A general lower bound on the weak Schur number

L. Boza, M.P. Revuelta, M.I. Sanz ${ }^{1}$
Departamento de Matemática Aplicada I Universidad de Sevilla, Sevilla, Spain

Abstract

For integers k, n with $k, n \geq 1$, the n-color weak Schur number $W S_{k}(n)$ is defined as the least integer N, such that for every n-coloring of the integer interval $[1, N]$, there exists a monochromatic solution $x_{1}, \ldots, x_{k}, x_{k+1}$ in that interval to the equation $x_{1}+x_{2}+\ldots+x_{k}=x_{k+1}$, with $x_{i} \neq x_{j}$, when $i \neq j$. We show a relationship between $W S_{k}(n+1)$ and $W S_{k}(n)$ and a general lower bound on the $W S_{k}(n)$ is obtained.

Keywords: Schur numbers, sum-free sets, weak Schur numbers, weakly sum-free sets, n-coloring.

1 Introduction

For integers $a \leq b$, we shall denote $[a, b]$ the integer interval consisting of all $t \in N_{+}=\{1,2, \ldots\}$ such that $a \leq t \leq b$. A function

$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, \ldots, c_{n}\right\}
$$

where $c_{1}, \ldots, c_{n} \in N_{+}$represent different colors, is a n-coloring of the interval $[1, N]$.

[^0]Given a n-coloring Δ and the equation $x_{1}+\ldots+x_{k}=x_{k+1}$ in $k+1$ variables, then we say that a solution $x_{1}, \ldots, x_{k}, x_{k+1}$ to the equation is monochromatic if and only if $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\ldots=\Delta\left(x_{k+1}\right)$.

For integers k, n with $k, n \geq 1$, the n-color weak Schur number $W S_{k}(n)$ is defined as the least integer N, such that for every n-coloring of the integer interval $[1, N]$, there exists a monochromatic solution $x_{1}, \ldots, x_{k}, x_{k+1}$ in that interval to the equation $x_{1}+x_{2}+\ldots+x_{k}=x_{k+1}$, with $x_{i} \neq x_{j}$ when $i \neq j$. In [11], the last author proved that $W S_{k}(n) \leq t-1$, where $t=r\left(T_{k}+1, T_{k}+\right.$ $\left.1, \ldots, T_{k}+1\right)$ is the Ramsey number, with $T_{k}=(1+k) k / 2$, therefore the n-color weak Schur number exists.

A set A of integers is called sum-free if it contains no elements $x_{1}, x_{2}, x_{3} \in A$ satisfying $x_{1}+x_{2}=x_{3}$ where x_{1}, x_{2} need not be distinct.

Schur [13] in 1916 proved that, given a positive integer n, there exists a greatest positive integer $S_{2}(n)=N$ with the property that the integer interval $[1, N-1]$ can be partitioned into n sum-free sets. The numbers $S_{2}(n)$ are called Schur numbers. The current knowledge on these numbers for $1 \leq n \leq 7$ is given in Table 1.

n	1	2	3	4	5	6	7
$S_{2}(n)$	2	5	14	45	161	≥ 537	≥ 1681

Table 1
The first few Schur numbers $S_{2}(n)$.

The exact value of $S_{2}(4)$ was given by Baumert [1] and recently $S_{2}(5)$ has been obtained by Heule [9] . Finally, the lower bounds on $S_{2}(6)$ and $S_{2}(7)$ were obtained by Fredricksen and Sweet [7] by considering symmetric sum-free partitions.

Many generalizations of Schur numbers have appeared since their introduction. Now, a set A of integers is called weakly sum-free if it contains no pairwise distinct elements $x_{1}, x_{2}, x_{3} \in A$ satisfying $x_{1}+x_{2}=x_{3}$. We denote by $W S_{2}(n)$, the greatest integer N, for which the integer interval $[1, N-1]$ can be partitioned into n weakly sum-free sets $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. A result similar to that of Schur [13] was shown by Rado [10] : given $n \geq 1$, there is a greatest integer N for which the interval set $[1, N-1]$ admits a partition into n weakly sum-free sets.

