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Abstract

We consider first order expressible properties of random perfect graphs. That is,
we pick a graph Gn uniformly at random from all (labelled) perfect graphs on n

vertices and consider the probability that it satisfies some graph property that can
be expressed in the first order language of graphs. We show that there exists such
a first order expressible property for which the probability that Gn satisfies it does
not converge as n → ∞.
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1 Introduction

A graph is perfect if the chromatic number equals the clique number in each
of its induced subgraphs. Perfect graphs are a central topic in graph theory
and play an important role in combinatorial optimization. In this paper we
will study the random graph chosen uniformly at random from all (labelled)
perfect graphs on n vertices. The first thing one might want in order to prove



results about this object is a mechanism for generating random perfect graphs
that is more descriptive than “put all n-vertex perfect graphs in a bag and pick
one uniformly at random”. Such a mechanism has been introduced recently by
McDiarmid and Yolov [6]. Before presenting it, let us discuss as a preparation
a simpler subclass of perfect graphs.

A graph is chordal if every cycle of length four or more has a chord, that
is, an edge joining non-consecutive vertices in the cycle. A graph is split if
its vertex set can be partitioned into a clique and an independent set (with
arbitrary edges across the partition). It is easy to see that a split graph is
chordal, but not conversely. On the other hand, it is known that almost
all chordal graphs are split [1], in the sense that the proportion of chordal
graphs that are split tends to 1 as the number of vertices n tends to infinity.
Thus we arrive at a very simple process for generating random chordal graphs:
(randomly) partition the vertex set into a clique A and an independent set
B, and add an arbitrary set of edges between A and B (chosen uniformly at
random from all posible sets of edges between A and B). The distribution
we obtain in this way is not uniform as a split graph may arise from different
partitions into a clique and an independent set, but it can be seen that when
the size of A is suitably sampled then its total variational distance to the
uniform distribution tends to zero as n tends to infinity.

Now we turn to random perfect graphs. A graph G is unipolar if for some
k ≥ 0 its vertex set V (G) can be partitioned into k+1 cliques C0, C1, . . . , Ck, so
that there are no edges between Ci and Cj for 1 ≤ i < j ≤ k. A graph G is co-
unipolar if the complement G is unipolar; and it is a generalized split graph
if it is unipolar or co-unipolar. Notice that a graph can be both unipolar
and co-unipolar, and that when the Ci for i ≥ 1 are reduced to a single
vertex, a generalized split graph is split. It can be shown that generalized
split graphs are perfect, and it was proved in [7] that almost all perfect graphs
are generalized split.

McDiarmid and Yolov [6] have devised the following process for generating
random unipolar graphs. Choose an integer k ∈ [n] according to a suitable
distribution; choose a random k-subset C0 ⊆ [n]; choose (uniformly) a random
set partition [n]\C0 = C1 ∪ · · · ∪ Ck of the complement and make all the Ci

into cliques; finally add edges between C0 and [n]\C0 independently with
probability 1/2, and no further edges. Again this scheme is not uniform but
it is shown in [6] that it approximates the uniform distribution on unipolar
graphs on n vertices up to total variational distance on(1). This gives a useful
scheme for random perfect graphs: pick a random unipolar graph G on n
vertices according to the previous scheme, and flip a fair coin: if the coin



turns up heads then output G, otherwise output its complement G. Several
properties of random perfect graphs are proved in [6] using this scheme. One
notable such result is that for every fixed graph H the probability that the
random perfect graph on n vertices has an induced subgraph isomorphic to H
tends to a limit that is either 0, 1/2 or 1.

In this paper we consider graph properties that can be expressed in the
first order language of graphs (FO), on random perfect graphs. We say that
a graph G is a model for the sentence ϕ ∈ FO if G satisfies ϕ, and write
G |= ϕ. Several restricted classes of graphs have been studied with respect
to the limiting behaviour of FO properties, and usually one proves either a
zero-one law (that is, every FO property has limiting probability ∈ {0, 1})
or a convergence law (that is, every FO property has a limiting probability).
For instance, a zero-one law has been proved for trees [5] and for graphs not
containing a clique of fixed size [3], while a convergence law has been proved
for d-regular graphs for fixed d [4], and for forests and planar graphs [2].

