. However, while the increase in modal 

performance is notable, the change in overall 

mount mass is only around a 5% in each 

direction. From this we can see that shortening 

199



César Rodríguez, Javier Gracia, Ali Ranjbar and Fernando Sánchez 

the mount would be great for modal 

performance, while it would have a lesser 

effect on the azimuth drive.  

However, there are important limitations to 

mount height, because of the space needed 

between the primary mirror and the base box, 

to improve image quality. Thus, in order to 

shorten the mount, the need arises for 

development of a tube that can be balanced 

with the primary mirror as close to the 

elevation axis as possible. 

4.3 Effect of plate thicknesses 

Finally, the effect of changing different 

plate thicknesses is analysed. The thickness of 

the following plates has been explored. 

- Base box walls

- Base box covers (top and bottom)

- Base box ribs

- Yoke walls

- Yoke horizontal ribs

- Yoke vertical ribs

We have performed a sweep in order to

explore all the possible combinations of these 

parameters. The thicknesses that have been 

explored are the following: 

- 5, 10, 15 and 20 mm for walls

- 2.5, 5, 10 and 15 mm for ribs

- 15, 25 and 35 mm for the base box

covers.

The possible combinations of these 

parameters amount to a total of 3072 models. 

The exploration of these results involves 

looking at the first 2 modes and the mount 

mass, both of which depend on all 6 

parameters. This amount of parameters lend 

themselves to interactive visualization, 

covered in section 2.2 of this paper, as 

representing the whole input and output space 

would be way more complicated otherwise. 

For the purposes of this section, a holomap 

is chosen as the best exploration tool. This 

requires for all the models to be run 

beforehand. While it would be possible to run 

each parameter combination on demand with 

the use of a dynamicmap, this would require a 

coarser mesh in order to feature the same level 

of interactivity, as every model would have to 

run in a really short time every time the sliders 

are moved. 

Figure 6: Holomap of the thickness exploration results 

With this tool it is easy to explore the results 

of hundreds of models in a quick way. Figure 

7 shows a parameter selection that complies 

with the modal performance requirements, 

while being approximately 10 tonnes lighter 

than the preliminary design. It is possible to get 

closer to these requirements, but further 

optimization will be done in the future, in 

models that incorporate the OSS behaviour.  

Also, while manually exploring results is 

important, as it provides the design engineer 

with deeper understanding of the structure, 

automatic optimization of some of these 

parameters could prove a useful tool for the 

final design. 

5 CONCLUSIONS AND FUTURE 

WORK 

Although the results and methodology 

presented in this study are preliminary and part 

of an ongoing work, there are some key 

takeaways that can be obtained from it. 

- PyMAPDL proves to be a tool that is

already suitable for the development

of big projects, allowing a modular
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and parametric approach to design. It 

also shows great potential for being 

used in conjunction with other already 

stablished Python libraries. 

- Interfacing with highly dimensional

parametric models through interactive

visualizations can help quick

understanding about how each

parameter affects modal performance

- The proposed design for the mount

works as intended and is suitable for

the modal performance needs that are

required. However, there are many

optimizations that can be made, both

to plate thicknesses and to the size of

different parts.

Due to the preliminary nature of this study, 

it opens a lot of avenues for future work and 

improvements, such as the following: 

- Integration of the mount with

parametric models of the OSS.

- Representation of the stiffness of

motors and bearings.

- Dynamic simulation of the telescope

movement and settling time.

- Optimization of the structure with the

use of multiparameter optimization

techniques, such as genetic

algorithms.
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Abstract. Virtual sensing techniques use available data from a limited set of sensors to obtain 

estimated data at unmeasured points. These techniques are of interest in the field of structural 

health monitoring, where they allow reducing the number of sensors and obtaining estimated 

measurements at points of a structure where placing a sensor is not feasible. Several approaches 

for implementing virtual sensing have been found in the literature, but a lack of consensus has 

been detected on which techniques are more suitable depending on the circumstances. In this 

paper, various model-driven algorithms based on the Kalman filter are tested estimating strain 

and acceleration data using different sensor configurations and different input excitations. 

Reduced structural models obtained from FE models and acceleration and strain measurements 

are used by the estimation algorithms. A case study based on a scaled offshore wind turbine 

tower, that includes nacelle and jacket support structure, is used to apply the proposed 

methodology and evaluate the results. Two estimation algorithms, the Augmented Kalman filter 

and the Dual Kalman filter, are compared using different sensor configurations, and then the 

obtained estimates are validated using reference sensors located at the same point as the virtual 

sensors, first in a simulated environment and then in a laboratory case study. In the simulated 

case, it is observed that the Augmented Kalman filter performs better when strain gauges and 

accelerometers are combined, while the Dual Kalman filter provides better results when using 

a single class of sensors. In the laboratory environment, despite the increase in error caused due 

to possible inaccuracies of the model, correct estimates are obtained. 

Key words: Virtual sensing, Structural health monitoring, Model reduction, Kalman filter. 
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1 INTRODUCTION 

Structural health monitoring (SHM) is the 

field of the engineering that focuses on sensing 

and monitoring structural facilities, with the 

aim of detecting possible damage and make 

predictions of the remaining useful life of the 

critical components, increasing safety and 

allowing the optimization of maintenance 

actions [1]. SHM systems require to know real 

data through sensors, but not always is possible 

to place them at points of interest. The 

technique of obtaining measures from a system 

not directly with a physical sensor but using 

data inference from other sensors is known as 

virtual sensing (VS) [2]. The use of virtual 

sensors in SHM is of interest to face scenarios 

such as the need to obtain measurements at 

points where it is not technically feasible to 

locate a real sensor [3], or in cases where it is 

necessary to obtain measurements from a large 

number of points, requiring a too extensive 

sensor network [1]. The application of virtual 

sensors therefore offers both technical and 

economic advantages. VS techniques can be 

classified into two main groups: data-driven 

methods and model-based methods [4]. On the 

one hand, data-driven techniques use data 

obtained from real sensors as training data to 

create numerical relations between the real 

and virtual sensors, avoiding the need of a 

physical model of the system [5]. On the other 

hand, model-based techniques require the 

definition of a model capable of describing the 

physical behavior of the system. Model-based 

techniques can be classified in two main 

groups: stochastic techniques, where it is 

assumed that the model and sensor data have 

certain degree of uncertainty, and deterministic 

techniques, where uncertainities are not 

assumed [6].  

Data-driven techniques are useful for 

creating virtual sensors in systems that are very 

complex to model. Each virtual sensor consists 

of a unique numerical relation with the real 

sensors of the system, obtained by a large 

quantity of real data used as training. These 

techniques can be inflexible because if some 

sensors are relocated or added, or if some 

parameters of the system change, all virtual 

sensors must be redefined. Moreover, real data 

series must be available for training the virtual 

sensors, which is not always possible [7]. 

Deterministic model-based techniques are 

limited by the precision of the model used. 

Their application in virtual sensing is very 

limited when the definition of a sufficiently 

precise model becomes too difficult due to the 

complexity of the system [8]. Stochastic 

model-based techniques are therefore 

considered more suitable due to their ability to 

reduce the impact of measurement and 

modeling errors on the estimates [9]. 

In 1960, Rudolph Kalman raised the today 

known as Kalman filter (KF), which became 

the basis of stochastic model-based estimation 

[10]. In its classical approach, the KF needs the 

inputs to the system to be known, which is 

often not possible in SHM applications, so 

alternative versions of the KF have been 

proposed over the years. Two main solutions 

for the mentioned problem have been 

identified in the bibliography: the two-stage 

KF implementation (which for every time step 

estimates the states and the inputs separately) 

and the combined implementation of the KF 

with the augmented state-space (which 

estimates the inputs together with the states of 

the system). 

The use of the two-stage filter architecture 

started in 1969 when Glover proposed a 

pioneering KF-based recursive filter capable of 

estimating both states and inputs [11]. In 1987, 

P. Kitanidis proposed a recursive algorithm for

linear state estimation with unknown inputs,

bypassing the estimation of the inputs

themselves. His algorithm used a linear

unbiased minimum-variance estimation. [12].

Kitanidis’ work was later extended by

Darouach and Zasadzinski [13]. Gillijns and
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De Moor combined the work of Kitanidis and 

Hsieh obtaining a two-stage KF with a linear 

unbiased minimum-variance estimation [14]. 

The obtained algorithm was later applied in 

combination with reduced-order models to 

obtain state and input estimates from structures 

using vibration data from a limited number of 

accelerometers [15]. Based on the previous 

work, Papadimitriou et al. proposed in 2015 

the Dual Kalman filter (DKF), capable of 

obtaining state and input estimates from 

limited acceleration data with the aim of 

estimating fatigue damage accumulation in 

structures. 

The use of the KF in combination with the 

augmented state-space also began in 1969 with 

the work proposed by B. Friedland for state 

estimation with unknown inputs [16]. In 2010, 

E. Lourens et al. used the KF with the

augmented state-space for dynamic force

identification [17], and the following year they

consolidated the so-called Augmented Kalman

filter (AKF) [8], which has been used in later

publications [18].

The contribution of this paper is to 

exemplify the implementation of a VS system 

in a real case, comparing the performance of 

the DKF and the AKF algorithms both in a 

simulation framework and in a real 

environment, using different load cases and 

different sensor combinations. 

The paper is organized as follows. In 

section 2, the theoretical background is 

presented, covering the modeling process, the 

model reduction techniques, and the estimation 

algorithms. In section 3, the abovementioned 

algorithms are validated through a case study. 

The obtained results are shown in section 4, 

and the conclusions of the paper are presented 

in section 5. 

2 THEORETICAL BACKGROUND 

This section describes the theoretical bases 

used in this work, referring mainly to modeling 

methods and estimation algorithms. 

2.1 System modeling 

A model able to describe the dynamical 

behavior of a structure is typically formulated 

as a second order differential as shown in 

equation (1), where q(t) is the displacement 

vector (with n×1 dimension),  M, CD and K 

being the stiffness, damping and mass matrix 

respectively (with n×n dimension) and f(t) 

being the external forces vector (with n×1 

dimension), where n is the number of degrees 

of freedom (DoFs) of the model. This 

formulation is hereinafter referred to as MCK 

modeling. 

𝑀𝑞̈(𝑡) + 𝐶𝐷𝑞̇(𝑡) + 𝐾𝑞(𝑡) = 𝑓(𝑡) (1)

To facilitate the resolution of the equation 

(1) by numerical solvers, an MCK model can

be described as a state-space system as seen in

expression (2). A state-space system consists

of two equations: the state equation (above)

and the output equation (below). x is the state

vector, with 2n×1 dimension. As shown in

expression (3), the state vector containts the

displacements and the velocities of each DoF.

u is the inputs vector, and with n dimension,

contains the possible external input for each

DoF. A and B are the state and input matrices

respectively. As it seen in the expressions (4)

and (5), the dimensions of these matrices are

2n×2n and 2n×n. The elements of the output

equation: the output vector y and the output

and feedthrough matrices C and D, have no

fixed dimensions; they change according to the

desired output variables.

{
𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

(2)
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𝑥 = (
𝑞

𝑞̇
) (3) 

𝐴 = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶𝐷
] (4) 

𝐵 =  [
0

𝑀−1] (5) 

2.2 Model reduction 

To simulate the behavior of a structural 

system, finite elements (FE) models are used, 

which usually contain a large quantity of DoF. 

Model reduction methods allow to 

significantly reduce the number of DoF of a 

model maintaining a sufficient precision in 

their behavior. Two model reduction methods 

are used in this study: Guyan reduction and 

modal truncation. These methods are chosen 

due to their simplicity and their convenience 

with the estimation algorithms used. 

2.2.1 Guyan reduction 

Guyan method was first proposed by Robert 

Guyan in 1965 [19]. First, a set of master nodes 

has to be selected, which will be the nodes of 

the reduced model. If a FE model has m total 

nodes and p selected master nodes, the number 

of slave nodes (the rest of nodes) is m-p=s. The 

Guyan-reduced model is obtained with the 

equation (6) from the MCK equation (1) 

assuming there is no damping. Mpxp and Kpxp 

are the reduced matrices. xp is the displacement 

vector of the master nodes. Msxs and Ksxs are 

the matrices corresponding to the slave nodes 

and xs is the displacement vector of the slave 

nodes. A proportional damping reduced matrix 

can be obtained from the reduced stiffness and 

mass matrices. 

[
𝑀𝑝𝑝 𝑀𝑝𝑠

𝑀𝑠𝑝 𝑀𝑠𝑠
] (

𝑥̈𝑝

𝑥̈𝑠

) + [
𝐾𝑝𝑝 𝐾𝑝𝑠

𝐾𝑠𝑝 𝐾𝑠𝑠
] (

𝑥𝑝

𝑥𝑠

) = (
𝐹𝑝

0
) (6) 

2.2.2 Modal truncation 

A dynamical model can be described with 

its mode shapes, through a transformation with 

the mode shape matrix Φ. Each column of Φ 

corresponds to an eigenvector, associated to an 

eigenvalue (λi). The square root of every 

eigenvalue corresponds to a natural angular 

frequency of the system (ωi). The Φ-

transformation implies a domain change for 

the model, from the physical domain (with 

cartesian base) to the modal domain [20].  Φ 

can be obtained solving the equation (7), 

discarding the trivial solution Φ=0. Φ is 

considered mass-normalized when expression 

(8) is satisfied. A dynamical model can be

described with its mode shapes, through a

transformation with the mode shape matrix Φ.

Each column of Φ corresponds to an

eigenvector, associated to an eigenvalue (λi).

The square root of every eigenvalue

corresponds to a natural angular frequency of

the system (ωi). The Φ-transformation implies

a domain change for the model, from the

physical domain (with cartesian base) to the

modal domain [20].  Φ can be obtained solving

the equation (7), discarding the trivial solution

Φ=0. Φ is considered mass-normalized when

expression (8) is satisfied.

(𝐾 − λM)Φ = (𝐾 − ω2M)Φ = 0 (7) 

Φ𝑇𝑀Φ = 𝐼 (8) 

In its full form, Φ contains as many mode 

shapes as DoF the model has, but it is possible 

to reduce the model removing the modes out of 

the frequency range of interest (modal 

truncation). For a k number of modes of 

interest, Φ is reduced to ΦK (9), being its 

dimension reduced to n×k [21]. 

