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Abstract

Topological data analysis (TDA) aims to obtain useful information from data sets
using topological concepts. In particular, it may help to infer from finite sample
when a configuration space is a manifold. So far, there is no automatic process to
decide the main topological features of a given sampled manifold. In this article,
we present an entropy-based summary function which may help to decide the most
relevant Betti numbers from finite samples of a given manifold.
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1 Introduction

In order to obtain global features from a discrete data set, for example a point
cloud in Rn, we need to create a structure able to summarize the relation
between them. A classical strategy is to create a proximity graph connecting
points with edges and divide it in communities. In order to enrich the analysis

1 Partially supported by MINECO, FEDER/UE under grant MTM2015-67072-P
Email: {natienza,rogodi,msoriano4}@us.es



of data sets and take advantage of the topological techniques we may use
simplicial complexes. Note that a graph is formed by a set of vertices V and
a set of edges. Each edge may be seen as a subset formed by two elements
of V and each vertex as a subset formed by one element of V . Then, the
graph may be seen as a family of subsets K of V each of them with one or
two elements and satisfying that: If a ∈ K, then {v} ⊂ a implies {v} ∈ K. A
natural generalization of graphs is [2, p. 53]:

Definition 1.1 [Abstract simplicial complex] Let V be a finite set. A family
K of subsets of V is an abstract s implicial complex if for every subsets σ ∈ K
and µ ⊂ V , we have µ ⊂ σ implies µ ∈ K.

When we want to visualize a graph, this can be represented in R3 drawing
vertices (called 0-simplices) as points and edges (called 1-simplices) as lines in
such a way that no edges cross each other. In the same way, simplicial com-
plexes can be visualized in Rn using in addition triangles (called 2-simplices)
for relating 3 points, tetrahedron (3-simplices) for 4 points and so on without
self intersection of the simplices for a sufficiently large n. In order to increase
even more the information carried by the simplicial complex, a nested sequence
of subcomplexes can be defined.

Definition 1.2 [Filtration] Consider a simplicial complex K. A filtration on
K is a sequence of simplicial complexes such that

K0 ⊂ . . . ⊂ Km−1 ⊂ Km = K.(1)

For example, consider a point cloud in a Euclidean space and consider its
proximity graph Gd where the edges connect vertices whose distance is smaller
than d. Therefore, if the number of points is finite, we have a set of distances
d1 ≤ . . . ≤ dm where the proximity graphs change. We are interested in
the Vietoris-Rips complexes, Rd, which can be constructed assigning to each
(n + 1)-vertex clique in Gd the corresponding n-simplex. Note that d1 ≤ d2
implies Rd1 ⊂ Rd2 , then Rd1 ⊂ . . . ⊂ Rdm−1 ⊂ Rdm is a filtration called the
Vietoris-Rips filtration. See figure 1.

A topological invariant is an attribute assigned to an object that keeps
unchanged under continuous deformation. We can use topological invariants
to compare objects and establish differences between them. The aim of TDA
is to use these notions to deduce properties from finite samples of the object.
The main tool used is homology, which can be seen as a way of describing the
“holes” of the given object, and is computed using algebraic techniques.

Consider the following simplicial complex which consists in a hollow tri-
angle sharing an edge with a filled triangle, see figure 2. How can we detect
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Fig. 1. Simplicial complexes Kd of a Vietoris-Rips filtration for d = 0, 1, 2, 1, 8, 2, 4.

the hole of the first triangle? Consider the vector space generated by vertexes
(C0) and edges (C1) with coefficients in Z/Z2 (i.e. 1 +1 = 0). Then, the cycle
surrounding the hole can be express as ab + bd + da. Define the boundary
linear operator ∂1 sending each edge to its vertexes , the path ab+ bd+da will
be a cycle if every vertex in the path appears an even number of times when
the boundary operator is applied: ∂1(ab+bd+da) = ∂1(ab)+∂1(bd)+∂1(da) =
a+ b+ b+ d+ d+ a = 0. In general, if a path is a cycle, its boundary is zero.
Nevertheless, not all cycles are holes, for example, bc+ cd+ db. This is due to
the boundary of the 2-simplex bcd being bc+cd+db, i.e. ∂2(bcd) = bc+cd+db.
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Fig. 2. Simplicial complex with one hole.

