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Abstract

We deal with a geometric quadrangulation of a polygon P . We define a new notion
called “the spirality” of P , which measures how close P is from being a convex
polygon. Using the spirality, we describe (1) a condition of P to admit a geometric



quadrangulation, and (2) a condition of P guaranteeing that any two geometric
quadrangulations on P can be related by a sequence of edge flips.
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1 Introduction

Consider a planar n-point set S (i.e. a point set on the plane with |S| = n),
which is always assumed to be in general position (i.e., no three points are
collinear). Let Conv(S) denote the boundary of the convex hull of S. A
geometric triangulation on S means a geometric plane graph whose vertex set
is S, whose outer cycle coincides with Conv(S), and each of whose finite faces
is triangular. (See the left of Figure 1.)

Fig. 1. Geometric triangulation on a point set S and an edge flip

It is easy to see that the following holds.

Proposition 1.1 Every planar n-point set with n ≥ 3 admits a geometric
triangulation.

An edge e of a triangulation is flippable if it belongs to the boundary of two
triangular faces whose union is a convex quadrilateral C. Flipping e means
substituting e by the second diagonal of C, see the right of Figure 1. Lawson
proved the following theorem [7].

Theorem 1.2 (Lawson [7]) Given a planar point set S with |S| ≥ 3, any
two geometric triangulations on S can be transformed into each other by a
sequence of edge flips.
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Lawson also proved that any two triangulations of an n-point set can be
transformed into each other by a sequence of O(n2) edge flips, and later,
Hurtado et al. proved that the number of edge flips is Ω(n2) [5].

Let us consider combinatorial triangulations T of point sets. In this con-
text, the edges of T can be non-crossing curves joining pairs of points in S,
which can also be moved around. Wagner [11] proved that any two n-vertex
triangulations on the plane can be transformed into each other by a sequence of
O(n2) edge flips, and Komuro improved this result by showing that O(n) edge
flips always suffice [6]. This surprising result proves that there is a substan-
tial difference between geometric and combinatorial triangulations, for more
details see [4].

A quadrangulation of a planar point set S is a geometric plane graph whose
vertex set is S, whose outer cycle coincides with Conv(S), and each of whose
finite faces is a quadrilateral. By an easy combinatorial argument, one can
prove that if S admits a quadrangulation, then Conv(S) must have an even
number of points of S. It is easy to see that this condition is also sufficient
for any planar point set S with |S| ≥ 4 to have a geometric quadrangulation.
(We also know some results on quadrangulations of planar point sets with
color constraints and Steiner points [2,3].) However, we know nothing about
edge flips in quadrangulations in the geometrical setting. On the other hand,
there are many results on edge flips in quadrangulations in the combinatorial
settings, see for example [9,10].

In this paper, we deal with a polygon P = v1 · · · vn with n ≥ 3, which is a
connected 2-regular geometric plane graph with vertex set {v1, . . . , vn}. The
set {v1, . . . , vn} is not necessarily in general position, but we do not allow for
interior angles at any vertex of P to be equal to π.

Let n ≥ 4 be an integer, and let P = v1 · · · vn be an n-sided polygon, which
is not necessarily convex. A geometric quadrangulation of P is a geometric
plane graph obtained from P by adding diagonals to the interior of P so
that every finite face is a quadrilateral, and that the boundary of the infinite
face coincides with P . For example, in Figure 2(1) we show a geometric
quadrangulation of the polygon P = v1 · · · v16 in which the diagonals we added
are represented using dotted line segments. Since every quadrangulation of P
is a bipartite graph, we can color the vertices of P black and white alternately,
and note that every diagonal must join a black and a white vertex.