Φ(n,k) = [𝛷1, 𝛷2 … 𝛷𝑘] (9)

The MCK equation of the model (1) is 
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transformed into the generalized MCK 

equation (10), that can also be expressed as 

follows (11). z(t) is the vector of modal 

displacements (also known as generalized 

displacements), obtained with the 

transformation q(t) = ΦK z(t). 

Φ𝑘
𝑇𝑀Φ𝑘𝑧̈(𝑡) + Φ𝑘

𝑇𝐶𝐷Φ𝑘𝑧̇(𝑡)

+ Φ𝑘
𝑇𝐾Φ𝑘𝑧(𝑡) = Φ𝑘

𝑇𝑓(𝑡)
(10) 

𝑧̈(𝑡) + 2ξω𝑧̇(𝑡) + ω2𝑧(𝑡) = Φ𝑘
𝑇𝑓(𝑡) (11) 

2.3 Measurement 

The model receives data from the real 

system via the sensors. Sensor data is 

introduced in the model in a discrete-time 

approach (where subscript t represents the time 

index). For that purpose, the state-space model 

(2) is reformulated as the expression (12),

where w and v are the uncertainties

(represented as zero-mean white noises)

associated to the process and the inputs

respectively. z is the measurement vector of

size r (number of sensor channels), whose data

are incorporated into the model through the

observation matrix H. System matrices A and

B must be discretized, as seen in (13) and (14).

{
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡

𝑧𝑡 = 𝐻𝑥𝑡 + 𝑣𝑡
(12) 

𝐴(𝑑𝑖𝑠𝑐.) = 𝑒𝐴𝑑𝑡 (13) 

𝐵(𝑑𝑖𝑠𝑐.) = (𝑒𝐴𝑑𝑡 − I)𝐴−1B (14) 

The observation matrix H has r×2n 

dimension, containing a row for each sensor 

channel. Each row of H incorporates the sensor 

data to the state vector every step of time. The 

content of H depends on the physical quantity 

measured by each sensor. For SHM 

approaches, the most used sensors are 

accelerometers and strain gauges [22] [17]. To 

incorporate acceleration data to the model, the 

following row must be incorporated into the 

observation matrix (15). 

𝐻𝑎𝑖 :  [−𝑀𝑖
−1𝐾𝑖    − 𝑀𝑖

−1𝐶𝐷𝑖] (15) 

Strain measurements are estimated using 

strain coefficients, which relate strain at a 

specific point with the DoFs of the model. 

Strain coefficients can be defined in cartesian 

basis (SC) or modal basis (MSC). In each case, 

SCs or MSCs must be incorporated to its 

corresponding row in the observation matrix 

(16) (17). It should be highlighted that the

coefficients are obtained through the FE

model.

𝐻𝑔𝑖 :  [𝑆𝐶1 𝑖  , 𝑆𝐶2 𝑖, 𝑆𝐶3 𝑖 …  0, 0, 0 … ] (16) 

𝐻𝑔𝑖 :  [𝑀𝑆𝐶Φ1 𝑖  , 𝑀𝑆𝐶Φ2 𝑖 …  0, 0, … ] (17) 

2.4 Virtual measurement 

As mentioned in section 1, the KF approach 

is used in this paper for data estimation at 

unmeasured points. The standard KF works in 

three phases: for each time step, first a 

prediction of the model state is made based on 

known information from the previous state. 

Then, observation data (measurements from 

real sensors) is obtained. Finally, the state 

prediction is corrected using the observation 

data.  

The standard KF can be implemented in five 

substeps, which are executed recursively every 

time step. In the first substep, a prediction of 

the state is made based on the states of the 

previous time interval and the current inputs 

(18). In the second substep, a prediction of the 

estimator covariance (P(t)) is made, starting 

from the predicted covariance in the previous 

interval (19). In the third substep, the optimal 

filter gain is calculated for the present time 

interval (20). In the fourth substep, the 

prediction of the state previously made is 

corrected based on the calculated gain and the 

observation data (21). In the last substep, the 
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filter covariance is corrected based on the 

calculated gain (22). 

𝑥𝑡 = 𝐴𝑥𝑡−1 +  𝐵𝑢𝑡 (18) 

𝑃𝑡 = 𝐴𝑃𝑡−1𝐴𝑇 +  𝑄 (19) 

𝐾𝐺𝐴𝐼𝑁 = 𝑃𝑡𝐻𝑇(𝐻𝑃𝑡𝐻𝑇 + 𝑅)−1 (20) 

𝑥𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑥𝑡 + 𝐾𝐺𝐴𝐼𝑁(𝑧𝑡 − 𝐻𝑥𝑡) (21) 

𝑃𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑃𝑡 − 𝐾𝐺𝐴𝐼𝑁𝐻𝑃𝑡 (22) 

The uncertainties w and v are incorporated 

into the KF using covariance matrices, which 

contain in their diagonal the standard 

deviations (σ2) associated with each state and 

each measurement. Q is the covariance matrix 

associated to the process (23), with 2n×2n 

dimension. R is the covariance matrix 

associated to the measurements (24), with r×r 

dimension. P is the covariance matrix of the 

estimator itself, with 2n×2n dimension. Unlike 

Q and R, which remain constant during the 

estimator operation, P is updated in every time 

step. Therefore, only an initial state (P0) has to 

be selected (25). 

𝑄 = 𝑑𝑖𝑎𝑔(σ2
𝑄11, σ2

𝑄22 … , σ2
𝑄 2𝑛 2𝑛) (23) 

𝑅 = 𝑑𝑖𝑎𝑔(σ2
𝑅11, σ2

𝑅22 … , σ2
𝑅 2𝑛 2𝑛) (24) 

𝑃0 = σ2
𝑃 𝐼2𝑛 2𝑛 (25) 

The standard KF needs the system inputs to 

be known. The AKF and the DKF, two KF-

based algorithms that are able to perform with 

unknown inputs, are used in this article.  

2.4.1 Augmented Kalman filter 

The AKF is basically a standard KF with a 

model described in an augmented state space, 

where the inputs are incorporated into the state 

vector. The augmented state matrix (A*), a 

modification of the conventional state space 

matrix, is composed of the A and B matrices 

(26), with (27) standing for its discretized 

version. The augmented state vector (x*) is 

made up of the displacements and velocities of 

each DoF and the input forces (28). Note that 

the observation matrix is also augmented (29). 

The unknown input is modeled as a zero mean 

random walk model (30). 

𝐴∗ = [
𝐴 𝐵
0 𝐼

] (26) 

𝐴∗
(𝑑𝑖𝑠𝑐.) = [𝑒𝐴𝑑𝑡  (𝑒𝐴𝑑𝑡 − I)𝐴−1B

0 𝐼
] (27) 

𝑥∗ = (

𝑞
𝑞̇
𝑢

) (28) 

𝐻∗ =  [
𝑆𝐶 0 0

−𝑀−1𝐾 −𝑀−1𝐶𝐷 𝑀−1]
(29) 

𝑢𝑡 = 0 + 𝑤𝑢 𝑡 (30) 

2.4.2 Dual Kalman filter 

The DKF is based on a double 

implementation of the standard Kalman filter. 

For each time step a prediction-update of the 

inputs and a prediction-update of the states are 

performed independently. Unlike the AKF, the 

DKF does not use a non-augmented state 

space. Process and filter covariance matrices 

have to be defined for both the states and the 

input, being Q and P the state covariance 

matrices and QU and PU the input covariance 

matrices. Two observation matrices are 

defined: the state observation matrix G (31) 

and the input observation matrix J (32). 

𝐺 = [
𝑃𝐹 0

−𝑀−1𝐾 −𝑀−1𝐶𝐷
] (31) 

𝐽 =  [
0

𝑀−1] (32) 

The implementation of the DKF can be 

done in ten substeps: five for the inputs 

estimation and five for the states estimation. 

Inputs estimation phase (33) (34) (35) (36) (37) 
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and states estimation phase (38) (39) (40) (41) 

(42) have the same structure as the

conventional KF, with the difference that in the

inputs estimation phase, due to the absence of

real sensors for inputs measurement, the inputs

prediction is improved using an estimated

observation created using the previous state

estimation and the available sensor data [23].

𝑢𝑡 = 𝑢𝑡−1 (33) 

𝑃𝑈𝑡 = 𝑃𝑈𝑡−1 +  𝑄𝑈 (34) 

𝐾𝑈 𝐺𝐴𝐼𝑁 = 𝑃𝑈𝑡𝐽𝑇(𝐽𝑃𝑈𝑡𝐽𝑇 + 𝑅)−1 (35) 

𝑢𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑢𝑡 + 𝐾𝑈 𝐺𝐴𝐼𝑁(𝑧𝑡 − 𝐺𝑥𝑡 − 𝐽𝑢𝑡) (36) 

𝑃𝑈𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑃𝑈𝑡 − 𝐾𝑈 𝐺𝐴𝐼𝑁𝐽𝑃𝑈𝑡 (37) 

𝑥𝑡 = 𝐴(𝑑𝑖𝑠𝑐.)𝑥𝑡−1 +  𝐵(𝑑𝑖𝑠𝑐.)𝑢𝑡 (38) 

𝑃𝑡 = 𝐴(𝑑𝑖𝑠𝑐.)𝑃𝑡−1𝐴(𝑑𝑖𝑠𝑐.)
𝑇 +  𝑄 (39) 

𝐾𝐺𝐴𝐼𝑁 = 𝑃𝑡𝐺𝑇(𝐺𝑃𝑡𝐺𝑇 + 𝑅)−1 (40) 

𝑥𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑥𝑡 + 𝐾𝐺𝐴𝐼𝑁(𝑧𝑡 − 𝐺𝑥𝑡 − 𝐽𝑢𝑡) (41) 

𝑃𝑡
𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑃𝑡 − 𝐾𝐺𝐴𝐼𝑁𝐺𝑃𝑡 (42) 

3 CASE STUDY 

The VS techniques described in this paper 

are applied to a lab prototype for validation 

purposes. The process described in Figure 3 

has been followed for the implementation of 

virtual sensors and validation of the obtained 

results. Once a FE model of the system is 

created, the model is calibrated first adjusting 

its mass and later matching its mode shapes 

and their corresponding frequencies to the ones 

of the real system. The model is then simplified 

by applying a reduction method and converted 

into a set of linear equations. In parallel, the 

real system is sensorized with the aim of 

obtaining real data measurements for the 

estimator. Once the model and the inputs are 

defined, an estimation algorithm is 

implemented to generate virtual sensors, which 

are validated placing real sensors in their 

locations, comparing estimated data with real 

data. 

Figure 1: workflow followed for the implementation 

and validation of virtual sensors. 

3.1 Prototype 

The case study, seen in Figure 2, consists of 

a scaled offshore wind turbine tower prototype 

placed on a jacket support structure. An 

oscillator is installed at one end of the nacelle 

to apply forces. 

Figure 2: illustration of the prototype, including 

main features and sensor locations. 

3.2 Modeling 

A FE model of the prototype is 

implemented in a FE software. The model is 
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calibrated by adjusting the stiffness of the 

flexible mounts that connect the jacket to the 

ground and the Young modulus of the model, 

searching that the natural frequencies and 

mode shapes of the model to coincide as much 

as possible with those of the real system. Once 

the FE model is adjusted, the reduced model 

matrices are obtained. Both reduction methods 

above mentioned are performed: a 7-node 

model is used as Guyan’s reduction example, 

and a 6-mode model is used as modal 

truncation example. The response of both 

reduced models is compared to the response of 

the full FE model in order to validate the 

reduced models. 

3.3 Sensor placement 

To decide the location of the sensors, first 

the lab prototype is divided into 6 sensing 

points, similarly spaced between them. Points 

1, 2, 3 and 4 correspond to the junction points 

between the tower segments, with point 1 at the 

joint between the base of the tower and the 

jacket support, and point 4 at the joint between 

the top of the tower and the nacelle. Points 5 

and 6 correspond to each end of the nacelle, 

being 6 the point where the external force is 

applied. Four strain gauges are placed at points 

1, 2, 3 and 4 in the axial direction, and four 

triaxial accelerometers are placed at points 1, 

2, 3, 5 and 6. The placement of a large number 

of sensors allows the subsequent use of 

different sensor configurations, making it 

possible to locate the virtual sensors in any of 

the sensorized points and validate the obtained 

virtual data with real data. Sensor locations can 

be seen in Figure 2. 

3.4 Validation criteria 

The estimated measurements by the virtual 

sensors are compared to the equivalent real 

measurements to validate the VS techniques. 

For this purpose, two time series comparison 

methods are used to evaluate how close the 

estimates are to the real measurements: 

variance ratio and peaks ratio. The variance 

ratio, shown in expression (43), compares the 

variance of the estimated data with the 

variance of the (real) reference data. The closer 

the var. ratio approaches 1, the more accurate 

the estimate is. 

𝑟𝑎𝑡𝑖𝑜𝑣𝑎𝑟 =
𝜎2

𝑒𝑠𝑡

𝜎2
𝑟𝑒𝑎𝑙

(43) 

The peaks ratio, shown in expression (44), 

compares the values of the local peaks of the 

estimation data with the values of the local 

peaks of the real data. To obtain this 

coefficient, a peak-finding algorithm is 

needed. The summation of the absolute value 

of the detected positive and negative peaks 

divided by the number of peaks found is 

obtained both for the estimation and the 

reference data. The ratio is obtained by 

dividing the smallest summation by the largest, 

with the objective of keeping the ratio always 

below 1. 

𝑟𝑎𝑡𝑖𝑜𝑝𝑒𝑎𝑘𝑠 =
(

∑|𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡|
𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡

)

(
∑|𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙 |

𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙
)

 , 

𝑖𝑓 
∑|𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡|

𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡

<
∑|𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙|

𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙

𝑟𝑎𝑡𝑖𝑜𝑝𝑒𝑎𝑘𝑠 =
(

∑|𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙|
𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙

)

(
∑|𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡|

𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡
)

, 

 𝑖𝑓 
∑|𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡|

𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑒𝑠𝑡

>
∑|𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙|

𝑛𝑢𝑚. 𝑝𝑒𝑎𝑘𝑠𝑟𝑒𝑎𝑙

(44) 

In this paper, a mean value of the average of 

the two described ratios, (43) and (44), is used 

to simplify the results obtained (45). The closer 

the averaged ratio (avr) approaches 1, the more 

accurate the estimate is. 
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𝑟𝑎𝑡𝑖𝑜𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 =
𝑟𝑎𝑡𝑖𝑜𝑝𝑒𝑎𝑘𝑠 +  𝑟𝑎𝑡𝑖𝑜𝑣𝑎𝑟

2
 (45)

If the avr is in a range between 0.9 and 1.1, 

the estimation is evaluated with the mark ✓; if 

it is outside the above mentioned range but 

between 0.5 and 1.5, is evaluated with the mark 

! ; and if it is out of these ranges, as ✕. If the

estimation diverges, it is indicated with “-”.

