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Abstract

For integers k, n with k, n ≥ 1, the n-color weak Schur number WSk(n) is defined as
the least integer N , such that for every n-coloring of the integer interval [1, N ], there
exists a monochromatic solution x1, . . . , xk, xk+1 in that interval to the equation
x1 +x2 + . . .+xk = xk+1, with xi 6= xj , when i 6= j. We show a relationship between
WSk(n + 1) and WSk(n) and a general lower bound on the WSk(n) is obtained.
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1 Introduction

For integers a ≤ b, we shall denote [a, b] the integer interval consisting of all
t ∈ N+ = {1, 2, . . .} such that a ≤ t ≤ b. A function

∆ : [1, N ] −→ {c1, . . . , cn},
where c1, . . . , cn ∈ N+ represent different colors, is a n-coloring of the interval
[1, N ].
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Given a n-coloring ∆ and the equation x1+. . .+xk = xk+1 in k+1 variables,
then we say that a solution x1, . . . , xk, xk+1 to the equation is monochromatic
if and only if ∆(x1) = ∆(x2) = . . . = ∆(xk+1).

For integers k, n with k, n ≥ 1, the n-color weak Schur number WSk(n)
is defined as the least integer N , such that for every n-coloring of the integer
interval [1, N ], there exists a monochromatic solution x1, . . . , xk, xk+1 in that
interval to the equation x1 + x2 + . . . + xk = xk+1, with xi 6= xj when i 6= j.
In [11], the last author proved that WSk(n) ≤ t− 1, where t = r(Tk + 1, Tk +
1, . . . , Tk + 1) is the Ramsey number, with Tk = (1 + k)k/2, therefore the
n-color weak Schur number exists.

A set A of integers is called sum-free if it contains no elements x1, x2, x3 ∈ A
satisfying x1 + x2 = x3 where x1, x2 need not be distinct.

Schur [13] in 1916 proved that, given a positive integer n, there exists a
greatest positive integer S2(n) = N with the property that the integer interval
[1, N−1] can be partitioned into n sum-free sets. The numbers S2(n) are called
Schur numbers. The current knowledge on these numbers for 1 ≤ n ≤ 7 is
given in Table 1.

n 1 2 3 4 5 6 7

S2(n) 2 5 14 45 161 ≥ 537 ≥ 1681

Table 1
The first few Schur numbers S2(n).

The exact value of S2(4) was given by Baumert [1] and recently S2(5) has
been obtained by Heule [9] . Finally, the lower bounds on S2(6) and S2(7)
were obtained by Fredricksen and Sweet [7] by considering symmetric sum-free
partitions.

Many generalizations of Schur numbers have appeared since their intro-
duction. Now, a set A of integers is called weakly sum-free if it contains no
pairwise distinct elements x1, x2, x3 ∈ A satisfying x1 +x2 = x3. We denote by
WS2(n), the greatest integer N , for which the integer interval [1, N − 1] can
be partitioned into n weakly sum-free sets {A1, A2, . . . , An}. A result similar
to that of Schur [13] was shown by Rado [10] : given n ≥ 1, there is a greatest
integer N for which the interval set [1, N−1] admits a partition into n weakly
sum-free sets.

The numbers WS2(n) are called the weak Schur numbers for the equation
x1 + x2 = x3. The known weak Schur numbers are given in Table 2.

The current state of knowledge concerning WS2(n) is quite confused. The



n 1 2 3 4 5 6 7 8 9

WS2(n) 3 9 24 67 ≥ 197 ≥ 583 ≥ 1741 ≥ 5202 ≥ 15597

Table 2
The first few weak Schur numbers WS2(n).

problem seems to have been first considered in [14], which is Walker’s solu-
tion to Problem E985 proposed a year earlier, in 1951, by Moser. Walker
considered the cases n = 3, 4 and 5, and claimed the values WS2(3) = 24,
WS2(4) = 67 and WS2(5) = 197. Unfortunately, the short account written
by Moser on Walker’s solution only gives suitable partitions of [1, 23] for n = 3,
and no details at all for the cases n = 4 and 5. Walker’s claimed values of
WS2(3) and WS2(4) were later confirmed by Blanchard, Harary and Reis us-
ing computers [2]. The lower bound WS2(5) ≥ 197 has been confirmed in [4].
Whether equality holds in still an open problem. A lower bound on WS2(6)
was obtained by Eliahou et al. [4] and later improved to WS2(6) ≥ 583 in
[5].The lower bounds for 7 ≤ n ≤ 9 were obtained [6] in 2015.

In terms of coloring the WSk(n) is the least positive integer N such that
for every n-coloring of [1, N ],

∆ : [1, N ] −→ {c1, . . . , cn},

where c1, . . . , cn represent n different colors, there exists a monochromatic
solution to the equation x1 + . . . + xk = xk+1, such that ∆(x1) = . . . =
∆(xk) = ∆(xk+1) where xi 6= xj when i 6= j.

In addition, for 2-coloring, the known weak Schur numbers WSk(2) are in
Table 3.

k 2 3 4 5

WSk(2) 9 24 52 101

Table 3
The first few weak Schur numbers WSk(2).

