Structure and Enumeration of K_{4}-minor-free links and link diagrams

Juanjo Rué ${ }^{1,2}$
Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

Dimitrios M. Thilikos ${ }^{1,2}$
AlGCo project-team, LIRMM, Université de Montpellier, CNRS, Montpellier, France
Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece

Vasiliki Velona ${ }^{1,2}$
Department of Economics, Universitat Pompeu Fabra, Barcelona, Spain
Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

We study the class \mathcal{L} of link types that admit a K_{4}-minor-free diagram, i.e., they can be projected on the plane so that the resulting graph does not contain any subdivision of K_{4}. We prove that \mathcal{L} is the closure of a subclass of torus links under the operation of connected sum. Using this structural result, we enumerate \mathcal{L} and subclasses of it, with respect to the minimal number of crossings or edges in a projection of $L \in \mathcal{L}$. Further, we enumerate (both exactly and asymptotically) all connected K_{4}-minor-free link diagrams, all minimal connected K_{4}-minor-free link diagrams, and all K_{4}-minor-free diagrams of the unknot.

Keywords: series-parallel graphs, links, knots, generating functions, asymptotic enumeration, map enumeration

1 Introduction

The exhaustive generation of knots and links is a well-established problem in low dimensional geometry (see [7, Ch.5], for instance). However, there are very few enumerative results in the literature and they are relatively recent, (see [10] and [6]). Moreover, there seems to be no known results connecting graph theoretic classes with link classes.

Let us start with some formal definitions. A knot K is a smooth embedding of the 1-dimensional sphere \mathbb{S}^{1} in \mathbb{R}^{3}. A link is a finite disjoint union of knots $L=K_{1} \cup \ldots \cup K_{n}$. Two links L_{1} and L_{2} are equivalent if there is a continuous and injective function $h: \mathbb{R}^{3} \times[0,1] \rightarrow \mathbb{R}^{3}$, such that $h\left(L_{1}, 0\right)=L_{1}$ and $h\left(L_{1}, 1\right)=L_{2}$. A link equivalent to a set of non intertwined circles is called a trivial link. If it is a knot, we also call it the unknot.

Consider a link L and a sphere \mathbb{S}^{2} embedded in such a way that it meets the link transversely in exactly two points P_{1} and P_{2}. Then we can discern two different links L_{1}, L_{2}, after connecting P_{1} and P_{2}. The first corresponds to the part of L in the interior of the sphere and the second to the part in the exterior. We then call L a connected sum with factors L_{1}, L_{2}, denoted $L_{1} \# L_{2}$. A link that does not have non-trivial factors is called prime, otherwise composite. A link is split if there is a sphere embedded in the link complement that separates the link. Each of the components is called a disjoint component of the link and, conversely, the link is their disjoint sum.

Let $L \in \mathbb{R}^{3}$ be a link and let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a projection map. If for all $x \in L,\left|\pi^{-1}(x)\right|=2$ or 1 , and all the double points are finite and transverse, then the projection is said to be regular. For all knots defined here, there exists a regular projection [2, Ch. 3]. This allows to work with link-diagrams, i.e. a triple (V, E, σ), where (V, E) is a 4-regular plane graph and $\sigma: V(G) \rightarrow\binom{E(G)}{2}$, where, for every $v \in V(G), \sigma(v)$ is a set of two opposite edges of the embedding of G and encodes which pair is overcrossing. Notice that a link-diagram may also have vertexless edges. We call these edges trivial. The crossing number of a link L is the minimum number of crossings that can have a diagram of it. Such a diagram is called minimal. We also say that a diagram (V, E, σ) is K_{4}-minor-free if the graph (V, E) does not contain

[^0]any subgraph that is a subdivision of a K_{4}.
A torus link is a link that can be embedded on the torus. They are denoted by $T(p, q), p, q \in \mathbb{Z}$, where p and q are the number of times that the link crosses the meridian and the longitude cycle, respectively. Let \mathcal{T}_{2} be the closure of torus links of type $T(2, q), q \in \mathbb{Z}-\{0\}$, under the connected sum operation. Let \mathcal{L} be the class of links that have a K_{4}-minor-free link-diagram and $\operatorname{mcl}\left(\mathcal{T}_{2}\right)$ be the closure of \mathcal{T}_{2} under disjoint sum.

2 Structure of K_{4}-links and enumeration

Our first result gives the type of links that admit a K_{4}-minor-free diagram.
Theorem 2.1 The links that admit a K_{4}-minor-free diagram are exactly the ones in $\operatorname{mcl}\left(\mathcal{T}_{2}\right)$, i.e. $\mathcal{L}=\operatorname{mcl}\left(\mathcal{T}_{2}\right)$.