3.5 External excitations 

For the simulation tests, synthetic input 

excitations are generated and applied at one 

end of the nacelle (near point 6) in the nacelle 

axis direction. Four different input excitations 

are generated: a zero-mean 0-60Hz white noise 

with a standard deviation of 120N, a 5Hz and 

a 15Hz zero-mean sinus, both with a 120N 

amplitude and a 50N impact. For the real tests, 

four different input excitations, similar to those 

used in the simulated environment, are applied 

at one end of the nacelle with the oscillator: a 

zero-mean 4-25Hz white noise, a 5Hz and a 

15Hz zero-mean sinus and an impact. The 

amplitude of the inputs in the real tests is 

unknown, due to the lack of a force sensor in 

the lab prototype. Simulation tests are 

performed with a sampling rate of 1000Hz, 

while real tests are performed with a sampling 

rate of 1652Hz. 

4 RESULTS 

The VS techniques described in this paper 

are validated through their implementation in 

the mentioned case study. The validation 

process is first performed in a simulated 

environment, where observation data does not 

come from real sensors but from a transient 

simulation carried out using the same model as 

the one implemented in the estimation 

algorithms. Different sensor configurations are 

tested. The configurations that work properly 

in the simulated environment are tested using 

observation data from real sensors. A virtual 

strain gauge and a virtual accelerometer are 

ubicated at point 1. The data estimated by these 

virtual sensors are compared with simulated or 

real data (depending on the case) provided by 

the sensors located at point 1. 

4.1 Simulated environment 

The two estimation algorithms used in this 

paper, the AKF and the DKF, are first tested 

using synthetic observation data, coming from 

a transient simulation that uses the same model 

as the one implemented in the algorithms, with 

the aim of avoiding possible modeling errors. 

Artificial gaussian zero-mean white noise is 

added to the synthetic measurements to 

generate some uncertainty in them. Four sensor 

configurations (described in Table 2) are 

tested. 

Sensor 

config. 

g2 g3 g4 a2 a3 a5 a6 

3-4 x x x x x x x 

3-0 x x x 

0-4 x x x x 

1-1 x x 

Table 1: sensors used in each sensor configuration. g 

stands for strain gauge and a stands for accelerometer. 

Sensor 

config. 

White 

noise 

Sin 5Hz Sin 

15Hz 

Impact 

3-4 (g) ✓/✓ ✓/✓ ✓/ ! ✓/✓

3-4 (a) ✓/✓ ✓/ ! ✓/ ! ✓/✕

3-0 (g) - / ! - / ! ✕/ ! - / !

3-0 (a) - / - - / - ✕/✓ - / -

0-4 (g) ! / ! ✕/✓ - / ! - / ✓

0-4 (a) ✓/✓ ✓/ ! ✓/ ! ✓/✓

1-1 (g) ✓/ ! ✓/✕ ✓/ ! ✓/✓

1-1 (a) ✓/✕ ✓/ - ✓/✕ ✓/✓

Table 2: results obtained in the simulated environment. 

AKF results are to the left of the “/” and DKF results 

are to the right.   
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Figure 3: example of strain and acceleration estimation 

in the simulated environment using the AKF and the 3-

4 configuration. Black signal corresponds to the 

reference signal and green signal corresponds to the 

estimation. 

The obtained estimates are shown in tables 

3 and 4. (g) stands for virtual gauge and (a), for 

virtual accelerometer. The AKF provides 

highly accurate estimates when using the 

sensor configurations that combine both types 

of sensors (3-4 and 1-1). A significant loss of 

precision is observed when the sensor 

configurations with only one type of sensor are 

used: a total malfunction occurs when only 

strain gauge data is used as input data (config. 

3-0), and only the acceleration is correctly

estimated when only accelerometer data is

used as input data (config. 0-4). The DKF in

general shows less precision, but relatively

accurate strain estimates are obtained using the

sensor configurations with only a type of

sensors. The acceleration estimates obtained

with the impact excitation (marked with * in

the tables 3 and 4) show less accuracy than

those obtained with other excitations, but this

is explained by the characteristics of the signal.

After the impact, the measured acceleration

quickly vanishes, remaining the noise from the

sensors. The existing error between this noise

and the estimated signals causes the decrease

of the accuracy ratios.

4.2 Real environment 

After validating the two used estimation 

algorithms in a simulated environment, the 

best performing sensor configurations for each 

algorithm are tested using real sensor data. 

Configurations 3-4 and 1-1 are used with the 

AKF, while configurations 3-4 and 0-4 are 

used with the DKF.  

Sensor 

config. 

White 

noise 

Sin 5Hz Sin 

15Hz 

Impact 

3-4 (g) ✓ ✓ ! ! 

3-4 (a) ✓ ✓ ✕ ✓ 

1-1 (g) ✓ ✕ ✕ ✕ 

1-1 (a) ✓ ✓ ! ✓ 

Table 3: results obtained in the real environment using 

the AKF 

Sensor 

config. 

White 

noise 

Sin 5Hz Sin 

15Hz 

Impact 

3-4 (g) ! ! ✕ ! 

3-4 (a) ✓ ! ✕ !

0-4 (g) ✕ ✕ ✓ ✕

0-4 (a) ✓ ✓ ✕ !

Table 4: results obtained in the real environment using 

the DKF 

Figure 4: example of strain and acceleration estimation 

in the real environment using the AKF and the 3-4 

configuration. Black signal corresponds to the 

reference signal (obtained with a real sensor) and 

orange signal corresponds to the estimation. 

The obtained estimates are shown in tables 

5 and 6. In general, a loss of precision is 

observed in the estimates respect to tests in a 

simulated environment. When the 15Hz-sinus 

input case is tested, both algorithms give 

imprecise estimates, which can be improved by 

varying the filter tuning parameters at the cost 

of losing precision in other input cases. 
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Leaving aside this specific input case, the AKF 

using the 3-4 sensor configuration provides 

correct strain and acceleration estimates. The 

AKF using the 3-4 config. and the DKF using 

the 0-4 config. provide correct acceleration 

estimates but fail estimating strain. 

5 CONCLUSIONS AND FUTURE 

WORK 

In this paper, a methodology to apply and 

validate virtual sensors for structural 

monitoring has been presented. Using model 

reduction techniques and Kalman-type 

estimation algorithms, virtual sensors have 

been implemented to estimate strain and 

acceleration at unmeasured points. Two 

different estimation algorithms (the AKF and 

the DKF) have been tested using different 

sensor configurations, first in a simulated 

environment and then on a real lab prototype. 

In general, the AKF has proven to be a more 

robust estimation algorithm, being able to 

provide accurate estimations if a combination 

of strain gauges and accelerometers is used as 

input data. The DKF has shown less accuracy, 

but in the other hand has been able to provide 

estimations in some cases where the AKF fails, 

such as using a sensor config. with only 

accelerometers. The validation tests performed 

with the real lab prototype have given less 

accurated results than the simulated ones. This 

may occur due inaccuracies in the dynamic 

behavior of the model used in the estimation 

algorithms, as well as the lack of precision of 

the sensors used in a certain frequency range. 

As described in section 2.4, the 

uncertainties are managed by the KF through 

noise covariance matrices. Despite the 

uncertainties associated with the 

measurements (values of R matrix) can be 

estimated doing a previous analysis of the 

sensor outputs, the uncertainties associated 

with the process (values of Q matrix) are not 

easily estimable, although they are of 

fundamental importance in the correct 

operation of the algorithm [24]. As of today, in 

most KF implementations, a manual 

adjustment of process covariance is used due 

to the lack of a standardized method to get the 

optimal Q matrix values, although some 

proposals for specific cases can be found in the 

bibliography [25]. Further research on the 

optimal adjustment of the process covariance 

values, or even on an adaptive approach for the 

Q matrix, is considered of interest. 
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Abstract. This paper discusses the vibrations engendered on a composite (concrete-steel) 
building slab by a machine for automated production of plastic bags; the slab is rather flexible, 
lightweight, lightly damped, and rests on steel columns (RSS). That machine has a number of 
rotating parts; in one of them (for plastic welding), an impact is generated at each cycle (4.17 
Hz). Apparently, that impact causes relevant vibrations; concern arose regarding their effects 
on people, structure (fatigue) and the machine itself. The overall approach consists of the 
following rather consecutive stages: (i) identification of the dynamic effect generated the 
aforementioned impact (excitation), (ii) numerical modelling of the linear static and dynamic 
behavior of the slab (using a finite element model), (iii) calculation of the dynamic response of 
the slab, (iv) measuring of the vibrations (in terms of accelerations), (v) comparison between 
the numerical and experimental results (to calibrate the numerical model), (vi) analysis of the 
obtained values and comparison with the code thresholds (regarding human, structural and 
operation effects), (vii) proposal for vertical stiffening (strengthening) of the involved slab, 
(viii) implementation of the proposed slab stiffening, (ix) calculation of the dynamic response
of the stiffened slab, (x) new measuring of the vibrations (in terms of accelerations and
displacements), (xi) new comparison between the numerical and experimental results (to further
calibrate the numerical model), and (xii) new comparison with the code thresholds. The final
comparison shows a satisfactory performance; the acceleration levels for the effects on the
workers are not exceeded (although the response acceleration is above the perception level),
the fatigue is insignificant, and no influence on the machine operation is to be expected.
Noticeably, the vibration is not caused by resonance effects, but by merely impact excitation
on a flexible, light and little damped structure; this circumstance impaired the solution of the
analyzed problem, given that it could not be based on separating the frequencies of the
excitation (input) and of the structure.

Key words: Vibrating Machinery, Buildings, Human Effects, Fatigue. 

1 BACKGROUND 
In May 2019, a new automatic plastic bag 

production machine was installed on the 

second floor of an industrial building. Upon 
starting the machine operation, an apparently 
excessive level of vibration was detected, and 
after several attempts and brief tests it was 

214



A. Kharazian and F. López-Almansa.

decided to interrupt the machine operation 
until the situation was clarified. Noticeable, the 
company intended to install new machines 
capable of generating vibrations. 

The first attempt to solve the situation 
consisted in installing vibration isolators; this 
strategy did not work, even the vibration 
increased significantly. Then the authors of 
this study were asked to take care of this issue. 

2 BUILDING AND MACHINE 
DESCRIPTION 

2.1 Building 
The building has three stories, the global 

configuration is prismatic with an irregular 
trapezoidal base and a flat roof. The structure 
consists of square steel tube columns and 
composite concrete-steel slabs. Figure 1 
presents an exterior image of the building. The 
axes (x, y, z) in Figure 1 are consistently 
maintained throughout the paper. 

Figure 1: Analyzed building 

Figure 2: Plan view of the vibrating slab 
Figure 2 displays a plan view of the slab that 

contains the machine under consideration.  

2.2 Machine 
Figure 3 presents a plan view of the plastic 

bags production machine that is causing the 
vibrations. The direction of advance of the 
plastic roll (right to left) is indicated, as well as 
the body (welding) that is apparently 
generating the undesired effects. 

Figure 3: Plan view of the vibrating machine 
Apparently, the undesired dynamic effects 

are generated in the welding box; Figure 4 
shows that a vertically moving part is 
impacting regularly against the upper part of 
the machine. 

Figure 4: Moving part that is causing impact 
The mass of the moving part is 50 kg and its 

stroke is 10 mm; the frequency is 4.17 Hz (250 
hits per minute), thus, the average velocity of 
the moving part is 0.02 / 0.24 = 0.833 m / s. 
Consequently, the momentum is 50 kg × 0.833 
m / s = 4.17 Ns. Regarding the duration of the 
generated pulse (timp, Figure 5), it has not been 
possible to obtain any estimation; thus, a 
sensitivity study is required. Since this 
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z 
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duration is expected to be short (a few 
milliseconds), it is assumed that the exact 
shape of the impulse does not has a highly 
significant influence on the response; 
conservatively, triangular waves are assumed. 
Figure 5 displays a sketch of the wave train. 
Fimp and timp represent the maximum force 
(pulse height) and the pulse duration, 
respectively. 

Figure 5: Dynamic loading on the slab 

3 PREVIOUS EXPERIMENTAL 
MEASUREMENTS 

3.1 Preliminary inspections 
On June 2019, the site was visited in order 

to study, in an unquantified way, the 
vibrations. Such vibrations were clearly 
perceived, and it was concluded that there was 
no resonance; this is because the vibrations 
were felt just right after the start of the 
machine, and for the reason that such 
vibrations were insensitive to any shift of the 
input frequency. In other words, the perceived 
vibrations are merely the dynamic response of 
a flexible, lightweight and lightly damped slab 
to the excitation depicted by Figure 5. Since 
there is no resonance, the solution of the 
problem cannot be based on separating the 
predominant frequencies of the structure and 
of the excitation; as discussed next (Section 4), 
the proposed strategy is to stiffen the 
supporting slab. 

3.2 Measured vibrations 
Prior to any intervention, the vertical 

acceleration was measured in 24 points (A01-
A24) located near the machine; the horizontal 

components were significantly smaller and 
were disregarded. Figure 6 displays the 
location of such measuring points. In Figure 6, 
the point that exhibited the maximum response 
(A05) is highlighted; as expected, this point is 
located under the moving part (Figure 3 and 
Figure 4). 

Figure 6: Measuring points 
Figure 7 presents the vertical Fourier 

acceleration spectra in between 1 and 80 Hz 
(range of interest for human effects, [1]) for all 
the measuring points; the median spectrum is 
also plotted (black thick line). The points of the 
spectrum of the spectra correspond to the thirds 
of octave in the range 1-80 Hz. 

Figure 7: Acceleration spectra in the range 1-80 Hz 
Figure 7 shows that the plotted spectra are 

rather constant; this states that, most likely, the 
excitation is wide-range, and that most modes 
respond to the excitation (Figure 5). Peaks are 
observed near the aforementioned machine 
operating frequency (4.17 Hz), and all their 
multiples (higher harmonics, 8.34 Hz, 12.51 
Hz, 16.68 Hz, 20.85 Hz, 25.02 Hz, etc.); this 
confirms that the excitation is not harmonic but 
can be represented as shown in Figure 5. 