The exact values of WSk(2) for k = 3, 4 and the lower bounds were ob-
tained in [11] and WS5(2) [3] in 2017.

2 A lower bound on WSk(2) and WSk(3)

Lemma 2.1 We have WSk(2) ≥ 1
2
(k3 + 3k2 − 2k) for any integer k ≥ 6.



Proof.

Let ∆ be a 2-coloring:

∆ : [1,
1

2
(k3 + 4k2 − 5k + 2)] −→ {c1, c2},

where c1, c2 represent 2 different colors. Let Ai = ∆−1(ci) for i = 1, 2 thus
[1, 1

2
(1
2
(k3 + 3k2 − 2k) + 2)] = A1 t A2.

We consider the partition of the interval [1, 1
2
(k3 + 3k2 − 2k)]:


A1 = [1, 1

2
(k2 + k − 2)] ∪ [1

2
(k3 + 2k2 − k), 1

2
(k3 + 3k2 − 2k − 2)],

A2 = [1
2
(k2 + k), 1

2
(k3 + 2k2 − k − 2)].

We prove that for every i, 1 ≤ i ≤ k, if x1, . . . , xk ∈ Ai with xi 6= xj, when
i 6= j, then x1 + . . . + xk /∈ Ai.
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Lemma 2.2 We have WSk(3) ≥ 1
2
(k4 + 4k3 + 2k2 − 7k + 2) for any integer

k ≥ 2.

Proof. We defined a 3-coloring,

∆ : [1,
1

2
(k4 + 4k3 + 2k2 − 7k)] −→ {c1, c2, c3},

where c1, c2, c3 represent 3 different colors. Let Ai = ∆−1(ci) for i = 1, 2, 3.

The interval [1, 1
2
(k4 + 4k3 + 2k2 − 7k)] = A1 t A2 t A3 with

A1 = A1,1 t A1,2 t A1,3, A2 = A2,1 t A2,2 and A3.

The sets {A1,1, A2,1} are weakly k-sum-free, for 2-coloring in [1, 1
2
(k3+3k2−

2k − 2)]:

A1,1 = [1, 1
2
(k2 + k − 2)] t [1

2
(k3 + 2k2 − k), 1

2
(k3 + 3k2 − 2k − 2)] and

A2,1 = [1
2
(k2 + k)] t [1

2
(k3 + 2k2 − k − 2)].

The intervals: A3 = [1
2
(k3 + 3k2 − 2k), 1

2
(k4 + 3k3 − k2 − k − 2)],

A1,2 = [1
2
(k4 + 3k3 − k2 − k), 1

2
(k4 + 3k3 − 2k − 2)],

A2,2 = [1
2
(k4 + 3k3 − 2k), 1

2
(k4 + 4k3 + k2 − 6k)] and

A1,3 = [1
2
(k4 + 4k3 + k2 − 6k + 2), 1

2
(k4 + 4k3 + 2k2 − 7k)].

The sets {A1, A2, A3} are weakly k-sum-free for the 3− coloring above.
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3 A general lower bound on WSk(n)

We prove the following relationship between the weak Schur numbers for n-
coloring and (n + 1)-coloring for the equation x1 + x2 + . . . + xk = xk+1, with
xi 6= xj, when i 6= j.

Lemma 3.1 We have WSk(n + 1) ≥ kWSk(n) + (k − 1)p(k) for any integer
k ≥ 2, n ≥ 2, with p(k) = 1

2
(k2 + 5k − 2).

Proof.

We consider a partition with n weakly k-sum-free sets on the interval
[1,WSk(n)− 1] = A1 t . . . t An.

Applying the procedure of the Lemma 2.2 we can extend this partition to
get an n + 1- partition weakly k- sum-free. This partition is
{B1, B2, A3, . . . , An, An+1}, an the intervals are:

An+1 = [WSk(n), kWSk(n) + 1
2
(k2 − k − 2)],

A1,1 = [kWSk(n) + 1
2
(k2 − k), kWSk(n) + 1

2
(2k2 − 2k − 2)],

A2,1 = [kWSk(n) + 1
2
(2k2 − 2k), kWSk(n) + 1

2
(k3 + 3k2 − 6k)],

A1,2 = [kWSk(n) + 1
2
(k3 + 3k2 − 6k + 2), kWSk(n) + 1

2
(k3 + 4k2 − 7k)],

B1 = A1 t A1,1 t A1,2 and B2 = A2 t A2,1.

Then WSk(n+1) ≥ kWSk(n)+ 1
2
(k3+4k2−7k)+1 = kWSk(n)+(k−1)p(k).

2

We obtain a general lower bound for WSk(n) in the following result:

Theorem 3.2 For the equation x1 + . . . + xk = xk+1 such that xi 6= xj when
i 6= j, we have WSk(n) ≥ q(k)kn−2 − p(k), with q(k) = 1

2
k3 + 2k2 + 3

2
k − 1

and p(k) = 1
2
(k2 + 5k − 2) for n ≥ 2,k ≥ 2 .
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