In the light of the above mentioned result of McDiarmid and Yolov on the
limiting probability of containing a fixed induced subgraph, one might expect
the convergence law to hold for random perfect graphs, perhaps even with the
limiting probabilities only taking the values 0, 1/2, 1. The main result of this
paper however states something rather different is the case.

Theorem 1.1 There exists a sentence ϕ ∈ FO such that

lim
n→∞

P [Gn |= ϕ] does not exist,

where Gn is chosen uniformly at random from all (labelled) perfect graphs on
n vertices.

This is in strong contrast with random chordal graphs. The scheme we
discussed above based on random split graphs is in fact very similar to the
binomial bipartite random graph with independent edge probabilities equal to
1/2. A standard argument shows that in fact a zero-one law holds in this case,
that is, the limiting probability that a FO property is satisfied tends either to
0 or 1 as n → ∞ [9].

Our proof of Theorem 1.1 draws on the techniques introduced in the proof
of the celebrated Shelah-Spencer result of non-convergence in the classical
G(n, p) model when p = n−α and α ∈ (0, 1) is a rational number [8] (see also
[9]). In fact, it is the richness of unipolar graphs together with the properties
of random set partitions that allow us to produce a non-convergent first order
sentence.



2 Sketch of the proof

A simple argument shows that it is enough to prove the main result for unipo-
lar graphs, and then the result extends to perfect graphs. The following
properties, referred to random unipolar graphs, are proved using the following
properties of the scheme for generating random unipolar graphs of McDiarmid
and Yolov.

(i) |C0| =
n
2
(1 + o(1)).

(ii) Let r be the unique root of rer = n − |C0|. For t = 1, . . . , (e − ε) lnn,
with ε > 0 arbitrary but fixed, we have

|{j : |Cj| = t}| = Ω
(

rt/t!
)

. (1)

We note that with high probability we have r = lnn− (1 + o(1)) ln lnn.

For S ⊆ [n], let N(S) =
⋂

v∈S N(v) the set of common neighbours of S, and
for S, T ⊆ [n] we let H(S, T ) denote the graph with vertex set S and an edge
between a, b ∈ S if and only if there is a v ∈ T that is adjacent to both a and
b.

Lemma 2.1 (i) There exists an FO-formula CN with two free variables such
that, with high probability, CN(x, y) holds if and only if x ∈ C0, y ∈ Ci

for some i > 0, and x ∈ N(Ci).

(ii) The exists an FO-formula Hedge with three free variables such that, with
high probability, Hedge(x, y, z) holds if and only if x, y ∈ C0, x 6= y,
z ∈ Ci for some i > 0, and xy is an edge of H(C0, Ci).

(iii) For every ϕ ∈ FO there exists an FO-formula Φ(x, y) with two free vari-
ables such that, with high probability, Φ(x, y) holds if and only if x ∈
Ci, y ∈ Cj for some i, j > 0, and H(N(Ci), Cj) |= ϕ.

Let us write ℓ = ⌈ln ln lnn⌉ . Then we have:

Lemma 2.2 (i) With high probability, for every 0 ≤ ℓ′ ≤ ℓ, there exist nΩ(1)

indices i > 0 with |N(Ci)| = ℓ′.

(ii) With high probability, the following holds. For every i, j > 0 such that
|N(Ci) ∪ N(Cj′)| ≤ 2ℓ, and for every (labelled) graph G with V (G) =
N(Ci) ∪N(Cj), there is a k > 0 such that H(N(Ci) ∪N(Cj), Ck) = G.

Now comes the key ingredient in the proof of our main theorem.