The numbers $W S_{2}(n)$ are called the weak Schur numbers for the equation $x_{1}+x_{2}=x_{3}$. The known weak Schur numbers are given in Table 2.

The current state of knowledge concerning $W S_{2}(n)$ is quite confused. The

n	1	2	3	4	5	6	7	8	9
$W S_{2}(n)$	3	9	24	67	≥ 197	≥ 583	≥ 1741	≥ 5202	≥ 15597

Table 2
The first few weak Schur numbers $W S_{2}(n)$.
problem seems to have been first considered in [14], which is Walker's solution to Problem E985 proposed a year earlier, in 1951, by Moser. Walker considered the cases $n=3,4$ and 5 , and claimed the values $W S_{2}(3)=24$, $W S_{2}(4)=67$ and $W S_{2}(5)=197$. Unfortunately, the short account written by Moser on Walker's solution only gives suitable partitions of $[1,23]$ for $n=3$, and no details at all for the cases $n=4$ and 5 . Walker's claimed values of $W S_{2}(3)$ and $W S_{2}(4)$ were later confirmed by Blanchard, Harary and Reis using computers [2]. The lower bound $W S_{2}(5) \geq 197$ has been confirmed in [4]. Whether equality holds in still an open problem. A lower bound on $W S_{2}(6)$ was obtained by Eliahou et al. [4] and later improved to $W S_{2}(6) \geq 583$ in [5]. The lower bounds for $7 \leq n \leq 9$ were obtained [6] in 2015.

In terms of coloring the $W S_{k}(n)$ is the least positive integer N such that for every n-coloring of $[1, N]$,

$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, \ldots, c_{n}\right\}
$$

where c_{1}, \ldots, c_{n} represent n different colors, there exists a monochromatic solution to the equation $x_{1}+\ldots+x_{k}=x_{k+1}$, such that $\Delta\left(x_{1}\right)=\ldots=$ $\Delta\left(x_{k}\right)=\Delta\left(x_{k+1}\right)$ where $x_{i} \neq x_{j}$ when $i \neq j$.

In addition, for 2 -coloring, the known weak Schur numbers $W S_{k}(2)$ are in Table 3.

k	2	3	4	5
$W S_{k}(2)$	9	24	52	101

Table 3
The first few weak Schur numbers $W S_{k}(2)$.

The exact values of $W S_{k}(2)$ for $k=3,4$ and the lower bounds were obtained in [11] and $W S_{5}(2)$ [3] in 2017.

2 A lower bound on $W S_{k}(2)$ and $W S_{k}(3)$

Lemma 2.1 We have $W S_{k}(2) \geq \frac{1}{2}\left(k^{3}+3 k^{2}-2 k\right)$ for any integer $k \geq 6$.

Proof.

Let Δ be a 2-coloring:

$$
\Delta:\left[1, \frac{1}{2}\left(k^{3}+4 k^{2}-5 k+2\right)\right] \longrightarrow\left\{c_{1}, c_{2}\right\}
$$

where c_{1}, c_{2} represent 2 different colors. Let $A_{i}=\Delta^{-1}\left(c_{i}\right)$ for $i=1,2$ thus $\left[1, \frac{1}{2}\left(\frac{1}{2}\left(k^{3}+3 k^{2}-2 k\right)+2\right)\right]=A_{1} \sqcup A_{2}$.

We consider the partition of the interval $\left[1, \frac{1}{2}\left(k^{3}+3 k^{2}-2 k\right)\right]$:

$$
\left\{\begin{array}{l}
A_{1}=\left[1, \frac{1}{2}\left(k^{2}+k-2\right)\right] \cup\left[\frac{1}{2}\left(k^{3}+2 k^{2}-k\right), \frac{1}{2}\left(k^{3}+3 k^{2}-2 k-2\right)\right], \\
A_{2}=\left[\frac{1}{2}\left(k^{2}+k\right), \frac{1}{2}\left(k^{3}+2 k^{2}-k-2\right)\right] .
\end{array}\right.
$$

We prove that for every $i, 1 \leq i \leq k$, if $x_{1}, \ldots, x_{k} \in A_{i}$ with $x_{i} \neq x_{j}$, when $i \neq j$, then $x_{1}+\ldots+x_{k} \notin A_{i}$.