In general, the boundary linear operator of a simplicial complex K is de-
fined as:

∂i[v0, . . . , vi] =
i∑

s=0

[v0, . . . , v̂s, . . . , vi](2)

Where [v0, . . . , vi] is an i-simplex of K with vertexes v0, . . . , vi and v̂s means
vs has been removed. It is verified that ∂i+1 ◦ ∂i = 0 so the i-th homology can
be defined as

Hi(K) =
ker ∂i

img ∂i+1

(3)

which, as we have mentioned before, is a topological invariant. The i-th ho-



mology represents the i-th dimensional holes of the simplicial complex. For
example, the 0-th homology represents connected components, the 1-th ho-
mology represents cycles and the 2-th homology represents voids of K.

Observe in our example, ab+ bd+ da and ab+ bc+ cd+ da are considered
the same hole due to the equivalence relation. The number of independent
holes at each dimension is called the i-th Betti number.

This concept can be extended to filtrations. The inclusion Kj ↪→ Kj+1

induce a linear map between vector spaces H(Kj) → H(Kj+1). Intuitively
when a hole disappears (i.e., it is in Kj but not in Kj+1 for some j), this
map sends it to zero. When this happens we say it dies at time j. When a
hole appears by the first time (i.e., it is in Kj but not in Kj−1 for some j) we
say it has born at time j. We represent the moment of birth and death time
of the generators of homology (the independent holes) using barcodes. The
bottleneck distance, d, makes barcodes a metric space, [2, p. 180].
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Fig. 3. Barcodes representing birth and death times of the homology of dimension
0 (connected components) and 1 (cycles) of the filtration in Figure 1.

2 Entropy-based functional summary

Let B be a barcode. Enumerate the length of its bars as {`i}ni=1 and let
L =

∑n
i=1 `i. Then, the real number:

E(B) =
n∑

i=1

−`i
L

log
`i
L

(4)

is called its persistent entropy. The greater the number of bars is and the
more homogeneous they are, the greater entropy is. Some applications may
be found in [5,6]. The maximum value of E(B) is log(n) and is reached when
`1 = . . . = `n. In [1] we have proved this stability result for pesistent entropy:

Theorem 2.1 For any two finite metric spaces (X, dX) and (Y, dY ), let A,B
be the persistence barcodes coming from Rips(X, t)|t∈R and Rips(Y, t)|t∈R and



dGH the Gromov-Hausdorff distance. Consider nmax the maximum number
of bars of A and B and La, Lb the total sum of their respective bars. If
`a = La/nmax and `b = Lb/nmax, `max = max{`a, `b}. If d∞(A,B) ≤ 1

8
`max

then

dGH(X, Y ) ≤ δ ⇒ |E(A)− E(B)| ≤ 4δ

`max

[
log(nmax)− log

(
4δ

`max

)]
.(5)

We will use this function to automatically detect the underlying shape of
the data. A manifold is a space which locally looks like a euclidean space (e.g.
a curve, a torus or a hypersphere). Manifolds appears in nature as the possible
configuration space of a physical system or experiment output. The work of
Latschev [4] implies that for dense enough point clouds contained in a manifold
the Vietoris-Rips filtration is homotopically equivalent to the manifold during
a period of time and consequently in this period both of them have the same
homology. Unfortunately, this period of time is difficult to compute and the
homology of the manifold is inferred using subjective criteria. In particular,
the set of intervals of the barcodes which are considered topological features
are expected to satisfy the following properties in that period of time:

• The lengths of the alive bars during that period are big and similar between
them. (This means the contribution of these bars to the persistent entropy
is big in comparison with the others).

• Few bars are alive in that period.

• The period these bars are the only ones alive, is long.

Our aim is to associate to each barcode a function with higher values in the
period which satisfies these properties. Considering partial sums of persistent
entropy can help with the first requisite and must play a role in the function,
which we define as follows.

FB(t) = − T (t)

W (t)

n∑
i=1

wi(t)
`i
L

log

(
`i
L

)
(6)

Where wi(t) is 1 if the i-th bar is alive at t and 0 otherwise, W (t) =
∑n

i=1wi(t)
is the number of bars which are alive in that moment and T (t) is the length
of time bars in t are the only ones alive.

Once we have the function associated to the barcode, we select its higher
values and see which bars are alive at that time. See figure 4, where using
the summary function, we recover the homology of a circle from a 10 points
sample. This summary function could be used as a statistic and help to infer
the underlying shape of data.
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Fig. 4. Top-left: ten points contained in a circle. Top-right: barcode of its Vi-
etoris-Rips filtration. Note that at time t = 1.5 the expected Betti numbers are
reached: one cycle and one connected component. Bottom-left: the summary func-
tion associated to the barcode. Bottom-right: the associated betti numbers obtained
from the summary functions.
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