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Abstract

The Krein-Milman theorem characterizes convex subsets in topological vector spaces.
Convex geometries were invented as proper combinatorial abstractions of convexity.
Further, they turned out to be closure spaces satisfying the Krein-Milman prop-
erty. Violator spaces were introduced in an attempt to find a general framework
for LP-problems. In this work, we investigate interrelations between violator spaces
and closure spaces. We prove that a violator space with a unique basis satisfies the
Krein-Milman property. Based on subsequent relaxations of the closure operator
notion we introduce convex spaces as a generalization of violator spaces and extend
the Krein-Milman property to uniquely generated convex spaces.
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1 Introduction

Intuitively speaking, the Krein-Milman theorem says that every convex set is
the convex hull of its extreme points. Originally, this theorem characterized
convex subsets in topological vector spaces. In last few decades the theory
of convexity was considerably developed and the Krein-Milman theorem was
studied for various combinatorial structures: closure spaces, metric spaces,
ordered sets and lattices, graphs and so on.

Definition 1.1 Let E be a finite set. τ : 2E → 2E is a closure operator on E
if for all subsets X, Y ⊆ E the following properties are satisfied:

C1: X ⊆ τ(X) (expansivity),

C2: X ⊆ Y ⇒ τ(X) ⊆ τ(Y ) (isotonicity),

C3: τ(τ(X)) = τ(X) (idempotence).

(E, τ) is a closure space if τ is a closure operator. A set A ⊆ E is closed
if A = τ(A). Clearly, the family of closed sets K = {A ∈ E : A = τ(A)} is
closed under intersection. Conversely, every set system (E,K) closed under
intersection is a family of closed sets of the closure operator

τK(X) = ∩{A ∈ K : X ⊆ A}.
An element x of a subset X ⊆ E is an extreme point of X if x /∈ τ(X − x).
The set of extreme points of X is denoted by ex(X).

A closure space (E, τ) satisfies the Krein-Milman property if for every
closed set

A ⊆ E : A = τ(ex(A)).

Such closure spaces are known as convex geometries [5]. They were originally
invented by Edelman and Jamison in 1985 as proper combinatorial abstrac-
tions of convexity [2]. The convex hull operator on the Euclidean space En is
a canonical example of a closure operator defining a convex geometry.

Definition 1.2 [3] A violator space is a pair (E, ν), where E is a finite set
and ν is a mapping 2E → 2E such that for all subsets X, Y ⊆ E the following
properties are satisfied:

V1: X ∩ ν(X) = ∅ (consistency),

V2: (X ⊆ Y and Y ∩ ν(X) = ∅)⇒ ν(X) = ν(Y ) (locality).

Violator spaces have been introduced and analyzed as a combinatorial
framework that encompasses Linear Programming (LP) and other geometric
optimization problems [3,7]. Originally, violator spaces were defined for set
of constraints E, where each subset of constraints X ⊆ E is associated with



ν(X) - the set of all constraints violating X. For instance, the problem of
computing the smallest enclosing ball of a finite set of points in Rd is an
LP-type problem. Here, the set E is a set of points in Rd, and the violated
constraints of some subset of the points X are exactly the points lying outside
the smallest enclosing ball of X.

Let α, β : 2E → 2E be two operators satisfying X ⊆ α(X) and β(X) ⊆ X.
We define (E,α, β) as a Krein-Milman space if for every set

X ⊆ E : α(X) = α(β(X)).

A well-known example of a Krein-Milman space is a convex geometry (α = τ ,
β = ex). One of our main findings is the characterization of Krein-Milman
violator spaces.

2 Violator mappings and closure operators

Proposition 2.1 [4] Let (E, τ) be a closure space. Define ν(X) = E− τ(X).
Then (E, ν) is a violator space.

Proposition 2.2 [4] Let (E, ν) be a violator space. Define ϕ(X) = E−ν(X).
Then the operator ϕ satisfies expansivity and idempotence.

In what follows, if (E, ν) is a violator space and ϕ(X) = E − ν(X), then
(E,ϕ) will be called a violator space as well.

Every violator space (E,ϕ) satisfies the following property [4]

(X ⊆ Y ⊆ Z) ∧ (ϕ(X) = ϕ(Z))⇒ ϕ(X) = ϕ(Y ) = ϕ(Z).(1)

Since the property deals with all sets lying between two given sets, following
[6] we say that an operator is convex if it satisfies (1). Notice that locality
is equivalent to the following property that we call self-convexity by analogy
with convexity

C22 : (X ⊆ Y ⊆ ϕ(X))⇒ ϕ(X) = ϕ(Y ).

One can see that while closure spaces satisfy expansivity, isotonicity, and
idempotence, violator spaces satisfy expansivity, self-convexity, and idempo-
tence, and so may be considered as weak closure spaces.

Moreover, there are violator spaces, where the operator ϕ(X) does not
satisfy isotonicity [3]. Hence, there exists a violator space which is not a
closure space.