Lemma 2.2 We have $W S_{k}(3) \geq \frac{1}{2}\left(k^{4}+4 k^{3}+2 k^{2}-7 k+2\right)$ for any integer $k \geq 2$.

Proof. We defined a 3 -coloring,

$$
\Delta:\left[1, \frac{1}{2}\left(k^{4}+4 k^{3}+2 k^{2}-7 k\right)\right] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

where c_{1}, c_{2}, c_{3} represent 3 different colors. Let $A_{i}=\Delta^{-1}\left(c_{i}\right)$ for $i=1,2,3$.
The interval $\left[1, \frac{1}{2}\left(k^{4}+4 k^{3}+2 k^{2}-7 k\right)\right]=A_{1} \sqcup A_{2} \sqcup A_{3}$ with
$A_{1}=A_{1,1} \sqcup A_{1,2} \sqcup A_{1,3}, A_{2}=A_{2,1} \sqcup A_{2,2}$ and A_{3}.
The sets $\left\{A_{1,1}, A_{2,1}\right\}$ are weakly k-sum-free, for 2-coloring in $\left[1, \frac{1}{2}\left(k^{3}+3 k^{2}-\right.\right.$ $2 k-2)]$:
$A_{1,1}=\left[1, \frac{1}{2}\left(k^{2}+k-2\right)\right] \sqcup\left[\frac{1}{2}\left(k^{3}+2 k^{2}-k\right), \frac{1}{2}\left(k^{3}+3 k^{2}-2 k-2\right)\right]$ and
$A_{2,1}=\left[\frac{1}{2}\left(k^{2}+k\right)\right] \sqcup\left[\frac{1}{2}\left(k^{3}+2 k^{2}-k-2\right)\right]$.
The intervals: $A_{3}=\left[\frac{1}{2}\left(k^{3}+3 k^{2}-2 k\right), \frac{1}{2}\left(k^{4}+3 k^{3}-k^{2}-k-2\right)\right]$,
$A_{1,2}=\left[\frac{1}{2}\left(k^{4}+3 k^{3}-k^{2}-k\right), \frac{1}{2}\left(k^{4}+3 k^{3}-2 k-2\right)\right]$,
$A_{2,2}=\left[\frac{1}{2}\left(k^{4}+3 k^{3}-2 k\right), \frac{1}{2}\left(k^{4}+4 k^{3}+k^{2}-6 k\right)\right]$ and
$A_{1,3}=\left[\frac{1}{2}\left(k^{4}+4 k^{3}+k^{2}-6 k+2\right), \frac{1}{2}\left(k^{4}+4 k^{3}+2 k^{2}-7 k\right)\right]$.
The sets $\left\{A_{1}, A_{2}, A_{3}\right\}$ are weakly k-sum-free for the 3 -coloring above.

3 A general lower bound on $W S_{k}(n)$

We prove the following relationship between the weak Schur numbers for n coloring and $(n+1)$-coloring for the equation $x_{1}+x_{2}+\ldots+x_{k}=x_{k+1}$, with $x_{i} \neq x_{j}$, when $i \neq j$.

Lemma 3.1 We have $W S_{k}(n+1) \geq k W S_{k}(n)+(k-1) p(k)$ for any integer $k \geq 2$, $n \geq 2$, with $p(k)=\frac{1}{2}\left(k^{2}+5 k-2\right)$.

Proof.

We consider a partition with n weakly k-sum-free sets on the interval $\left[1, W S_{k}(n)-1\right]=A_{1} \sqcup \ldots \sqcup A_{n}$.