After the vertical spectra in Figure 7, the 
following frequency-weighted quadratic 
average acceleration [1] is computed: 

t (s) 

F (kN) 
Fimp 

timp 0.24 0.48 0.72 0.96 

Maximum response 

x 

y 

Acceleration (m/s2) 

Frequency (Hz) 
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𝑎𝑎w = �� (𝑎𝑎i 𝑊𝑊i)2
𝑛𝑛

𝑖𝑖=1
 (1) 

In equation (1), n is the number of 
considered frequencies (thirds of octave), and 
ai and Wi are the corresponding root mean 
square acceleration and weighting factor, 
respectively. The average acceleration is 
expressed in decibels [2] as:  

𝐿𝐿aw = 20 log
𝑎𝑎w
𝑎𝑎0

 (2) 

In equation (2), a0 is the reference value (a0 
= 10−6 m/s2). For the average spectrum in 
Figure 7, Law = 91.39, and for the point of 
maximum amplitude, Law = 97.44. Both levels 
are clearly above the perception threshold (Law 
≈ 84 [1]), but do not even approach the 
acceptable levels for working environments. 
[3] states two bounds, the “daily exposure limit
value”, and the “daily exposure action value”
(less severe). For continuous exposure to
vibration (8 hours per working day), such
levels are established as Law = 121, and for the
point of maximum amplitude, Law = 114,
respectively. For non-continuous exposure, the
following empirical correction expression is
proposed [1, 4-5]:

𝐴𝐴(8) = 𝑎𝑎w �
𝑇𝑇exp
𝑇𝑇0

 (3) 

In equation (3), A(8) is the equivalent level, 
aw is the vertical average acceleration given by 
equation (1), Texp is the average daily time 
exposure, and T0 is the reference time (T0 = 8 
hours). By assuming that the daily time 
exposure is 30% of the total working time, the 
aforementioned thresholds are extended to Law 
= 129 and Law = 119, respectively. 

These considerations show clearly that the 
measured accelerations do not exceed the 
accepted levels. However, the company 
decided to obtain further reduction, in order to 
avoid any conflict with their employees. 

4 PROPOSED STRATEGY: SLAB 
STIFFENING 

As the vibrations were not caused by the 
slab resonance (subsection 3.1), the solution 
cannot consist in modifying (reducing, in fact) 
the machine operation frequency; moreover, it 
would have caused a reduction in its bags 
production capacity. Apparently, the only 
feasible strategies are increasing the slab 
damping or stiffness. Regarding damping, it is 
well-known that adding significant damping is 
rather difficult; moreover, its effect on the 
steady-state response is only moderate, except 
near the resonance peak. Therefore, the only 
feasible approach is to increase the slab 
stiffness in the vicinity of the vibrating 
machine; given that the slab structural 
behavior is basically linear, it is expected that 
the vibration reduction will be proportional to 
the stiffness increase.  

Figure 8 displays the steel profiles that are 
incorporated to the supporting slab in order to 
increase its stiffness. 

Figure 8: Added steel beams (dark red) to 
strengthen the slab 

It is estimated that this slab strengthening is 
going to increase its stiffness around 4 times. 

5 SLAB NUMERICAL MODELLING 
5.1 Model description 

The linear static and dynamic 3-D structural 

y 
x 

z 
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behavior of the building slab (both before and 
after the stiffening) is modeled with ETABS 
software (version 17) [6]. The model includes 
the first floor slab and the corresponding 
supporting columns (half segments under and 
above the slab). Such segments are considered 
to be pin-ended in both directions. Figure 9 
display a global view of the structural model. 

Figure 9: 3-D view of the structural model of the 
strengthed slab 

The influence of the non-structural 
components (cladding, partitioning and stairs) 
has been conservatively neglected, except for 
the mass participation the dynamic analyses. 
The steel modulus of elasticity is 210 GPa for 
the profiles and the trapezoidal sheet, and 200 
GPa for the reinforcement. Regarding the 
concrete, its modulus of deformation is 27.26 
GPa; the cracking has not been accounted, 
given that most of the concrete is under 
compression. It is assumed the shear 
connectors prevent any slippage between the 
topping concrete, the trapezoidal sheet and the 
lower steel profiles. For the dynamic analyses, 
the damping factor is taken as 0.8%. 

5.2 Static analyses 
The static analyses are intended to 

determine the vertical stiffness in the machine 
location. Figure 10 displays the deformation 

caused by a concentrated load located in the 
point A05 (Figure 6).  

Figure 10: Deflection of the stiffened slab caused by 
a point load 

The stiffness of the slab prior and post-
stiffening are 14.25 kN/mm and 62.31 kN/mm, 
respectively. Therefore, a reduction of the 
vibration of nearly 77% is to be expected; 
however, this is only approximate, given that 
the frequency responses are not uniform.  

5.3 Dynamic analyses 
The conducted linear dynamic analyses 

consist in obtaining the response of the slab to 
the excitation depicted by Figure 5; the modal 
formulation is considered. The duration of 
each analysis is 2.64 s (corresponding to 11 
pulses), and the discretization period is 0.0005 
s. Noticeably, no static gravity load is
considered; obviously, the dynamic mass
effect is accounted for.

As previously announced (subsection 2.2), 
a sensitivity study to the pulse duration (timp) is 
conducted. In this sense, Table 1 and Table 2 
present the variations of the bending moments 
and the axial stresses in the bottom fibers of the 
most demanded sections of the steel beams of 
the strengthened slab; in Table 1 and Table 2 
timp = 5 µs and timp = 5 ms, respectively. In 
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Table 1 and Table 2, Mmin and Mmax, refer to 
the minimum and maximum, respectively, 
moments during the vibration; the positive sign 
corresponds to tensioned bottom fibers. Also, 
σmin and σmax are the minimum and maximum 
axial (normal, longitudinal) stresses; the 
positive sign corresponds to tension. 

Table 1. Variations of moments and stresses at the 
bottom flanges of the reinforced slab (timp = 5 µs) 

Beam Mmax 
(kNm) 

Mmin 
(kNm) 

|σmax − σmin| 
(MPa) 

2 IPE400 0.1589 −0.1650 0.1497 
IPE500 0.2816 −0.2392 0.2701 
IPE450 0.2950 −0.2824 0.3850 

2 IPE450 0.2587 −0.2261 0.1708 
HEB300* 0.1263 −0.1083 0.1007 
HEB300* 0.1773 −0.1579 0.1439 
2 IPE240 0.0183 −0.0169 0.0633 
IPE240* 0.0420 −0.0440 0.1062 
IPE330 0.0240 −0.0228 0.0656 
IPE400 0.1062 −0.1160 0.1922 
IPE360 0.1444 −0.2145 0.3971 
IPE300 0.0528 −0.0546 0.1928 
IPE270 0.0078 −0.0079 0.0366 

IPE220* 0.4249 −0.3847 1.1819 

Table 2. Variations of moments and stresses at the 
bottom flanges of the reinforced slab (timp = 5 ms) 

Beam Mmax 
(kNm) 

Mmin 
(kNm) 

|σmax − σmin| 
(MPa) 

2 IPE400 0.1584 −0.1642 0.1491 
IPE500 0.2807 −0.2383 0.2692 
IPE450 0.2935 −0.2812 0.3832 

2 IPE450 0.2579 −0.2601 0.1825 
HEB300* 0.1256 −0.1080 0.1003 
HEB300* 0.1767 −0.1574 0.1435 
2 IPE240 0.0181 −0.0167 0.0626 
IPE240* 0.0418 −0.0439 0.1058 
IPE330 0.0239 −0.0228 0.0655 
IPE400 0.1059 −0.1156 0.1916 
IPE360 0.1439 −0.1146 0.2860 
IPE300 0.0526 −0.0544 0.1921 
IPE270 0.0078 −0.0079 0.0366 

IPE220* 0.4332 −0.3834 1.1921 
* These beams involve the topping concrete layer

Comparison between the results in Table 1 
and Table 2 shows that they are very similar; it 

shows that the influence of timp is only 
moderate. On the other hand, the oscillations 
of the normal stress are extremely small; 
therefore, there is absolutely not any risk of 
fatigue in the structure.  

For further information, Table 3 displays 
the variations of vertical displacements 
(deflections) in characteristic sections of the 
beams of the strengthened slab (same sections 
than in Table 1 and Table 2).  

Table 3. Variations of deflections in the reinforced 
slab (timp = 5 ms) 

Beam wmax 
(mm) 

wmin 
(mm) 

|wmax − wmin| 
(mm) 

2 IPE400 0.006 −0.006 0.012 
IPE500 0.005 −0.002 0.007 
IPE450 0.007 −0.007 0.014 

2 IPE450 0.006 −0.006 0.012 
HEB300* 0.002 −0.001 0.003 
HEB300* 0.002 −0.002 0.004 
2 IPE240 0.001 −0.001 0.002 
IPE240* 0.001 −0.001 0.002 
IPE330 0.003 −0.003 0.006 
IPE400 0.002 −0.002 0.004 
IPE360 0.007 −0.007 0.014 
IPE300 0.003 −0.003 0.006 
IPE270 0.001 −0.001 0.002 

IPE220* 0.032 −0.026 0.058 
* These beams involve the topping concrete layer

Table 3 shows that the variations of 
deflections are negligible, thus confirming the 
absence of fatigue. 

Regarding the response accelerations 
(relevant to the human effects), the computed 
accelerations at a given point before and after 
the intervention are compared. Before the slab 
strengthening, the Fourier amplitudes for the 
16.67 Hz frequency before and after the 
intervention are 0.052 m/s2 (maximum spectral 
amplitude) and 0.00336 m/s2, respectively. 
Despite this huge reduction, a deeper 
examination shows that the maximum spectral 
amplitude of the strengthened slab is 0.032 
m/s2 for the frequency 29.17 Hz. This shows 
that the peak spectral accelerations do not 
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correspond to the same frequencies, and the 
full range needs to be examined; such 
operation is performed after the acceleration 
measurements in the reinforced slab 
(subsection 6.1).  

In order in to compare with the 
aforementioned new acceleration experiments 
(subsection 6.1), it is observed that in the point 
A17 (Figure 6), the Fourier amplitude for the 
16 Hz frequency is 0.00538 m/s2; this result 
matches the experimental one. 

6 AFTER-STIFFENING 
EXPERIMENTAL 
MEASUREMENTS 

6.1 Accelerations 
These tests recorded the acceleration levels 

at the supports of the welding body (Figure 3) 
of the machine (points A05, A06, A17 and 
A18, Figure 6), at the center of the machine, 
and at an intermediate point between the main 
machine and the adjoining one. These 
recordings were performed under three 
conditions: operation of the main machine, 
operation of both machines, and cultural noise 
(no machine operation). For each of these 18 
cases (6 points times 3 conditions), two tests 
(named 1 and 2) were performed to obtain 
more reliable results; each of these tests lasted 
only a few minutes (between slightly more 
than 2 and up to 6). The results are analyzed at 
intervals of 1 s and 1/8 s; the 1 s time window 
is chosen because has better time uniformity 
(stationarity). For each interval and frequency 
(between 1 and 80 Hz in thirds of octave), the 
quadratic average and its decibel value (Law, 
equation (2)) are provided; Law is also obtained 
globally (for all the frequencies). Table 4 
summarizes the most relevant results of the 
two tests.  

Table 4. Values of Law at the tests on the stiffened 
slab (tests 1 / 2) 

Point Main 
machine 

Both 
machines Noise 

A05 83.29 / 
83.25 

85.59 / 
85.67 

55.24 / 
54.81 

A06 84.60 / 
84.57 

87.16 / 
87.25 

56.01 / 
55.97 

A17 83.28 / 
83.25 

85.01 / 
85.08 

54.78 / 
54.69 

A18 85.06 / 
85.03 

87.02 / 
87.09 

56.00 / 
55.92 

Centre 84.77 / 
84.78 

86.99 / 
87.13 

57.91 / 
57.94 

Between 
machines 

84.86 / 
84.83 

85.86 / 
85.90 

55.68 / 
54.95 

Table 4 shows quite clear trends: (1) the 
amplitudes at the six points are almost alike, 
(2) the results from tests 1 and 2 are very
similar, (3) the influence of the additional
machine is moderate, and (4) the vibrations
generated by the cultural noise are clearly
small, but not irrelevant. The comparison
between the values shown in Table 5 and the
result for the previous (non-stiffened) slab
presented in subsection 3.2 (97.44) indicates a
clear reduction.

As a complement to the results in Table 4, 
Figure 11 displays the Fourier acceleration 
spectral amplitudes at point A05 (Figure 6) 
before and after the slab strengthening. 

Figure 11: Acceleration amplitudes at point A05 for 
the previous and the stiffened slab  

Figure 11 confirms that the proposed 
intervention has generated a relevant reduction 
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of the acceleration for nearly all the 
frequencies; this decrease is coherent with the 
computed stiffness increase (subsection 5.2). 

6.2 Displacements 
In order to obtain further information, the 

slab deflections were measured using a 
inductive displacement transducer (LVDT); its 
maximum stroke is 2 mm. Figure 12 presents 
an image of the testing setup. The measuring 
point is located near the maximum deflection 
point of the bay (span, rectangular space 
bounded by four columns) that is aside the 
vibrating machine. 

Figure 12: Displacement measurement arrangement 
Figure 12 shows that the displacement 

sensor is connected to a massive steel disk that 
is suspended from a cable connected to the 
above slab. The objective of the disk is to 
stabilize the sensor position and to maintain the 
cable strained (tense), as to ensure that the 
distance between the sensor and the top slab 
holds reasonably constant. Then, by assuming 

that the deflections of such roof slab can be 
neglected (any operation was prevented during 
the test), the transducer measures the 
deflections of the floor slab. 

Three types of experiments were 
performed: operation of the machine, 
excitation by cultural noise only (preventing 
any operation in this slab and in the above one), 
and vibration caused by a heel impact (an adult 
weighting 80 kg). Each type of test was 
conducted three times; the durations were 
approximately one minute each. 

Figure 13 displays the time histories of the 
displacement in the first test under two 
conditions: operation of the machine and 
excitation by the cultural noise only. Figure 13 
shows that the deflection generated by the 
cultural noise is significantly smaller. Most 
probably, if the operation had not been totally 
restricted the difference would not have been 
so large (Table 4). 