Lemma 2.3 There exists an FO-formula Bigger with two free variables such
that, with high probability:



• If Bigger(x, y) holds then there exist i, j > 0 such that x ∈ Ci, y ∈ Cj and
|N(Ci)| > |N(Cj)|;

• If x ∈ Ci, y ∈ Cj for some i, j > 0 with |N(Cj)| < |N(Ci)| ≤ ℓ then
Bigger(x, y) holds.

Proof of the main result. We need the following lemma, which is a straight-
forward adaptation of a construction of Shelah and Spencer [8]. Given a for-
mula ϕ, the spectrum spec(ϕ) is the set of all n such that there exists a graph
on n vertices that satisfies ϕ. The function log∗ n is the classical iterated
logarithm.

Lemma 2.4 There exist ϕ0, ϕ1 ∈ FO such that

log∗ n mod 100 ∈ {2, . . . 49} ⇒ n ∈ spec(ϕ0) \ spec(ϕ1),

log∗ n mod 100 ∈ {52, . . . 99} ⇒ n ∈ spec(ϕ1) \ spec(ϕ0).

Let Φi denote the formula that Lemma 2.1 produces when applied to the
sentence ϕi from Lemma 2.4. We define the following FO-sentence:

ϕ = ∃x, y : Φ1(x, y) ∧ ¬(∃x′, y′ : Bigger(x′, x) ∧ Φ0(x
′, y′)).

Up to error probability o(1), ϕ will hold if and only if H(N(Ci), Cj) |= ϕ1 for
some i, j > 0, and moreover if H(N(Ci′), Cj′) 6|= ϕ0 for some i′, j′ > 0 then
Bigger(x, x′) does not hold for any x ∈ Ci, x

′ ∈ Ci′. We briefly explain how
this implies that ϕ does not have a limiting probability.

First we consider an increasing subsequence (nk)k of the natural numbers
for which log∗ n mod 100 = 75. Observe that

log∗ n− 10 ≤ log∗ ℓ ≤ log∗ n. (2)

With high probability there are lots of Ci for which |N(Ci)| = ℓ by Lemma 2.2,
and for each of these there is a j such that H(N(Ci), Cj) |= ϕ1 (since ℓ ∈
spec(ϕ1) as log

∗ ℓmod100 ∈ {65, . . . , 75} by (2) and the choice of n). So there
are (lots of) pairs of vertices x, y such that Φ1(x, y) holds and x ∈ Ci for some
i > 0 with |N(Ci)| = ℓ. On the other hand, with high probability, for any
x′ such that Bigger(x′, x) it must hold that x′ ∈ Ci′ for some i′ > 0 with
ℓ = |N(Ci)| < |N(Ci′)| ≤ n. So in particular log∗(|N(Ci′)|) ∈ {65, . . . , 75}.
Thus |N(Ci′)| 6∈ spec(ϕ0), which shows that H(N(Ci′), Cj′) 6|= ϕ0 for any
j′ > 0. In other words, if Bigger(x′, x) holds then there cannot be any y′ such



that Φ0(x
′, y′) holds. This shows that

lim
n→∞,

log∗ nmod100=75

P(Gn |= ϕ) = 1.

Next, let us consider an increasing subsequence (nk)k of the natural num-
bers for which log∗ nmod100 = 25. In this case log∗ ℓmod100 ∈ {15, . . . , 25}.
In particular ℓ, . . . , n 6∈ spec(ϕ1). So, with high probability, if there is pair
x, y such that Φ1(x, y) holds then we must have x ∈ Ci for some i > 0 with
|N(Ci)| strictly smaller than ℓ. But then we can again apply Lemma 2.2
to find that, with high probability, there exist x′, y′ with x′ ∈ Ci′, y ∈ Cj′

for some i′, j′ > 0 such that |N(Ci′)| = ℓ and H(N(Ci′), Cj′) |= ϕ0. Since
ℓ = |N(Ci′)| > |N(Ci)|, with high probability, Bigger(x′, x) will hold by
Lemma 2.3. This shows that

lim
n→∞,

log∗ nmod100=25

P(Gn |= ϕ) = 0.
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