It is easy to check, that expansivity and self-convexity imply convexity,
while convexity and idempotence imply self-convexity. The following example
shows that convexity accompanied with expansivity does not obligate a space
to be a violator space. Let E = {1, 2, 3}. Define δ(X) = X for each X ⊆ E



except δ({1}) = {1, 2}, and δ({1, 2}) = {1, 2, 3}. It is easy to see that the
mapping δ satisfies expansivity and convexity. At the same time, it does not
satisfy neither self-convexity, nor idempotence.

{1} ⊆ {1, 2} ⊆ δ({1}), δ({1, 2}) = {1, 2, 3} 6= δ({1}),

and δ(δ({1})) 6= δ({1}).

Definition 2.3 A space (E, δ) is convex if δ : 2E → 2E satisfies expansivity
and convexity.

The last example shows that there exists a convex space, which is not a
violator space. Another example of the operator that does not satisfy idempo-
tence is a pre-closure operator - the operator that satisfies only expansivity and
isotonicity. It is easy to check that pre-closure operators satisfy the convexity,
and so every pre-closure space is convex.
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3 Uniquely generated spaces and the Krein-Milman prop-
erty

Let we have an arbitrary space (E,α) with the mapping α : 2E → 2E. We say
that B ⊆ E is a generator of X ⊆ E if α(B) = α(X). For X ⊆ E, a basis
(minimal generator) of X is a inclusion-minimal set B ⊆ E (not necessarily
included in X) with α(B) = α(X). A space (E,α) is uniquely generated if
every set X ⊆ E has a unique basis. A well-known characterization of closure
operators states equivalence between uniqueness of the basis and the Krein-
Milman property [5]. We extend this property to some more spaces.

Proposition 3.1 The following assertions are equivalent:

(i) The space (E,α) is uniquely generated;

(ii) For every set X ⊆ E its bases are included in the intersection of all
the generators of X: B ⊆

⋂
{Y : α(Y ) = α(X)};

(iii) For every set X ⊆ E its bases are subsets of X.



A convex space (E,α) is uniquely generated if and only if for every

X, Y ⊆ E : α(X) = α(Y )⇒ α(X ∩ Y ) = α(X) = α(Y ).

We can rewrite this property as follows. For every set X ⊆ E of a uniquely
generated convex space (E,α), the basis B of X is an intersection of all gen-
erators of X:

B =
⋂
{Y ⊆ E : α(Y ) = α(X)}.(2)

Following the definition of extreme points in closure spaces we define

ex(X) = {x ∈ X : x /∈ α(X − x)}.
For violator spaces, it gives us:

x /∈ α(X − x)⇔ α(X) 6= α(X − x),

and consequently:

x ∈ ex(X)⇔ α(X) 6= α(X − x).

For convex spaces, the implication is only one-sided:

x ∈ ex(X)⇒ α(X) 6= α(X − x).

Another approach to extreme points reads as follows:

ēx(X) = {x ∈ X : α(X) 6= α(X − x)}.
It is worth notice that ex(X) = ēx(X) for violator spaces, while for convex
spaces only the inclusion ex(X) ⊆ ēx(X) may be claimed.

Proposition 3.2 Let (E,α) be a convex space. Then x ∈ ēx(X) if and only
if x belongs to every generator (and so, to every basis) of X contained in X.

Corollary 3.3 (i) If (E,α) is a violator space, then

ex(X) =
⋂
{B ⊆ X : α(B) = α(X)}.(3)

(ii) If (E,α) is a convex space, then

ēx(X) =
⋂
{B ⊆ X : α(B) = α(X)}.(4)

If α satisfies idempotence, then each generator of X is a generator of α(X)
as well. Hence, for violator spaces, we have

ex(α(X)) =
⋂
{B ⊆ α(X) : α(B) = α(X)} =

ex(X) ∩
⋂
{B ⊆ α(X) ∧B * X : α(B) = α(X)} ⊆ ex(X).(5)

In particular, ex(α(X)) ⊆ X, which may be considered as a combinatorial
interpretation of Milman’s theorem [1].



Theorem 3.4 Let (E,α) be a violator space. Then (E,α) is uniquely gener-
ated if and only if for every set X ⊆ E, α(X) = α(ex(X)).

For a uniquely generated violator space each basis of a set is contained
in this set (Proposition 3.1). Therefore, the inclusion ex(α(X)) ⊆ ex(X) (5)
turns out to be the equality ex(α(X)) = ex(X). Thus we conclude with the
following.

Corollary 3.5 Let (E,α) be a uniquely generated violator space. Then α(X) =
α(ex(X)) and ex(X) = ex(α(X)).

Proposition 3.6 Let (E,α) be a uniquely generated convex space. Then for
every set X ⊆ E, α(X) = α(ēx(X)).

In summary, the proper choice of the operator β allows to interpret uniquely
generated convex spaces and uniquely generated violator spaces as Krein-
Milman spaces.
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