Applying the procedure of the Lemma 2.2 we can extend this partition to get an $n+1$ - partition weakly k - sum-free. This partition is
$\left\{B_{1}, B_{2}, A_{3}, \ldots, A_{n}, A_{n+1}\right\}$, an the intervals are:

$$
\begin{aligned}
& A_{n+1}=\left[W S_{k}(n), k W S_{k}(n)+\frac{1}{2}\left(k^{2}-k-2\right)\right], \\
& A_{1,1}=\left[k W S_{k}(n)+\frac{1}{2}\left(k^{2}-k\right), k W S_{k}(n)+\frac{1}{2}\left(2 k^{2}-2 k-2\right)\right], \\
& A_{2,1}=\left[k W S_{k}(n)+\frac{1}{2}\left(2 k^{2}-2 k\right), k W S_{k}(n)+\frac{1}{2}\left(k^{3}+3 k^{2}-6 k\right)\right], \\
& A_{1,2}=\left[k W S_{k}(n)+\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+2\right), k W S_{k}(n)+\frac{1}{2}\left(k^{3}+4 k^{2}-7 k\right)\right], \\
& B_{1}=A_{1} \sqcup A_{1,1} \sqcup A_{1,2} \text { and } B_{2}=A_{2} \sqcup A_{2,1} . \\
& \text { Then } W S_{k}(n+1) \geq k W S_{k}(n)+\frac{1}{2}\left(k^{3}+4 k^{2}-7 k\right)+1=k W S_{k}(n)+(k-1) p(k) .
\end{aligned}
$$

We obtain a general lower bound for $W S_{k}(n)$ in the following result:
Theorem 3.2 For the equation $x_{1}+\ldots+x_{k}=x_{k+1}$ such that $x_{i} \neq x_{j}$ when $i \neq j$, we have $W S_{k}(n) \geq q(k) k^{n-2}-p(k)$, with $q(k)=\frac{1}{2} k^{3}+2 k^{2}+\frac{3}{2} k-1$ and $p(k)=\frac{1}{2}\left(k^{2}+5 k-2\right)$ for $n \geq 2, k \geq 2$.

References

[1] L.D. Baumert. Sum-free sets. J.P.L. Research Summary, 36-10: 16-18, 1961.
[2] P. F. Blanchard, F. Harary, and R. Reis. Partitions into sum-free sets. Electronic Journal of Combinatorial Numbers theory 6:1-10, 2006.
[3] L. Boza, J.M. Marín, M.P. Revuelta and M.I. Sanz. On the n-color weak Rado numbers for the equation $x_{1}+x_{2}+\ldots+x_{k}+c=x_{k+1}$. Experiment. Math., accepted 2017.
[4] S. Eliahou, J. M. Marín, M. P. Revuelta and M. I. Sanz. Weak Schur numbers and the search for G.W. Walker's lost partitions. Computers and Mathematics with Applications, 63:175-182, 2012.
[5] S. Eliahou, C. Fonlupt, J. Fromentin, V. Marion-Poty, D. Robilliard and F. Teytaud. Investigating Monte-Carlo methods on the weak Schur problem. Lecture Notes in Computer Science, 7832:191-201, 2013.
[6] F.A. Rafilipojaona. Nombres de Schur classiques et faibles. Ph. Thesis, Universit Lille Nord-de-France, 2015.
[7] H. Fredricksen and M. Sweet. Symmetric sum-free partitions and lower bounds for Schur numbers. The Electronic Journal of Combinatorics, 7:\#R32, 2000.
[8] K. Helsgaun. CBack: A Simple Tool for Backtrack Programming in C. Softw. pract.exp., 25(8):905-934, 1995.
[9] M.J.H. Heule. Schur Number Five. Discrete Mathematics, preprint, 2017.
[10] R. Rado. Some solved and unsolved problems in the theory of numbers. Math. Gaz., 25:72-77, 1941.
[11] M.I. Sanz. Números de Schur y Rado. Ph. Thesis, Universidad de Sevilla, 2010.
[12] M. Heule, http://www.st.ewi.tudelft.nl/sat/, March RW. SAT Competition 2011, 2011.
[13] I. Schur. Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$. Jber. Deutsch. Math.Verein., 25:114-117, 1916.
[14] G.W. Walker. A problem in partitioning. The American Mathematical Monthly . 59:253, 1952.

[^0]: $\overline{1}$ Email: boza@us.es, pastora@us.es, isanz@us.es