Figure 13: Measured displacement time histories for 
the strengthened slab in the 1st test 

Comparison between the plots in Figure 13 
and the values in Table 3 shows a rather 
reasonable agreement, given the numerous 
uncertainties involved in the numerical 
simulation (Table 3) and the experiments 
(Figure 13). As a matter of fact, the measured 
displacements tend to be higher than the 
computed ones; this difference can be partially 
explained by the location of the measuring 
point (Figure 12) near the span maximum 
deflection point. This similarity further 
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confirms the irrelevance of the fatigue effects. 

7 CONCLUSIONS 
This paper describes the analysis and 

reduction of vibrations of a building slab 
generated by a plastic bag production machine. 
The vibrations are caused by the impact of a 50 
kg moving part; its stroke is 10 mm and the 
operation frequency is 4.17 Hz. The vibrations 
proved not to correspond to resonance; thus, 
the proposed strategy is to strengthen the slab 
area located near the machine. The analysis is 
supported by experiments and by numerical 
simulations; both types of studies are 
performed for the previous and final situations 
(before and after the slab strengthening, 
respectively).  

The vibration intensity is quantified in 
terms of the Law coefficient, which corresponds 
to the weighted quadratic acceleration average 
expressed in decibels. Before and after the 
intervention, Law was 97 and 83, respectively. 
This shows that the vibration reduction is 
relevant, and that both levels are clearly above 
the perception threshold (Law ≈ 84), but do not 
even approach the acceptable level for working 
environments (it ranges in between and 119 
and 129). In other words, the slab 
strengthening was unnecessary, but has 
provided a significant vibration reduction. 
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Abstract. This paper presents an Operational Modal Analysis (OMA) of a 3-storey RC 
building located in Valdivia, Chile; it is the Informatics Institute of the Austral University of 
Chile. The analyzed building is roughly shaped as a parallelepiped, being funded on a soft soil. 
The building structure consists basically of shear walls and solid slabs, but the first floor has an 
open side atrium that is only supported by rather flexible columns; this asymmetry presumes 
an important eccentricity between the first floor centers of gravity and stiffness. The building 
was inaugurated in 2010, having not been damaged by any earthquake; the objective of the 
carried out OMA is to calibrate the analysis model and, in particular, to detect the presence of 
torsional modes (being strongly detrimental to the earthquake resistance). Results confirm this 
trend and highlight the relevant influence of the soil flexibility. 

Key words: Operational Modal Analysis, Buildings, Model Calibration, Torsional Modes 
Detection. 

1 INTRODUCTION 
EMA (Experimental Modal Analysis) [1-3] 

consists in identifying the structural 
parameters of a given construction (mainly 
civil engineering structures, as buildings or 
bridges) by measuring its response to a known 
dynamic excitation (usually, ad hoc-
generated). That response allows estimating 
the modal parameters (natural frequencies, 

modal shapes and damping ratios); then their 
stiffness and damping can be calculated, thus 
obtaining information about the structural state 
(structural health) though proper DI (Damage 
Identification) approaches [4-5]. 

OMA (Operational Modal Analysis, also 
known as output-only modal analysis) [6-8] is 
a highly promising technique that is similar to 
EMA. The only difference is that the structural 
response is not generated by any purposed 
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known dynamic excitation, but merely by the 
random effects of the construction operation 
(functioning). Such input is commonly known 
as cultural noise (or ambient vibration); it can 
be generated either inside or outside the 
construction and corresponds to wind, traffic 
(road and railway), human activities, building 
machines, etc. Therefore, is characterized by 
being rather weak (small) and highly irregular. 
Regarding the first feature (weakness), 
nowadays sensors are extremely sensitive, 
being able to measure almost insignificant 
levels of velocity and acceleration (clearly 
under any human perception threshold). 
Concerning the second issue (irregularity), the 
input is considered to be unknown, and is 
commonly modelled as random (usually, as a 
wide-band white noise). As its name states, the 
output of Operational Modal Analyses are the 
modal parameters of the construction under 
consideration, mainly natural periods and 
mode configurations (modal vectors); damping 
ratios are harder to estimate, given the small 
vibrations involved.  

Broad comparison between EMA and 
OMA, states the information obtained from 
OMA is less reliable, but this analysis is more 
feasible, given that no intended excitation has 
to be generated. On the other hand, in OMA, 
given the high uncertainly of the involved 
parameters and the performed operations, the 
identification algorithms are rather complex, 
and a stochastic (random) framework is 
considered; the parameters identification can 
be performed either in the time or frequency 
domains. Noticeably, both techniques are 
inherently non-destructive. 

Noticeably, OMA and SHM (Structural 
Health Monitoring) [9-10] are highly similar 
and highly related issues. Perhaps the main 
difference lies in the fact that OMA focusses 
on civil engineering constructions, while SHM 
rather refers to aerospace structures (typically, 
composite materials). 

This paper presents an Operational Modal 

Analysis of a 3-storey RC building located in 
Valdivia, Chile; it is the Informatics Institute 
of the Austral University of Chile [11]. The 
building was inaugurated in 2010, having not 
been damaged by any earthquake; the 
objective of the carried out OMA is to calibrate 
the analysis model and, in particular, to detect 
the presence of torsional modes (being 
strongly detrimental to the earthquake 
resistance). 

2 BUILDING DESCRIPTION 
Figure 1 displays two general views (front 

and rear, (Figure 1(a) and Figure 1(b), 
respectively) of the aforementioned 3-story RC 
building under consideration. The global 
coordinates (x, y, z) are maintained along this 
paper for easy reference; x and y correspond 
approximately to NS and EW directions, 
respectively. 

(a) Front view

(b) Rear view

Figure 1: Analyzed building 
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Figure 1 shows that the building global 
configuration is rather regular, with 
rectangular layout and overall geometric 
uniformity along height. The building height is 
11.60 m and the plan size is 25.1 m × 15.65 m 
(on the ground); the constructed area is 
approximately 1080 m2. There are no 
basements. 

The building structure is made of reinforced 
concrete. Most of the supporting elements are 
shear walls, although there are also some 
columns (Figure 1(a), respectively). The wall 
thickness ranges between 15 and 35 cm; the 
slabs are solid with 20 cm thickness. 

The characteristic value of the concrete 
compressive strength is fc’ = 200 kgf/cm2, the 
concrete deformation modulus is Ec = 15100 × 
(fc’)½ = 213550 kgf/cm2 [12], the concrete 
Poisson ratio is νc = 0.18, and the 
reinforcement steel is A630-420H (its ultimate 
stress are fu = 630 MPa and yield point fy = 420 
MPa, respectively [13]). 

For further clarity, Figure 2 displays the 
structural layouts of the three building stories.  

In Figure 2, points labelled 1-9 correspond 
to the sensors locations; noticeably, points 1, 4 
and 7 are vertically aligned (as well, 2, 5 and 
8, on one side, and 3, 6 and 9, on the other 
side). This layout is aimed to provide smooth 
and reliable measurement. On the other hand, 
the high separation between pairs 2-3, 5-6 and 
8-9 is intentional in order to provide clear and
reliable information on the torsional motion
(section 1).

Figure 1 and Figure 2 show that the 
supporting elements are not uniformly 
distributed along the building height, as the 
first story front has only bare columns, while 
that façade is quite rigid in the second and third 
stories. In other words, Figure 2.a seems to 
indicate that a relevant eccentricity between 
the centers of mass and of stiffness is to be 
expected; therefore, the first mode might be 
predominantly torsional, this being detrimental 
regarding the building seismic performance. 

As discussed in the Introduction, one of the 
major objectives of this paper is to clarify this 
highly relevant issue (regarding the building 
earthquake-resistant capacity). 

(a) First story

(b) Second story

(c) Third story

Figure 2: Structural story layouts of the analyzed 
building 

3 STRUCTURAL MODEL 
This section depicts the numerical modelling 
of the building under consideration.  
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3.1 General Description 
The building had been designed by using 

the SAP2000 program [14]; given that the 
original code was not available, another model 
implemented in the same program was 
developed specifically for this study. However, 
the first three natural periods form the original 
code were retained for comparison purposes, 
such values are: T1 = 0.224 s, T2 = 0.175 s and 
T3 = 0.141 s. 

The aforementioned developed model was 
created by using the data available in the 
project (section 2); therefore, this model is not 
calibrated with any experimental result.  

Figure 3 displays two global sketches of the 
developed structural model. 

(a) Front SW view

(b) Lateral S (south) view

Figure 3: Structural model of the analyzed building 
Figure 3 shows that only the major 

structural elements are modeled (i.e. walls, 
slabs and columns); additionally, it is imposed 
that the three slabs constitute rigid diaphragms 
(in their own planes). Columns and walls are 
considered embedded (clamped) in the 

foundation; additional, the rotations of the 
columns top sections with respect to x and y 
axes are also restrained.  

3.2 Initial Numerical Modal Analysis 
The structural model described in the 

previous subsection has been utilized to 
perform a numerical modal analysis of the 
building under consideration. 

Major characteristics of this analysis are 
discussed in this paragraph. Given that the 
building is not damaged, the stiffness of the 
structural elements is not reduced due to 
cracking of the tensioned concrete. The mass 
corresponds to permanent loads; this is 
because the measurements were made when 
the building was empty (i.e. during the holiday 
period). Then, the building seismic weight is 
16660 kN. 

Table 1 displays the most representative 
results of the first five modes computed with 
the developed model. 

In Table 1, Ux, Uy , Uz, Rx, Ry and Rz refer 
to the percentages of equivalent modal masses 
in the corresponding displacement (U) and 
rotation (R) directions, respectively. Then, 
Table 1 shows that the rotational component of 
the first mode is high, thus indicating a certain 
lack of torsional stiffness (Figure 2); 
noticeably, this remark is corroborated by the 
fact that the third mode has a similar 
configuration. Conversely, the second mode is 
purely translational in the y direction, thus 
showing that the apparent eccentricity between 
the aforementioned centers of mas and 
stiffness occurs only in the x direction (Figure 
1.a and Figure 3).

Table 1 also shows that the computed

Table 1. Initial numerical modal analysis 

Mode Period 
(s) Ux Uy Uz Rx Ry Rz 

1 0.0641 0 0.41 0 0 0 0.56 
2 0.0454 0.87 0 0 0 0 0 
3 0.0412 0 0.47 0 0 0 0.4 
4 0.0310 0 0 0.66 0 0.23 0 
5 0.0217 0 0 0 0.36 0 0 

xy
z

xy

z
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periods are extraordinarily short, thus 
corresponding to a highly rigid building; this is 
coherent with the rather high wall densities in 
both directions (Figure 2 and Figure 3), and 
with the assumption that the walls and columns 
are clamped to the foundation, it being 
modelled as infinitely rigid (together with the 
surrounding soil, then). Noticeably, the 
empirical expressions proposed in the Chilean 
seismic design code [15] predict a fundamental 
period of 0.47 s (more than seven times longer 
than the computed one, Table 1); this 
discrepancy indicates that the soil flexibility 
(through the soil-structure interaction) might 
play a highly relevant role. On the other hand, 
comparison between the original (subsection 
3.1) and the new (subsection 3.2) computed 
periods, shows a huge discrepancy (e.g. 0.224 
s vs. 0.0641 s for the first mode), as the original 
ones are significantly longer and closer to 
those foreseen by the said Chilean regulation 
[15]. 

Finally, Table 1 reveals also that the 
configurations of the fourth and fifth modes are 
rather weird, with important vertical 
displacements (local slab deflections), and 
global rotations with respect to the x and y 
horizontal axes. These circumstances highlight 
the high lateral stiffness of the building, as 
these unusual modal deformations ordinarily 
would correspond to higher modes. 

4 OMA OF THE BUILDING 
This section describes broadly the 

performed Operational Modal Analysis of the 
building under consideration. The description 
covers the sensors, their measured results, and 
the Operational Modal Analysis itself. 

4.1 Sensing System 
In the Operational Modal Analysis of the 

building, two types of sensors were utilized: 25 
geophones (Soilspy) and velocity and 
acceleration sensors Tromino. Both devices 
were installed in the points labelled 1 through 

9 in Figure 2; as described in section 2, those 
points belong to the same vertical. 

For further clarity, Figure 4 displays 3-D 
views of the locations of the aforementioned 
measuring points; the horizontal 
measurements were taken in all the points 
(Figure 4.a), while the vertical ones were only 
taken in the centrally located points (i.e. 1, 4 
and 7, see Figure 4.b).  

(a) Horizontal measurements

(b) Vertical measurements

Figure 4: Measuring points 
4.2 Geophones 

The main characteristics of the Soilspy 
geophones are: 
 Dynamic range: 142 dB (from ± 3.2 mV to

± 665 mV, 8 options).
 Resolution: from 0.1 μV/digit to 20

μV/digit (8 options).
 Sampling frequency: 89 kHz per channel in

continuous mode.
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 Data output: 256 Hz, 512 Hz, 1 kHz for
each channel.

 Operating environmental condition:
temperature 0-50 °C, humidity 0-100%.

 Waterproofing: IP Protection Index = 65
(dust and splash proof).

Figure 5 displays two geophones installed
in the vertical (Figure 5.a) and horizontal 
(Figure 5.b) directions.  

(a) Vertical layout (b) Horizontal layout

Figure 5: Geophones 
4.3 Velocity and Acceleration Sensors 

The main characteristics of the Tromino 
velocity and acceleration sensors are: 
 Number of channels is 9: 3 speedometers,

3 accelerometers, 1 analog channel, 1 radio 
channel and 1 GPS. 

 Dynamic range: 142 dB, from ± 3.2 mV to
± 665 mV (8 options). 

 Resolution: from 0.1 μV/digit to 20
μV/digit (8 options)

 Sampling frequency: 64 kHz per channel in
continuous mode.

 Data output: 124 Hz, 256 Hz, 512 Hz, 1024
Hz, 2048 Hz.

 Maximum analog input: Full Scale 51 mV
and High Gain channels: ± 25.6 mV (781
nV/digit). Low Gain Channels: ± 1 V.

 Data recording: standard 4 Gb internal
memory.

 Operating environmental condition:
temperature −10 ºC to +70 °C, humidity 0-
90% non-condensing.

 Waterproofing: IP Protection Index = 65
(dust and splash proof).

Figure 6 displays a velocity and
acceleration sensor (Figure 6.a) and its 

installation (Figure 6.b). 

(a) Device (b) Installation

Figure 6: Velocity and Acceleration Sensors 
4.4 Results of the Geophones 

Measurement batches (of nine points) of 10 
minutes each were taken (60 minutes 
horizontally and 40 minutes vertically). Data 
was sampled at a frequency of 256 Hz, and the 
data format is 16 bytes. 