A polygon P is quadrangulatable if P admits a geometric quadrangulation,
and thus it is even-sided (i.e., it has an even number of sides). It is easy to see
that every n-sided polygon P with n ≥ 3 admits a geometric triangulation,
however not every even-sided polygon admits a quadrangulation, a counterex-



Fig. 2. (1) Geometric quadrangulation of a 16-sided polygon, (2) non-quadrangu-
latable polygon P1, (3) polygon of spirality 1

ample P1 is shown in Figure 2(2); note that the line segments v1v4, v2v5 nor
v3v6 are not diagonals of P1. Our first result is to answer partially the question
of which even-sided polygons are quadrangulatable.

For a polygon P = v1 · · · vn, we define a new notion, called “the spirality”
of P , which measures how close P is to being a convex polygon. We say that
vi is a concave (resp., convex ) vertex of P if the interior angle of vi in P is
greater (resp., less) than π. The interval [vp, vp+1, . . . , vq] is maximally-concave
if all of vp, vp+1, . . . , vq are concave (possibly p = q), but both vp−1 and vq+1

are convex, where vi = vn+i for each i. The spirality of P , denoted by sp(P ),
is the number of distinct maximally-concave intervals in P . By definition, P
is convex if and only if sp(P ) = 0. (Another notion of how convex a polygon
is, called “k-convexity” is defined in [1], but it is different from the spirality
of a polygon.)

For example, the two polygons in Figures 2(1) and (2) have spirality 3,
since (1) has exactly three maximally-concave intervals [v3], [v9, v10, v11] and
[v15], and (2) has [v2], [v4] and [v6]. Surprisingly, the polygon shown in Figure
2(3) has spirality 1.

The following is our first result.

Theorem 1.3 Let n ≥ 4 be an even integer and let P be an n-sided polygon. If
sp(P ) ≤ 1, then P is quadrangulatable. On the other hand, for any large even
integer n, there exists an n-sided non-quadrangulatable polygon of spirality 2.

Figure 3 shows an example of a non-quadrangulatable 6-sided polygon of
spirality 2 and a large non-quadrangulatable one of spirality 2 extended from
it. We can also construct non-quadrangulatable polygons of large spirality,
star-like structures similar to that shown in Figure 2(2).

Let us proceed to our second result. Let P be a polygon with a geomet-
ric quadrangulation Q, and let e = vavd be a diagonal of Q shared by two
quadrilateral faces f1 and f2 with f1 ∪ f2 bounded by vavbvcvdvevf . An edge



Fig. 3. Extension of a non-quadrangulatable polygon of spirality 2

flip of e in f1 ∪ f2 is to remove e and replace it (if possible) by one of the
edges vbve, or vcvf . If e can be flipped in Q, then e is flippable. Figure 4
shows two geometric quadrangulations of the same 8-sided polygon, which are
related by a single edge flip of the diagonal v1v6 to v2v7. (In both of them,
the diagonal v2v5 is not flippable.) Two geometric quadrangulations of P are
flip-equivalent if they can be transformed into each other by a sequence of
edge flips. A geometric quadrangulation Q is frozen if every diagonal of Q
is not flippable. Note that a frozen geometric quadrangulation of P is not
flip-equivalent to any other geometric quadrangulation of P .

Fig. 4. Edge flip in geometric quadrangulations

The following is our second result on edge flips in geometric quadrangula-
tions on a polygon.

Theorem 1.4 Let Q1 and Q2 be two geometric quadrangulations of the same
polygon P . If sp(P ) ≤ 2, then Q1 and Q2 are flip-equivalent. On the other
hand, there exists a polygon of spirality 3 two of whose geometric quadrangu-
lations are not flip-equivalent.

Figure 5 shows two frozen geometric quadrangulations Q1 and Q2 of the
same polygon of spirality 3. Since they are not flip-equivalent, the condi-
tion “sp(P ) ≤ 2” in Theorem 1.4 is best possible. It is not so difficult to
construct an even-sided polygon of large spirality which admits two distinct
frozen geometric quadrangulations.



Fig. 5. Non-flip-equivalent geometric quadrangulations of a polygon of spirality 3
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