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Abstract

A free-form Sudoku puzzle is a square arrangement of m × m cells such that the
cells are partitioned into m subsets (called blocks) of equal cardinality. The goal of
the puzzle is to place integers 1, . . .m in the cells such that the numbers in every
row, column and block are distinct. Represent each cell by a vertex and add edges
between two vertices exactly when the corresponding cells, according to the rules,
must contain different numbers. This yields the associated free-form Sudoku graph.
It was shown that all Sudoku graphs are integral graphs, in this paper we present
many free-form Sudoku graphs that are still integral graphs.
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1 Preliminaries

The r−regular slice n−sudoku puzzle is the free-form sudoku puzzle obtained
from the n−sudoku puzzle by shifting the block cells in the (in + d)th row
(d − 1)rn cells to the right, where 1 ≤ d ≤ n. In Figure 1 (B), the cells are
partitioned into 9 blocks denoted by Bi .
To study the eigenvalues of r−regular slice n−sudoku, let us start from the
n2×n rectangular template slice where its cells partitioned into n2 blocks and
for i = 0, 1, . . . , n− 1, rows in+ 1, in+ 2, . . . (i+ 1)n contains only the n block
numbers in + 1, in + 2, . . . (i + 1)n, with the additional restriction that the
block numbers used in different i−collection of rows are distinct, see fig1 (A).
Any n×m rectangular arrangement of cells that have been partitioned into r
blocks can be represented by a graph whose vertices are the cells and where
two vertices are adjacent if and only if the associated cells are in the same row,
column or block of the arrangement, moreover one can view this graph as a
layering of three graphs: the block layer (B) reflects the adjacencies due to the
same block membership, the horizontal layer (H) reflect the adjacencies due
to the same row membership and the vertical layer (V) reflect the adjacencies
due to the same column membership.

The chosen layers into mutually exclusive cases immediately gives rise to a
decomposition of the adjacency matrix of the slice template graph according
to these three cases: A = LB + LH + LV .
Starting from the slicing template and enlarge each block cell into 1× n cells
belong to the same block we get slicing sudoku puzzle SSud(n,T), see Fig1
(A) and (B), a decomposition of the adjacency matrix of the slicing sudoku
graph according to LB, LH and LV is:

A↑ = In3 ⊗ (Jn − In) + LB ⊗ Jn + LH ⊗ Jn + LV ⊗ In,

where Jn is the all ones matrix.

Theorem 1.1 The eigenvectors of A↑ can be partitioned into two types:
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Fig. 1.

1 For any eigenvector x of LV (corresponding to the eigenvalue λ) and
z ∈ ker(Jn), we have x ⊗ z is an eigenvector of A↑ corresponding to
λ− 1, multiplicity of λ− 1 is equal to multiplicity of λ(n− 1).

2 For any eigenvector x of nLB+nLH+LV (corresponding to the eigenvalue
α), the eigenvector x⊗ 1n is an eigenvectors of A↑ corresponding to α+
n− 1.

The proof is simple calculations

2 r−regular slice sudoku graphs are integral

We will denote by A[i : j, r : k] the sub-matrix [ats] with i ≤ t ≤ j, r ≤ s ≤ k
of A.

Theorem 2.1 For slicing template corresponding to the r−regular slice n−sudoku
puzzle

LH = In2 ⊗ (Jn − In),

LV = (Jn2 − In2)⊗ In,

LB = In ⊗
n−1∑
i=1

πi ⊗ πir,

where π = circ(0, 1, 0, . . . , 0), the circulant matrix associated to the vector
(0, 1, 0, . . . , 0).

Proof.



(i) For the principle submatrix of LH , LH [in+ 1 : (i+ 1)n, in+ 1 : (i+ 1)n]
represents the horizontal edges between the cells in the rows, in + 1 :
(i+ 1)n and columns (1 : n), so

LH [in+ 1 : (i+ 1)n, in+ 1 : (i+ 1)n] = Jn − In, 0 ≤ i ≤ n− 1,

The other entries in LH are obviously zeros, so LH = In2 ⊗ (Jn − In).

(ii) Same proof as above.

(iii) Since for each i = 0, 1, . . . , n− 1 the rows [in+ 1 : (i+ 1)n] in the slicing
template contains n blocks, each one contains n cells, the rows contain
all cells of its blocks, so in LB graph whenever i 6= j, there is no edges
between cells in the rows [in + 1 : (i + 1)n] and the cells in the rows
[jn + 1 : (j + 1)n], so, LB is diagonal of block matrices all of same size
(n2 × n2).