For further clarification, Figure 7 displays a 
set of three geophones installed in vertical and 
horizontal directions.  

Figure 7: Geophones in point 1 
Figure 8 displays a representative example 

of 3-D velocity (mm/s) measurements taken by 
a geophone in point 8 (third floor, Figure 4.a). 

In Figure 8, the top time-history plot 
corresponds to the vertical direction, and the 
two other ones refer to NS (middle plot) and 
EW (bottom plot) horizontal directions. The 
velocity in the (Figure 1 and Figure 2) NS 
direction is clearly predominant. 

Horizontal EW 

Horizontal NS 

Vertical 
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Figure 8: Velocity measurements of point 8 (Figure 
2 and Figure 4) from a geophone  

Broadly speaking, the velocity 
measurements with the geophones were 
considered highly reliable and uniform. 

4.5 Results of the Velocity and 
Acceleration Sensors 

Two measurement batches (of three points) 
of 10 minutes each were taken (80 minutes). 
Data was sampled at a frequency of 256 Hz, 
and the data format is 16 bytes. For further 
clarification, Figure 9 displays an example of 
3-D acceleration measurements taken by a
sensor at point 7 (Figure 2 and Figure 4).

Figure 9: Acceleration measurements from a 
Tromino sensor  

Figure 9 shows that the plotted signals are 
rather inadequate, with rather flat spectra (i.e. 
similar to white noise), and deviation from the 
base line (mainly the third plot). For that 
reason, the acceleration measurements were 
disregarded, and only the velocity ones were 

taken into consideration. In this sense, Figure 
10 displays an example of high gain 3-D 
velocity measurements taken by a sensor at 
point 2 (Figure 2 and Figure 4). 

Figure 10: High gain velocity measurements of 
point 2 from a Tromino sensor  

In general, the high gain velocity 
measurements were preferred to the low gain 
ones because of the small level of ambient 
vibration. 

4.6 Operational Modal Analysis 

(a) EFDD (SVD)

(b) SSI

Figure 11: Power spectral density function from the 
Geophones 

The Operational Modal Analysis of the 
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measured signals was carried out with the 
ARTeMIS program [16] by using formulations 
in the time and frequency domains: SSI 
(Stochastic Subspace Identification) and 
EFDD (Enhanced Frequency Domain 
Decomposition), respectively. Point 1 (Figure 
2 and Figure 4) was utilized as reference node. 

(a) EFDD (SVD)

(b) SSI

Figure 12: Power spectral density function from the 
Tromino sensors 

Figure 11 and Figure 12 display examples 
of PSDFs (Power Spectral Density Functions) 
from the Geophones and the Tromino sensors, 
respectively. Figure 11.a and Figure 12.a 

present results of SVD (Singular Values 
Decomposition), Figure 11.b and Figure 12.b 
refer to SSI. 

Table 2 presents the average values of the 
first five modes natural periods obtained from 
the EFDD and SSI approaches. In Table 2, 
both the velocity records by the Tromino 
sensors (high gain, Figure 11) and the 
geophones (Figure 12) were utilized. 

Table 2. Natural periods (s) from the Operational 
Modal Analysis of the building under consideration 

Mode 

EFDD SSI 
High  
gain 

sensor 
Geophone 

High  
gain 

sensor 
Geophone 

1 0.239 0.235 0.234 0.232 
2 0.192 0.204 0.198 0.203 
3 0.133 0.130 0.136 0.134 
4 0.106 0.104 0.105 0.111 
5 − 0.082 0.080 0.810 

Table 2 shows a highly satisfactory 
agreement between the periods estimated after 
the two different approaches (EFDD and SSI) 
and devices (Tromino sensors and geophones). 
Regarding the dispersion, it is rather low, with 
coefficients of variation ranging between 
approximately 0.013 and 0.075.  

Concerning damping, EFDD provided 
rather reasonable values, while those of SSI 
were highly inconsistent. Table 3 contains the 
identified modal damping ratios. 

Table 3. Damping ratios (%) from the Operational 
Modal Analysis of the building under consideration 

Mode 

EFDD SSI 
High  
gain 

sensor 
Geophone 

High  
gain 

sensor 
Geophone 

1 0.172 0.495 − − 
2 0.342 0.178 − − 
3 0.060 0.273 − − 
4 0.255 0.207 − − 
5 − 0.575 − − 

Table 3 exhibits rather reasonable results, 
given the inherent difficulty of estimating the 
damping from extremely small vibrations. 
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5 FINAL NUMERICAL MODAL 
ANALYSIS 

The OMA results obtained were used to 
calibrate the numerical model (section 3). In 
order to perform this operation, given the 
observed discrepancies between the computed 
periods (Table 1) and the expected longer 
values, the column clamping to the foundation 
was replaced with flexible connections using 
3-D elastic springs; their  stiffness (soil ballast
coefficient) were varied until the building
frequencies fit roughly those provided by the
Operational Modal Analysis (Table 2). For the
walls, the vertical and horizontal stiffness was
80 and 20 kN/mm, respectively; for the
columns, such values were 630 and 40.

(c) First mode

(d) Fourth mode

Figure 13: First and fourth modes from the final 
numerical analyses  

The first 4 modes were analyzed; Figure 13 
displays the computed first (Figure 13.a) and 
forth modes (Figure 13.b) configurations. 

 Figure 13 shows that the first mode 
involves torsion and translation (in the y 
direction, see Figure 13.a) while the fourth one 
corresponds basically to vertical displacement 
(deflection) of the front part of the slab. For 
further clarity, Table 4 displays, analogously to 
Table 1, the computed natural periods and the 
translational and rotation modal ratios. 

Table 4. Final numerical modal analysis 
Mode Period 

(s) Ux Uy Uz Rx Ry Rz

1 0.233 0 0.27 0 0 0 0.72 
2 0.198 0.97 0 0 0 0 0 
3 0.134 0 0.73 0 0 0 0.27 
4 0.081 0 0 0.59 0 0. 3 0 

6 DISCUSSION ON RESULTS 
Comparison between Table 2 and Table 4 

shows that the periods that have been identified 
from OMA (Table 2) are highly similar to 
those from the final numerical calculation 
(Table 4); this indicates that the selection of the 
soil stiffness has been adequate.  

On the other hand, comparison between 
Table 1 and Table 4 shows that the natural 
periods are significantly longer once the soil 
flexibility is accounted for. Conversely, the 
mode configurations are rather similar in both 
initial and final numerical modal analyses; this 
seems to point to a rather correct description of 
the structural behavior. As a matter of fact, the 
first mode identified from the final numerical 
modal analysis has even more torsional 
equivalent mass ratio; this trend corroborates 
the important detrimental effect of the first 
floor asymmetry (Figure 1.a, Figure 2.a, Figure 
3, Figure 13.a). 

7 CONCLUSIONS 
This paper describes the numerical and 

Operational Modal Analyses of an undamaged 
3-story RC building located in Valdivia
(Chile), built in 2010, and founded on soft soil.

x y 
z 

x y 
z 
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The building is basically supported by walls, 
but the first floor has an open front entrance 
atrium with flexible columns (Figure 1.a); this 
irregularity ventures a relevant eccentricity 
between the centers of mass and stiffness. 
OMA is carried out by using horizontal and 
vertical arrays of geophones and velocity and 
acceleration sensors. Two types of numerical 
simulations are performed: by neglecting the 
soil flexibility (initial) and by identifying such 
parameter from the OMA results (final). 

This study provides two major outputs: 
 The natural periods identified after the

Operational Modal Analysis are
significantly longer than the computed
ones. This difference is apparently due to
the relevant influence of the soil flexibility.

 Both the initial and final numerical
simulations and the identification with
OMA confirm that the first mode is
predominantly torsional. In other words,
this building configuration can be qualified
as seismically irregular.
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Abstract. The autonomous car will completely change the current concept of road travel. 

Vehicle users are no longer looking exclusively for a safe car, but for a space that offers an 

environment with a high degree of comfort. Thus, vehicle simulators present a multitude of 

advantages as a tool for ride and comfort analysis in the preliminary stages of the dynamic 

development of a car. This paper studies the feasibility of a Stewart Platform for comfort studies 

by correlating the measured vibrations in the passenger car of a Toyota Prius with pressurized 

twin-tube hydraulic shock absorbers in the 1-10 Hz frequency range. 

Key words: Comfort study - Damper model - Driving simulator – Vehicle dynamics. 

1 INTRODUCTION 

Driving simulators play an important role in 

research concerning vehicle dynamics, human 

comfort factors and the development of new 

advanced driver assistance systems [1].  

These platforms enable testing to take place 

much earlier in the development process at 

lower cost, meaning the vehicle is closer to 

production when the physical prototypes are 

produced. The simulator then becomes an 

integral part of the vehicle development cycle 

as it provides a natural link between the phases 

of car design, from computer modelling to 

laboratory testing and, finally, to the test track 

[2]. 

Ride comfort is a critical factor to evaluate 

the automobile performance and has been an 

interesting topic for researchers for many 

years, being vibration transmission to 

passengers one of the most influent aspects on 

comfort, performance, and health [3]. 

Transmission associated with the dynamic 

system depends on the frequency and direction 

of the input motion and the characteristics of 

the seat from which the vibration exposure is 

received. Vibrations up to 12 Hz affect all of 

the human organs [4], being the human body 

most sensitive to vertical vibrations in the 4-8 

Hz frequency range [5]. Vibrations beyond 12 

Hz have local effects [4]. 

In consequence, automobile designers give 

great attention to the isolation of vibrations in 

the car in order to provide a comfortable ride 

for the passengers. 

 Vehicle’s suspension is an important 

component to ensure ride comfort, since its 

performance directly affects the vehicle’s ride 

comfort and handling stability. The design of 

the vehicle’s suspension system must fulfil the 

demand of ride comfort and handling stability. 

The shock absorber spring assembly is a funda-
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mental element of the suspension system [6]. 

While the spring has a linear dynamic behavior 

depending on the displacement, the shock 

absorber presents a nonlinear behavior that 

requires more complex mathematical models 

for its dynamic characterization [7].  

Since the human body is a very sensitive 

system, driving simulator experiences must be 

as close as possible to reality in order to 

conduct simulated experiments that generate 

accurate results, so they can be extrapolated to 

real driving situations. In consequence, 

developing reliable vehicle models is essential 

to make simulators a useful tool for dynamic 

and comfort applications.  

Consequently, this paper study the 

feasibility of a Stewart Platform for com-fort 

studies by correlating the measured vibrations 

for Z-direction excitations in the passenger car 

of a Toyota Prius with pressurized twin-tube 

hydraulic shock absorbers.  

The paper is structured as follows: in 

section 2, the technical characteristics of the 

Stewart platform used for this study are 

presented. In section 3, the development and 

validation of a simplified non-linear dynamic 

model of a passive twin-tube hydraulic shock 

absorber mounted on the Toyota Prius is 

explained. In section 4, the validation of the 

driving simulator for ride and comfort 

applications is exposed. Finally, in section 5, 

the main conclusions of the study are 

summarized. 

2 THE DRIVING SIMULATOR 

Hydraulic motion-control systems have 

been used in the flight and automotive industry 

for more than 40 years for meeting the required 

performance specifications. Nevertheless, the 

nowadays electric systems are presented as a 

better solution since these platforms are more 

efficient and offer higher uptime for lower 

maintenance and less-costly infrastructure [8]. 

That is why electric servo drive systems are 

chosen as the driving mechanism for small-

scale Stewart platform application, such as 

research in vehicle dynamics [9]. 

A Stewart platform is a parallel manipulator 

consisting of a fix base, a mobile platform and 

six linear actuators that join both parts. The 

actuators give the plat-form six degrees-of-

freedom positioning capabilities: three 

translational (sway, surge and heave) and three 

rotational (roll, pitch, yaw) (see Figure 1). 

The driving simulator from Figure 1 is an 

inverse electric Stewart platform (eMove eM6-

640-1000 Cruden model) where the input

signals are referenced to the moving platform

centroid (MPC) through a soft-real time

communication system. The mobile platform

is based on a 1000-kg-playload mockup

including the seat, the dashboard, three-42’’-

screens and the audio system. Table 1 shows

the application range at a gross moving load of

1000 kg of the 640-motion base for 1-10 Hz

frequency range.

DOF Position Velocity 

Sway -480 / 600 [mm] 800 [mm/s]

Surge -500 / 500 [mm] 800 [mm/s]

Heave -413 / 418 [mm] 600 [mm/s]

Roll -23.8 / 23.8 [°] 35 [°/s] 

Pitch -23.7 / 26.1 [°] 35 [°/s] 

Table 1. Technical specifications of the 640-motion base at a 

gross moving load of 1000 kg. 

Figure 1. Electric Stewart Platform. 
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From Table 1 is deduced that this platform 

is suitable for working in vehicle dynamics 

applications, where the maximum 

accelerations are framed within the range of ± 

2 ms-2 [10]. On the other hand, the platform 

working frequency range (1-10 Hz) allows to 

address comfort studies in the field of 

handling, body motion and primary and 

secondary ride [11]. 

The actuators are linked to the base with a 

universal joint and to the moving platform with 

a spherical joint, while the torque-force of the 

actuator is transmit-ted from a synchronous 

belt and snail system. Each actuator is moved 

by a permanent magnet synchronous motor 

(PMSM). 

3 THE DAMPER MODEL 

In this section, the non-linear dynamic 

mathematical model of the passive twin-tube 

hydraulic shock absorber is presented. 

3.1 Dynamic model 

The dynamic model of a shock absorber is 

derived from a force balance in the piston 

valve. Figure 2 shows the free body diagram of 

the shock absorber in its vertical position.  

From Figure 2, the balance of forces ( damperf

) on the piston valve results in [12]

.( )damper c Pt r Pt Rod ff P A P A A f    (1.1) 

where cP
 is the pressure in the compression 

chamber, rP
is the pressure in the rebound 

chamber, PtA
 is the area of the piston, RodA

 is 

the area of the rod and ff
 is the friction force 

generated during the dynamic performance of 

the damper. 

     Eq. (1) leads to a system of differential 

equations that calculates the pressure inside the 

inner tube of the shock absorber. The pressure 

in the compression chamber is obtained as [13] 

 

0

( )(1 )
( ), ( ) .

2

d Pt pv bv c

c d d

d Pt

x A Q Q P
P x t x t

x x A





  


   
   
  

(1) 

     The pressure in the rebound chamber is 

obtained as [13] 

 

0

( ( ) )(1 )
( ), ( ) .