Based on the above, we derive a precise description of links that admit a K_{4}-minor-free diagram. Let $\overline{\mathcal{L}}$ be the class of non-split links in \mathcal{L} and $\hat{\mathcal{L}}$ the class of links in \mathcal{L} with no trivial disjoint components, with size defined as their crossing number. We will obtain the asymptotic growth of \mathcal{L} with respect to the number of edges in a minimal diagram (not the crossing number, so as to account also for trivial disjoint components). Let $L(z), \bar{L}(z)$, and $\hat{L}(z)$ be the respective generating functions. Finally, let \mathcal{T} be the class of non plane, unrooted trees, where the vertices are labelled with multisets of the set $\{1\} \cup\{ \pm 3, \pm 5, \ldots\}$ and the edges are labelled with an element of the set $\{2, \pm 4, \pm 6, \ldots\}$. These labels will encode crossing numbers, hence a label i corresponds to size $|i|$. The size of $T \in \mathcal{T}$ is the sum of its labels. See Figure 1 for an example of such a tree.

Figure 1. An object of \mathcal{T}.

Proposition $2.2 \overline{\mathcal{L}} \cong \mathcal{T}$ and $\operatorname{MSet}_{\geq 1}\left(\mathcal{T} \backslash T_{1}\right) \cong \hat{\mathcal{L}}$, where MSet is the multiset operator with at least one element and $T_{1} \in \mathcal{T}$ is the tree with one vertex and label 1.

Using Proposition 2.2 and the framework of the Symbolic Method (see [4]), we derive combinatorial expressions for \mathcal{L} that translate to generating functions. Let $\overline{\mathcal{K}}$ and \mathcal{K} be the classes of prime knots and composite knots plus the trivial knot in \mathcal{L}, respectively. For prime knots in \mathcal{L}, i.e. prime torus knots $T(2,2 i+1), i \in \mathbb{Z} \backslash\{0,-1\}$, it holds that $\bar{K}(z)=2 \sum_{i \geq 1} z^{2 i+1}=\frac{2 z^{3}}{1-z^{2}}$, counting according to their crossing number. For \mathcal{K}, it is enough to consider non-empty multisets of prime torus knots, therefore $\mathcal{K}=\operatorname{MSet}_{\geq 1}(\overline{\mathcal{K}})$, which translates to the expression

$$
K(z)=\exp \left(\sum_{k \geq 1} \frac{1}{k} \bar{K}\left(z^{k}\right)\right)-1=\exp \left(\sum_{k \geq 1} \frac{1}{k} \frac{2 z^{3 k}}{1-z^{2 k}}\right)-1 .
$$

Let \mathcal{G} be the class of unrooted and unlabelled non-plane trees. Notice that one cannot replace immediately z for \mathcal{K} in the ogf $G(z)$, since the vertices are not distinguishable. Hence, to continue, one needs to use cycle indices. Let $\mathcal{G} \cdot$ be the class of rooted and unlabelled non-plane trees. For the cycle index of \mathcal{G}^{\bullet}, it is known (see [1]) that

$$
\mathcal{Z}_{\mathcal{G}} \bullet\left(s_{1}, s_{2}, \ldots\right)=s_{1} \exp \left(\sum_{k \geq 1} \frac{1}{k} \mathcal{Z}_{\mathcal{G}}\left(s_{k}, s_{2 k}, \ldots\right)\right)
$$

Let \mathcal{E} be the combinatorial class of the edge labels of \mathcal{T}, hence $E(z)=z^{2}+\frac{2 z^{4}}{1-z^{2}}$, and let $f(z)=E(z) K(z)$. We can now obtain the ordinary generating function of $\mathcal{F}=\mathcal{T}^{\bullet} \circ\left(\mathcal{E} \times \mathcal{L}_{c}\right)$. By Polya's Theorem, the latter satisfies the equation $F(z)=\mathcal{Z}_{\mathcal{G}} \cdot\left(f(z), f\left(z^{2}\right), \ldots\right)$. Then, it holds that

$$
\bar{L}(z)=\frac{F(z)}{E(z)}+\frac{E(z)}{2}\left(-\frac{F(z)^{2}}{E(z)^{2}}+\frac{F\left(z^{2}\right)}{E\left(z^{2}\right)}\right),
$$

by the Dissymmetry Theorem (see [1]). The first terms of $\bar{L}(z)$ are as follows:

$$
\bar{L}=1+z^{2}+2 z^{3}+3 z^{4}+4 z^{5}+9 z^{6}+12 z^{7}+26 z^{8}+40 z^{9}+\ldots
$$

We can then get asymptotic estimates by means of complex analytic tools:
Theorem 2.3 $\overline{\mathcal{L}}$ has asymptotic growth of the form:

$$
\left[z^{n}\right] \bar{L}(z) \sim \frac{c n^{-3 / 2}}{\Gamma(-1 / 2)} \rho^{-n}, \quad \rho \approx 0.44074, \quad c \approx 1.45557
$$

Additionally, $\hat{\mathcal{L}}$ has the same type of asymptotic growth with the same ρ and $c \approx 3.61691$.

The generating function $L(z)$ is equal to $\hat{L}\left(z^{2}\right) \frac{1}{1-z}$, since a link diagram of n vertices has $2 n$ non-trivial edges and a number of trivial edges. We thus obtain the following corollary.