Since for each i = 0, 1, . . . , n− 1 we have the same shifting in the rows
[in+1 : (i+1)n], all matrices along the diagonal are identical. Therefore,
LB = In ⊗B for a suitable matrix B.

In the matrix B, for fixed i the submatrix

B[in+ 1 : (i+ 1)n, (i+ 1)n+ 1 : (i+ 2)n]

describes the block rotation between row in and the next row (i+ 1)n.
The rotation is r cells to the right, therefore
B[in+ 1 : (i+ 1)n, (i+ 1)n+ 1 : (i+ 2)n] = πr.
In the same way, we consider the submatrix

B[in+ 1 : (i+ 1)n, (i+ j)n+ 1 : (i+ j + 1)n+ 1].

Here we find that the block rotation is jr cells to the right, so

B[in+ 1 : (i+ 1)n, (i+ j)n+ 1 : (i+ j + 1)n+ 1] = πrj.

It follows that,

B =
∑n−1

i=1 π
i ⊗ πri

therefore,

LB = In ⊗
n−1∑
i=1

πi ⊗ πri.

2

Let n be a fixed integer and set ω = e
2πi
n . By the Fourier matrix of order

n we shall mean the matrix



Fn =
1√
n

[fij], where fij = ω(i−1)(j−1).

It is well known [5] that

diag(1, ω, ω2, . . . , ωn−1) = F ∗nπFn

and
diag(n, 0, 0, . . . , 0) = F ∗nJnFn.

Theorem 2.2 r−regular slice sudoku graph are integral graph.

Proof. The eigenvalues of r−regular slice sudoku graphs can be totally de-
termined by eigenvalues of LV and (nLB +nLH) +LV . The eigenvalues of LV
are integers since it is an adjacency matrix of n disconnected complete multi-
partite graphs, Kn,n,...,n. Using Theorem1.1, the eigenvalues of r−regular slice
sudoku (n2 × n2) Type 1 are integers.

For the second type of eigenvalues, suppose that

φ = nLB + nLH + LV .

Then,

φ = (Jn2 − In2)⊗ In + nIn2 ⊗ (Jn − In) +

(
nIn ⊗

n−1∑
j=1

πj ⊗ πjr
)

= Jn2 ⊗ In + nIn2 ⊗ Jn − (n+ 1)In3 +

(
nIn ⊗

n−1∑
j=1

πj ⊗ πjr
)
,

so

(F ∗n ⊗ F ∗n ⊗ F ∗n)φ (Fn ⊗ Fn ⊗ Fn) = ((F ∗nJnFn)⊗ (F ∗nJnFn)⊗ In) + (nIn2 ⊗ (F ∗nJnFn))

− (n+ 1)In3 +

nIn ⊗ n−1∑
j=1

F ∗nπ
jFn︸ ︷︷ ︸

(F ∗
nπFn)

j

⊗F ∗nπjrFn︸ ︷︷ ︸
(F ∗
nπFn)

jr


= (diag(n, 0, 0, . . . , 0)⊗ diag(n, 0, 0, . . . , 0)⊗ In) + (nIn2 ⊗ diag(n, 0, 0, . . . , 0))

− (n+ 1)In3 +

(
nIn ⊗

n∑
j=1

diag(1, ωj, ω2j, . . . , ω(n−1)j)⊗ diag(1, ωjr, ω2jr, . . . , ω(n−1)jr)

)
.



Note that

diag(1, ωj, ω2j, . . . , ω(n−1)j)⊗ diag(1, ωjr, ω2jr, . . . , ω(n−1)jr)

= diag(1, ωjr, ω2jr, . . . , ω(n−1)jr,ωj, ωjr+j, ω2jr+j, . . . , ωj+(n−1)jr, . . . ).
Since

n−1∑
j=1

diag(1, ωjr, ω2jr, . . . , ω(n−1)jr,ωj, ωjr+j, ω2jr+j, . . . , 1, . . . , ωj+(n−1)jr, . . . )

= diag(n− 1,
n−1∑
j=1

ωjr, . . . ,
n−1∑
j=1

ω(n−1)jr, . . . ,
n−1∑
j=1

ωj+(n−1)jr, . . . )

and
n−1∑
j=0

ωkj =

{
n− 1 k = 0, n, 2n, . . .

−1 otherwise

we see that, (F ∗n ⊗ F ∗n ⊗ F ∗n)φ (F ∗n ⊗ F ∗n ⊗ F ∗n) is an integer diagonal matrix.2
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