( )
2

d Pt Rod pv r

r d d

Pt d Pt Rod

x A A Q P
P x t x t

L x x A A





   

   

     
  

(2) 

     From Eqs. (2) and (3), it is seen that the 

geometrical change of the volume of the 

compression chamber is balanced by the sum 

of both flow rates, the flow through the piston 

valve ( pvQ
) and the flow through the base 

valve ( bvQ
), and the oil compressibility factor 

( ). Besides, PtL
 represents the length of the 

piston tube, dx
 the damper displacement and 

dx
 the damper velocity. 

     Regarding the friction force, ff
, (see Eq. 

(1)), it has been determined from the 

experimental results for each velocity value. Figure 2. Shock-absorber free body diagram. 
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discrete values have been adjusted to a DPPR 

friction model [14] according to 

 
2

2

1 0 1 3
· ( ) · ( )

f

x
f

f f d f f f df f sign x f f e f sign x

 
 
    

, (3) 

where 1f
f

, 1f
f

, 1f
f

, 1f
f

are the fitted 

parameters. 

3.2 Model validation 

The numerical-experimental correlation of 

the developed dynamic model is per-formed on 

force-movement dynamic behavior. For that, A 

MTS-850.67 test bench has been used to obtain 

the experimental dynamic response of a 

Vogtland 967003. The damper has been 

subjected to a constant amplitude sinusoidal 

dis-placement (vi = 100 mm) at different 

velocities (Δ): 0.052 m/s, 0.131 m/s, 0.261 m/s, 

0.393 m/s, 0.524 m/s, 0.785 m/s, 1.047 m/s and 

1.571 m/s. 

Table 2 shows the coefficient of 

determination (R2) between the experimental 

results and the model results. 

Speed (m/s) R2 rebound R2 compression 

0.052 0.84 0.82 

0.131 0.97 0.96 

0.261 0.99 0.92 

0.393 0.96 0.91 

0.524 0.96 0.89 

Table 2. Coefficient of determination of the dynamic damper 

model. 

As can be seen from Table 2, all the results 

have a coefficient of determination greater 

than 0.8, so the model can be validated. 

4 COMFORT VALIDATION 

Once the non-linear dynamic model of the 

damper has been validated, it has been 

integrated into the complete vehicle model of a 

Toyota Prius that governs the driving platform 

from Figure 1 in order to validate the simulator 

for ride and comfort applications in the 1-10 

Hz frequency range. 

4.1 Experimental tests 

The driving simulator validation has been 

based on the correlation of accelerations 

measured on the seat of the platform and the 

seat of a Toyota Prius III Generation for 

acceleration tests at 10 and 50 km/h, where the 

chassis is subjected to vertical forces imposed 

by the road profile.   

Toyota Prius III Generation. The vehicle 

model that governs the dynamics of the driving 

simulator from Figure 1 is a Toyota Prius III 

Generation. In consequence, the experimental 

measurements have been carried out in this 

vehicle to have comparable results in the 

physical and in the virtual testing scenarios. 

Thus, the vibrations measured on the seat of 

the simulator and on the seat of the physical car 

respond to the same dynamic behavior.  

The seat accelerations have been measured 

with a Brüel & Kjaer 4515 triaxial seat 

accelerometer. This sensor is specially 

designed for full body vibration. It consists of 

an accelerometer housed by a semi-rigid nitrile 

rubber disc and com-plies with ISO 7096, ISO 

2631 and ISO 10326-1. 

Driving simulator. Acceleration tests at 10 

and 50 km/h have been replicated on the 

Stewart Platform with the complete vehicle 

model of a Toyota Prius and with the 

developed damper model explained in section 

3. As with the physical car, accelerations on

the seat have been measured. The platform seat

has been re-placed with the physical seat
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installed in the Toyota to ensure the same 

vibration transmissibility considered in both 

testing scenarios. 

4.2 Results 

After performing the tests on the physical 

platform and on the virtual platform, the 

applicability of a Stewart Platform for ride and 

comfort applications in the 1-10 Hz frequency 

range has been validated by frequency 

correlation of the measured seat vibrations for 

each of the test speeds.  

Figure 3 and Figure 4 show a study of the 

linear accelerations measured on the seat for 

the tests carried out with the physical car and 

the linear accelerations measured on the seat 

for the tests carried out on the platform (for 10 

and 50 km/h). 

According to Figure 3 and Figure 4, there is 

a good correlation of results for all speeds, 

especially for the X and Z axes for the low and 

medium frequency ranges, which are the axis 

that most affect comfort. However, higher 

deviations are observed in the Y-axis, which 

may be due to a different mass distribution in 

the simulator and in the real car. 

5 CONCLUSIONS 

This paper studies the feasibility of a 

Stewart Platform for comfort studies by 

correlating the measured vibrations in the 

passenger car of a Toyota Prius with 

pressurized twin-tube hydraulic shock 

absorbers. Then, it is concluded that a driving 

hexapod is a useful tool for comfort 

applications in the 1-10 Hz range if a high-

level dynamic damper model is considered. 
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Abstract. Monitoring and vibration serviceability of structures is commonly addressed 

analyzing their dynamical behavior. Both calibrated numerical models and experimental results 

such as modal parameters (natural frequencies and mode shapes) obtained by modal analysis 

can be used. 

     The footbridge located at the Milan’s campus (Oviedo) is a peculiar lattice structure, since 

it is placed on top of the buildings at the main entrance to the Milan’s Campus. The structure 

has a complete glass enclosure, which favors the influence of the wind on the structure, and 

therefore, it can be subjected to greater dynamic loads than those foreseen in the design phase. 

     In this work, a study of the dynamic behavior of the pedestrian footbridge is presented. 

Firstly, a finite element model (FEM) of the structure was assembled in ABAQUS. On the other 

hand, the experimental modal parameters were identified by operational modal analysis 

(OMA). Finally, the experimental results were used to update the finite element model and to 

analyze the dynamic behavior of the structure. 

Key words: Footbridge, Modal Analysis, OMA, Numerical analysis. 

1 INTRODUCTION 

Structural health monitoring (SHM) 

techniques are increasingly used, allowing to 

obtain accurate information about changes in 

the structures and their dynamic behavior, 

especially, when they are combined with 

numerical models. In order to perform an 

precise analysis, the FE model of the structure 

has to be as similar to reality as possible, for 

this purpose Model Updating is needed [1].  

In this work, the first stage of the structural 

health monitoring process was performed in a 

pedestrian footbridge. This stage includes FE 

model of the footbridge, Operational Modal 

Analysis (OMA) and Model Updating of the 

FEM. Finally, the dynamic behavior of the 

structure was analyzed. 

2   THE FOOTBRIDGE STRUCTURE 

The pedestrian footbridge was built 

between the late 80s and early 90s and it is 

located in Asturias (Spain) belonging to the 

Milan’s Campus of the University of Oviedo 

(see Fig. 1). The footbridge is a steel structure 

formed by two Pratt truss joined in the top part 

by a gable roof which allows the enclosure of 

the footbridge by a glass cover. Both lateral 

sides are also closed by glass enclosures. The 

deck consists of concrete T beams connected 

to the two trusses. The main structure was built 

in factory and then was placed on the buildings 

by a crane, being located finally at an 

approximate height of 12 meters from the base 

of the building. 
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Figure 1: Pedestrian Footbridge at the Milan’s campus 

The pedestrian footbridge has a span of 34 

meters, a width of 4.35 meters and a height of 

3.4 meters, being in contact with each building 

for a length of 5 meters (see Fig. 2). 

Information about how the structure was fixed 

to the buildings is not available.  

The main structure is made of steel S275. 

The superior and inferior chords of the trusses 

are equal, formed by two box-welded UNP280 

profiles. The rest of the bars are box-welded 

UNP140 profiles.  

Figure 2: General dimensions of the pedestrian 

footbridge 

2.1 Numerical model 

The finite element model of the pedestrian 

footbridge was modeled in ABAQUS CAE. 

The model was assembled using 1-D beams 

elements (B3D3) for all the structural elements 

(see Fig. 3). The footbridge enclosure (glass + 

aluminum frames) was modeled as point-

masses on the structure, therefore, the possible 

effect on the stiffness of the structure was 

neglected. 

Figure 3: Finite element model of the structure (each 

color represents a section/material) 

As it was previously mentioned, boundary 

conditions are unknown in detail. Due to that, 

pin conditions over the 5 meters that support 

the structure were created (see Fig. 4a). The 

numerical natural frequencies corresponding 

to the first five modes are presented in Table 1. 

Figure 4: Boundary conditions used in the FE Model. 
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2.2 Modal analysis 

In order to obtain the experimental modal 

parameters of the structure (natural 

frequencies, mode shapes and damping ratios), 

an Operational Modal Analysis (OMA) test 

was carried out. 

Taking into account the numerical mode 

shapes defined previously, the number of 

sensors locations and their position was 

decided (see Fig. 5). Additionally, as the real 

support conditions in both ends of the 

footbridge are unknown, it was also considered 

to measure the vertical displacements along the 

sides of the 5 meters support (see Fig. 5). To 

complete the 14 locations of Figure 5, 3 data 

sets were performed using 6 accelerometers 

(PCB 393B31) with a sensitivity of 10 V/g of 

sensitivity. The responses were acquired with 

a TEAX-LX 120 acquisition system. The 

sampling frequency was 100 Hz and each data 

set was about 20 minutes long. Artificial 

excitation was applied during testing by 3 

people walking and jumping randomly over 

the structure.  

Figure 5: Measured points used for vertical direction. 

Figure 6: Experimental mode shapes 

      Modal identification was performed using 

the software Artemis Modal with the CFDD 

(Curve-fit frequency domain decomposition) 

and SSI (subspace stochastic identification) 

techniques [2]. The singular value 

decomposition for the CFDD technique and 

the SSI stabilization diagram are presented in 

figure 7. For the first modal analysis 

identification, only the six sensors located in 

the middle of the deck were used (see Fig. 6). 

The experimental natural frequencies for the 

first vertical mode shapes obtained with the 

CFDD technique are presented in Table 1 

whereas the mode shapes are presented in 

figure 6. Similar results were obtained with the 

SSI identification technique. 

Mode 
Exp. Freq. 

[Hz] 

Numerical 

Freq. [Hz] 

Error    

[%] 

1 (bending) 7.56 7.43 1.67 

2 (torsion) 11.05 11.11 0.52 

3 (bending) 15.87 14.67 9.19 

4 (bending) 21.79 19.17 12.02 

5 (torsion) 24.32 23.46 3.52 

Table 1: Natural frequencies of the numerical and 

experimental models 

Modo 1 Modo 2 Modo 3 

Modo 5 Modo 4 
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     The errors between the experimental and 

numerical frequencies are also presented in 

Table 1. From the results, it can be inferred that 

a good correlation is obtained for modes 1, 2 

and 5, whereas modes 3 and 4, both bending 

modes, present higher errors. 

Figure 7: SVD of Spectral densities for the CFDD 

technique and the SSI Stabilization diagram for the SSI 

technique. 

3 MODEL UPDATING 

In order to improve the numerical model, a 

model updating [3] was performed using the 

experimental modal parameters. The main 

difficulty of Model Updating process is that 

there is not one single solution, and so there are 

several combinations of parameters which 

minimize the error.  

Moreover, any change in the structural 

parameters must be done considering physical 

limitations, i.e., introducing reasonable 

changes. Taking into account all these 

considerations, as well as the relation between 

the natural frequencies and the mass and 

stiffness of the structure, the structural 

parameters to modify have to be decided.  

According to Table 1, the numerical natural 

frequencies were, in general, lower that the 

experimental natural frequencies. Moreover, 

the maximum errors were found in the bending 

modes 3 and 4.  

As it was previously mentioned, there were 

uncertainties about the real support conditions 

of the structure and, therefore, how to 

modelling that boundary conditions. The first 

step was to analyze in detail the mode shapes 

in those areas. For this purpose, a second 

modal analysis was perform using the 14 

acceleration channels shown in Figure 5. 

Vertical displacement at both ends of the 

structure were observed being the 

corresponding first two modes presented in 

Figure 8. From these results, it was inferred 

that the structure was not completed connected 

to the buildings along the 5 meters supporting 

area.  
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Figure 8: Modes shapes 1 and 2 model and experimental model 

Finally, after some iterations, a good 

correlation for all modes was obtained when 

only the area close to the end of both spams 

was only restricted (see Fig. 4b). This fact 

would indicate that the structure is not fully 

connected to the buildings.  

Moreover, this is in good agreement with 

the experimental mode shapes that presents 

almost no motion in these areas (see Figure 8). 

The results obtained after performing the 

model updating are shown in Table 2.  

Mode 
Exp. Freq. 

[Hz] 

Numerical 

Freq. [Hz] 

Error    

[%] 

1 7.56 7.5 0.81 

2 11.05 11.21 1.46 

3 15.87 15.06 5.10 

4 21.79 21.50 1.32 

5 24.32 24.11 0.86 

Table 2: Natural frequencies of the updated numerical 

The maximum error obtained after the 

updating is approximately 5% (mode 3) which 

means that the modal correlation between the 

numerical and experimental model can be 

considered accurate.  

5 CONCLUSIONS 

- The dynamic behavior of the

pedestrian footbridge of Milan’s

campus is presented in this work

through a numerical model and modal

analysis.

- The numerical model was updated

using the experimental modal

parameters obtained with operational

modal analysis (OMA).

- The structural parameters modified

during the updating process were

mainly the boundary conditions. After

analyzing the experimental mode

shapes and the final boundary

conditions of the FEM, it can be

concluded that the structure is not

completely connected to the

buildings.

- The monitoring of the structure could

be addressed in the future based on the

numerical model and the experimental

results.
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- Further studies must be carried out in

order to identify the lateral behaviour

of the structure. If the structure is not

completely fixed in the vertical

direction, it could also be partially free

in the lateral direction, which could

explain some vertical cracks that exist

in the supporting area.
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Abstract. Since high strength-to-weight ratio is a relevant characteristic of composite materials, 

dynamic parameters of FRP structures may vary significantly due to occupants. This paper 

presents an experimental study of a simply supported FRP footbridge considering passive and 

active pedestrians. The 10 m long laboratory facility is formed by pultruded elements and 

presents a linear mass density around 80 kg/m. Using data from 18 high sensitivity 

accelerometers placed on the bridge deck, an Operational Modal Analysis (OMA) was initially 

carried out to determine the vibration modes of the structure. Then, controlled forced vibration 

tests were conducted considering 2, 4, 6 and 10 pedestrians standing on the bridge deck. 