Corollary $2.4 \mathcal{L}$ has asymptotic growth of the form:

$$
\left[z^{n}\right] L(z) \sim \frac{c n^{-3 / 2}}{\Gamma(-1 / 2)} \rho^{-n}
$$

where $\rho \approx 0.44074$ and $c \approx 8.97779$ or $c \approx 3.95687$, depending on whether n is even or odd, respectively.

Finally, we also get asymptotic estimates for the coefficients of $K(z)$. The following result is a consequence of Meinardus' Theorem (see [4, VIII.23]).

Theorem 2.5 \mathcal{K} has asymptotic growth of the form:

$$
\left[z^{n}\right] K(z) \sim c n^{-7 / 4} \exp \left(c^{\prime} n^{1 / 2}\right)
$$

where $c=\frac{\mathrm{e}^{2 \ln (2) \zeta(0)}(\Gamma(2) \zeta(2))^{5 / 4}}{2 \sqrt{\pi}} \approx 0.26275, c^{\prime}=2 \sqrt{\Gamma(2) \zeta(2)} \approx 2.56509$, and $\zeta(z)$ is the Riemann zeta function.

3 Enumeration of families of link diagrams

Enumerating connected K_{4}-free link-diagrams is equivalent to enumerating 4-regular unrooted planar maps which are K_{4}-minor-free, that we call $\overline{\mathcal{M}}_{1}$. We first give a construction for the rooted ones, \mathcal{M}_{1}, with respect to edges, adapting the construction for rooted 4 -regular maps in [8]. With this we obtain a functional system of equations that can be analyzed by using the analytic machinery developed by Drmota in [3]. Finally, by adapting an argument by Richmond and Wormald in [9], we are able to show that we can unroot the maps under study, showing that the maps in our class with non-trivial automorphisms are exponentially few. This study gives the following result:

Theorem 3.1 The class of connected K_{4}-free link diagrams $\overline{\mathcal{M}}_{1}$ satisfies that

$$
\left[z^{n}\right] \bar{M}_{1}(z) \sim \frac{1}{2 n} \frac{c n^{-3 / 2}}{\Gamma(-1 / 2)} \rho^{-n} 2^{n}, \rho \approx 0.31184, c \approx 1.52265
$$

Refining the combinatoric analysis in the previous case (with more auxiliary classes) and using again an adaptation of the argument of Richmond and Wormald in [9], we are able to asymptotically enumerate also the class of minimal link diagrams $\overline{\mathcal{M}}_{2}$, as well as the class of K_{4}-free link diagrams of the unknot, $\overline{\mathcal{M}}_{3}$:

Theorem 3.2 The class of connected K_{4}-free minimal link diagrams $\overline{\mathcal{M}}_{2}$, and
the class of K_{4}-free link diagrams of the unknot, $\overline{\mathcal{M}}_{3}$ satisfy:

$$
\begin{aligned}
& {\left[z^{n}\right] \bar{M}_{2}(z) \sim \frac{1}{2 n} \frac{c_{2} n^{-3 / 2}}{\Gamma(-1 / 2)} \rho_{2}^{-n}, \rho_{2} \approx 0.41456, c_{2} \approx 0.81415,} \\
& {\left[z^{n}\right] \bar{M}_{3}(z) \sim \frac{1}{2 n} \frac{c_{3} n^{-3 / 2}}{\Gamma(-1 / 2)} \rho_{3}^{-n}, \rho_{3} \approx 0.23188, c_{3} \approx 2.19020}
\end{aligned}
$$

Acknowledgement. All authors like to thank Lefteris Kirousis that contributed to the inception of this research.

References

[1] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like structures, volume 67. Cambridge University Press, 1998.
[2] P. R. Cromwell. Knots and links. Cambridge University Press, 2004.
[3] M. Drmota. Systems of functional equations. Random Structures and Algorithms, 10, 103-124, 1997.
[4] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University press, 2009.
[5] A. Kawauchi. A survey of knot theory. Birkhäuser, 2012.
[6] S. Kunz-Jacques and G. Schaeffer. The asymptotic number of prime alternating links. In FPSAC'2001, pages 10-p. Arizona State University, 2001.
[7] W. Menasco and M. Thistlethwaite. Handbook of knot theory. Elsevier, 2005.
[8] M. Noy, C. Requilé, and J. Rué. Enumeration of labeled 4-regular planar graphs. Submitted, available on-line at arXiv: 1709.04678.
[9] L. B. Richmond and N. C. Wormald. Almost all maps are asymmetric. J. of Combinatorial Theory, Series B, 63(1):1-7, 1995.
[10] C. Sundberg and M. Thistlethwaite. The rate of growth of the number of prime alternating links and tangles. Pacific J. of mathematics, 182(2):329-358, 1998.

[^0]: ${ }^{1}$ The first and the third author have partially been supported by the MINECO projects MTM2014-54745-P, MTM2017-82166-P and the María de Maetzu research grant MDM-2014-0445 (BGSMath). The second author has been supported by the project "ESIGMA" (ANR-17-CE40-0028). The third author has been supported under an FPI grant from the MINECO research project MTM2015-67304-PI.
 ${ }^{2}$ Emails: juan. jose.rue@upc.edu, sedthilk@thilikos.info, vasiliki.velona@upf.edu