Employing the data recorded from the force applied by an electrodynamic shaker and the 

response measured by 9 accelerometers attached to the bottom of the stringers, an Experimental 

Modal Analysis (EMA) was performed for each test. Finally, an OMA in presence of exogenous 

inputs (OMAX) was carried out accounting for people walking in a closed-loop path over the 

bridge. In the cases of humans standing, the fundamental frequency of the footbridge decreased 

drastically from 7.85 Hz (empty) to 4.54 Hz (10 people). Whilst the first natural frequency of 

the FRP structure slightly changed when people walked. As expected, passive and active 

pedestrians contributed to increase the damping ratio of the vibrating system. 

Key words: FRP footbridge, pedestrians standing, pedestrians walking, OMA, EMA, OMAX. 

1 INTRODUCTION 

Excessive human-induced vibrations in 

pedestrian structures have been the subject of 

several studies over last years given the 

adoption of novel materials and new 

construction process [1, 2]. In this field, an 

important aspect that remains to be fully 

comprehended is the influence of humans on 

the dynamic behaviour of lightweight and 

slender footbridges, in which human-structure 

interaction phenomenon may play an 

important role.  

Human presence, either passive or active, 

on structures has proved to modify the natural 

frequencies [3] and increase the damping 

potential [4] of vibration systems. In fibre 

reinforced polymer (FRP) or composite 

footbridges, which are usually lightweight [5], 

excessive human-induced vibrations may drive 

the structural design. Hence, the second 

mentioned effect may contribute to mitigate 

the vibration response. 

 In addition to the increment of the intrinsic 

damping of the structural system, the ratio 

between the live load (pedestrians) and the 

dead load (self-weight) may be high in FRP 

footbridges. Thus, significant changes in the 

dynamic parameters (modal masses, natural 
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frequencies, and damping ratios) of composite 

structures may be also expected. 

This paper presents an experimental 

dynamic study of an FRP footbridge, built at 

the laboratory of the School of Civil 

Engineering - UPM. The aim of the work is to 

characterize the influence of passive and active 

pedestrians on the dynamic properties of the 

pedestrian facility by carrying out OMA, 

EMA, and OMAX based on ambient vibration 

and forced vibrations tests, respectively.  

2 BARE STRUCTURE 

2.1 FRP Footbridge 

The structure studied hereby is 10 m long 

and 1.5 m wide (Figure 1). CFRP strips and 

GFRP stringers, crossbeams, handrail poles, 

and deck panels form the footbridge. These 

pultruded elements were manufactured by 

Fiberline Composites A/S [6]. To assemble the 

structure, stainless-steel bolts were used, and 

an epoxy adhesive was employed to join the 

stringers and strips. Concrete blocks at the 

ends of the bridge eased the installation of the 

pinned and roller supports. The linear mass 

density of the structure is around 80 kg/m, 

without accounting for the weight of the end-

side concrete elements.  

Figure 1: FRP Footbridge. 

2.2 OMA 

Prior the experimental campaign with 

pedestrians, the vibration modes of the bare 

structure were identified by performing an 

OMA. Data recorded with 18 high sensitivity 

accelerometers placed vertically on the bridge 

deck (Figure 2(a)) was employed for the 

analysis. First, an ambient vibration test 

(Test 1) was carried out. As ambient loads 

inside the laboratory were almost inexistent, 

another experiment (Test 2) was performed 

exciting the structure slightly with a hammer. 

In both tests, the sampling frequency was 

5120 Hz, and the duration was 10 minutes. 

 The first three vibration modes of the 

footbridge were identified using MACEC [7] 

software. A low-pass filter with a cut-off 

frequency at 80 Hz was used, and a factor of 

64 was applied to decimate the raw data. The 

data-driven Stochastic Subspace Identification 

(SSI-data) method was employed. Figure 2(b)-

(c) displays the stabilization diagrams for the

Test 1 and Test 2 with a model order of 160

and the power spectral density of all the signals

superimposed. The stable poles selected as

solution were around the modal order of 70.

 The vibration modes of the structure, 

shown in Figure 2(d), are: 1st vertical bending 

mode (Mode 1), 1st lateral-torsional mode 

(Mode 2), and the 2nd lateral-torsional mode 

(Mode 3). Although Modes 2 and 3 seem to be 

similar, the former is mainly controlled by the 

lateral movement of the stringers. Whilst the 

latter involves an action of the stringer-deck 

system. This difference can be seen in a FE 

model that is not described in this work. Table 

1 presents the natural frequencies (fs) and 

damping ratios (ζs) of the vibration modes 

computed for each test. 

Mode Test 1 Test 2 

fs [Hz] ζs [%] fs [Hz] ζs [%] 

1 9.13 0.6 7.66 1.4 

2 11.43 0.6 10.96 1.3 

3 16.23 0.6 15.01 1.0 

Table 1: Modes of vibration of the FRP footbridge. 
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The difference between the natural 

frequencies computed in Tests 1 and 2 might 

be explained by the activation, or not, of the 

roller support. The FRP footbridge appears to 

be much stiffer when negligible excitation is 

applied. Regarding the damping ratios, the 

values calculated for Test 2 are higher than the 

ones obtained in Test 1 given this parameter is 

dependent on the amplitude achieved by the 

structure when it is excited.  

3 PASSIVE PEDESTRIANS 

3.1 Humans standing 

To study the influence of passive 

pedestrians on the structural dynamic 

properties of the FRP structure, four 

experiments were performed considering the 

following number of humans standing on the 

Figure 2. OMA of the bare FRP footbridge: (a) Location of 18 accelerometers, (b) Stabilization diagram 

of Test 1, Stabilization diagram of Test 2, and (d) First three modes of vibration. 
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bridge deck: 2 (Test A), 4 (Test B), 6 (Test C) 

and 10 (Test D). Also, a test with the bare 

structure was carried out for comparison. 

The position of the pedestrians during the 

experiments is shown in Figure 3(a), where the 

symbols and numbers refer to the location of a 

person in a test. For example, a triangle and 

number 2 correspond to the location of a 

human in Test A. This experiment is shown in 

Figure 3(b).  

The total mass of the people involved in 

each experiment is presented in Table 2. 

Besides, the ratio between the mass of the 

pedestrians and the mass associated to the first 

flexural mode of vibration of the FRP structure 

is stated. The mass of the first mode (ms1) was 

assumed to be 400 kg. Given the inherent 

lightweight property of FRPs, the ratio easily 

surpassed the value of 0.3 for all tests. 

Test 
Number of 

pedestrians 

Total mass 

[kg] 

Mass 

ratio 

A 2 142.9 0.36 

B 4 286.9 0.72 

C 6 420.1 1.05 

D 10 728.1 1.82 

Table 2: Mass of pedestrians. 

3.2 EMA 

To carry out the EMA of the FRP structure 

with people standing, an APS 400 

electrodynamic shaker [8], placed under the 

footbridge, was employed. To excite the 

flexural and lateral-torsional modes of the 

structure, the device was attached to a 

crossbeam near the edge of the mid-span cross-

section by means of a stainless-steel rod, as 

shown in Figure 3(c). Also, nine PCB 

accelerometers, model 393B12, were attached 

to the bottom of the stringers (Figure 3(d)). 

As the shaker was setup in a fixed body 

mode, the force generated by the device was 

obtained by monitoring its instantaneous 

current during the tests. In each experiment, 

the bridge was excited by a white noise signal, 

with a frequency content between 1 and 

100 Hz, for 5 minutes. Additionally, the 

sampling frequency was 1000 Hz.  

The collected data from the accelerometers 

and the measured shaker force were processed 

applying a low-pass filter at 40 Hz and a 

decimation factor of 25. The peak picking 

method, available in MACEC [7] software, 

was used to find the first three natural 

frequencies of the bridge. Table 3 presents the 

obtained results.  

Test fs1 [Hz] fs2 [Hz] fs3 [Hz] 

Empty 7.85 11.02 15.11 

A 7.42 10.97 15.09 

B 5.88 8.21 10.78 

C 4.96 7.27 9.36 

D 4.54 6.34 8.51 

Table 3: Natural frequencies of vibration of the FRP 

footbridge with passive pedestrians. 

4 ACTIVE PEDESTRIANS 

4.1 Humans walking 

The dynamic parameters of the FRP 

footbridge with active pedestrians was 

assessed by performing four tests. The people 

involved in the experiments explained in 

Section 3.1 were asked to walk in a closed-loop 

path over the bridge deck for 5 minutes.  

The following experiments were carried out 

accounting for 2 (Test I), 4 (Test II), 6 (Test 

III), and 10 (Test IV) humans. Thus, the crowd 

density went from 0.13 to 0.67 pedestrians/m2 

in the tests. Figure 4 shows the first performed 

test, where 2 people walked constantly over the 

structure.  

4.2 OMAX 

Employing the shaker explained in Section 

3.2 and the nine high-sensitive accelerometers 

shown in Figure 3(d), an OMAX was carried 

out for every test with humans walking. A 

white noise signal with a frequency content 

between 1 and 100 Hz was applied to the 
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structure for 5 minutes, and the sampling 

frequency of the recorded data was 1000 Hz.  

A low-pass filter with a cut-off frequency at         

40 Hz and a decimation factor of 25 were used 

to process the signals. For the analysis, the 

reference-based combined deterministic-

stochastic subspace system identification 

algorithm [9], implemented in MACEC [7] 

software, was employed. Also, the signal from 

accelerometer No. 9 (Figure 3(d)) was used as 

the reference output. Table 4 presents the 

results computed for the Modes 1 and 3 of the 

FRP footbridge with active pedestrians. 

Test OMAX 

fs1 [Hz] fs3 [Hz] 

I 7.57 15.45 

II 7.67 15.51 

III 7.72 15.59 

IV 7.98 15.65 

Table 4: Natural frequencies of vibration of the FRP 

footbridge with active pedestrians. 

Figure 3.  Forced vibration tests: (a) Position of passive pedestrians, (b) Test A, (c) Shaker setup, and (d) 

Location of 9 accelerometers attached at the bottom flange of the stringers. 
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As Mode 2 is controlled by the lateral 

movement of the stringers and the load due to 

walking is in the vertical direction, the natural 

frequency f2 could not be obtained. The natural 

frequencies of the Modes 1 and 3 of the 

structure slightly vary due to the active 

pedestrians, in comparison with the bare 

structure (empty).  

Figure 4. Test I. 

5 COMPARISON 

In this section, results obtained for the 

vertical bending vibration mode (Mode 1) of 

the composite footbridge with passive and 

active pedestrians are compared.  

First, using the information collected in 

Section 3.2, the frequency response functions 

(FRFs) of the vibrating systems were found for 

the footbridge with passive pedestrians. Data 

from the accelerometer No. 9 (Figure 3(d)) and 

the measured shaker force were considered. 

The H1 estimator [10], available in 

MATLAB [11] through the function 

TFESTIMATE, was employed to determine 

the FRFs. 

The transfer function in each test was 

calculated as the average of 30 FRFs, obtained 

from 30-time windows with a duration of 10 s. 

The overlap between windows was 50%, so the 

window of each FRF was 20 s. Analytical 

transfer functions were computed by a trial-

and-error procedure, aiming to reduce the root 

mean square error between the experimental 

and numerical results. For the calculation, the 

total mass of each system was assumed to be 

the sum of ms1 and the mass of the pedestrians 

involved in the test (Table 2). Additionally, the 

natural frequencies of the systems were 

selected according to the values presented in 

Table 3. Figure 5 shows the FRF calculated 

based on the outcome of Test A (Figure 3(b)).  

Figure 5. FRFs of the structure with 2 passive 

pedestrians. 

Table 5 presents the results obtained for the 

analytical models according to the mass ratios 

explained in Section 3.1. The natural 

frequencies and damping ratios computed from 

the OMAX, carried out in Section 4.2, are 

included (active humans) in this table. In 

addition, outcomes of the empty structure 

(mass ratio of 0) are presented after performing 

the respective analyses. 

Mass 

ratio 

Passive 

Pedestrians 

Active 

Pedestrians 

fs1 [Hz] ζs1 [%] fs1 [Hz] ζs1 [%] 

0 7.85 1.6 7.85 1.3 

0.36 7.42 11.8 7.57 4.1 

0.72 5.88 17.1 7.67 5.3 

1.05 4.96 11.8 7.72 6.8 

1.82 4.54 13.5 7.98 7.7 

Table 5. Results comparison for the fundamental 

vibration mode of the FRP footbridge. 

Figure 6 depicts the analytical FRFs and the 

corresponding phase angles for all the 
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performed tests with humans standing. 

Figure 6. Footbridge with passive pedestrians:         

(a) FRFs, and (b) Phase angles.

The variation of the fundamental frequency 

and damping ratio of the structure due to 

passive and active humans are shown in 

Figures 7 and 8, respectively.  

Figure 7. Variation of the fundamental frequency of 

the structure due to pedestrians 

Although the systems compounded of the 

structure and passive pedestrians may not be 

comparable due to their different mass, it is 

seen that the fundamental frequency 

decreased, and the damping ratio increased 

with the addition of humans. The peak for the 

experiment with mass ratio of 0.72 may be 

explained by the position of the standing 

people respect to the mid-span (Figure 3(a)) 

and the selected accelerometer for the 

computation.  

Figure 8. Variation of the damping ratio of the 

structure due to pedestrians 

For the footbridge with active people, fs1 

slightly varied (±4% the value of the bare 

structure). Whereas ζs1 increased significantly, 

almost 6 times higher than the initial value. 
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6 CONCLUSIONS 

An experimental study has been carried out 

to assess the impact of passive and active 

pedestrians on the structural dynamic 

properties of an FRP footbridge, which linear 

mass density is only 80 kg/m. OMA, EMA and 

OMAX were performed using high-sensitivity 

accelerometers and an electrodynamic shaker, 

depending on the analysis. 

The natural frequency and damping ratio of 

the vertical bending vibration mode of the 

structure were assessed accounting for humans 

standing and walking. As expected, the impact 

of passive pedestrians on the dynamic 

properties of the structure was more evident 

than the influence due to active humans. 

In general, the damping of the vibrating 

system increased due to the presence of the 

pedestrians. Therefore, considering this effect 

at the design stage of composite footbridges 

may be beneficial to meet vibration 

serviceability requirements. 
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