Stabbing convex subdivisions with k-flats

Alfredo Hubard $^{\rm a,1,2}$ and $\rm \ Arnau \ Padrol {}^{\rm b,1,3}$

^a Université Paris-Est, LIGM, Marne-la-Vallée, France
^b Sorbonne Université, IMJ-PRG, Paris, France

Abstract

We prove that for every convex subdivision of \mathbb{R}^d into n cells there exists a k-flat stabbing $\Omega((\log n/\log \log n)^{1/(d-k)})$ of them. As a corollary we deduce that every d-polytope with n vertices has a k-shadow with $\Omega((\log n/\log \log n)^{1/(d-k)})$ vertices.

Keywords: Convex subdivision, stabbing number, Moser's shadow problem

1 Introduction

In a famous list of open problems in combinatorial geometry from 1966 (see [2] and [4]), Moser asked for the largest $\mathfrak{s}(n)$ such that every 3-polytope with n vertices has a 2-dimensional projection with at least $\mathfrak{s}(n)$ vertices. The solution to this problem, popularly known as *Moser's shadow problem*, was implicit in the work of Chazelle, Edelsbrunner and Guibas in 1989 [1] but went unnoticed until recently [3].

¹ Supported by the grant ANR-17-CE40-0018 of the French National Research Agency ANR (project CAPPS).

² Email:alfredo.hubard@u-pem.fr

³ Email:arnau.padrol@imj-prg.fr

The results of [1] imply that $\mathfrak{s}(n) = \theta (\log n/\log \log n)$. The lower bound was derived from a related result concerning stabbing numbers of convex subdivisions of the plane by lines, that Tóth generalized to stabbing numbers of convex subdivisions of \mathbb{R}^d by lines [5]. He showed that for each convex subdivision of \mathbb{R}^d into *n* regions there is a line stabbing $\Omega ((\log n/\log \log n)^{1/(d-1)})$ cells. In the polytopal set-up, this implies that every *d*-polytope with *n*vertices has a 2-dimensional shadow with at least $\Omega ((\log n/\log \log n)^{1/(d-2)})$ vertices, and the case d = 2 for subdivisions and d = 3 for convex polytopes is the aforementioned work [1].

In this note, we consider the same questions with lines and 2-dimensional shadows replaced by k-flats and k-shadows (open problems formulated in [5] and [3], respectively). In particular, we prove that for every convex subdivision of \mathbb{R}^d into n cells there exists a k-flat stabbing $\Omega((\log n/\log \log n)^{1/(d-k)})$ of its cells, and that every d-polytope with n vertices has a k-shadow with $\Omega((\log n/\log \log n)^{1/(d-k)})$ vertices.

2 Stabbing convex subdivisions with k-flats

A convex subdivision of \mathbb{R}^d is a finite collection of closed convex *d*-dimensional sets, the *cells*, that cover \mathbb{R}^d and whose interiors are pairwise disjoint. We say that a *k*-flat, an affine subspace of dimension *k*, stabs a cell if it intersects its interior. Following Chazelle-Edelsbrunner-Guibas [1] and Tóth [5] we prove the following:

Theorem 2.1 There exists a constant $c_d > 0$ such that for any subdivision of \mathbb{R}^d into n convex cells, and 0 < k < d, there exists a k-flat stabbing at least $c_d \left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}$ cells of the subdivision.

It follows easily from the following lemma.

Lemma 2.2 Let S be convex subdivision of \mathbb{R}^d into $n > \ell^{(2\ell)^{d-k}}$ cells, where 0 < k < d and $\ell \ge 2$. Then for any generic direction v, either there is a line parallel to v stabbing ℓ cells, or there is hyperplane transversal to v stabbing at least $\ell^{(2\ell)^{d-k-1}}$ cells.

Proof. Set $\lambda = \ell^{(2\ell)^{d-k-1}}$ and assume that there is no hyperplane transversal to v stabbing at least λ cells. In ℓ steps, we will construct a collection of cells C_0, \ldots, C_ℓ that are all simultaneously stabled by the same line in direction v.

First consider the infinite cells A_0 and B_0 such that $tv \in A_0$ and $-tv \in B_0$ for all t > 0 sufficiently large. We set $Z_0 := \mathbb{R}^d \setminus (A_0 \cup B_0)$ and $S_0 := S \setminus \{A_0, B_0\}$. Note that all the points $p \in Z_0$ are between A_0 and B_0 in the direction v; that is, the intersection of any line parallel to v with Z_0 is a segment starting at A_0 and finishing at B_0 (and thus if the line intersects the interior of Z_0 it will stab both A_0 and B_0). We call such a set a *v*-cylinder, and A_0 and B_0 its bases. Note also that $S_0 = \{C \in S : Z_0 \cap C \neq \emptyset\}$.

In the following we consider only hyperplanes that are transversal to the direction v. For a given such hyperplane H, we will consider the cells that intersect it in a (d-1)-face. We will say that such a cell intersects H above or below if it intersects H^+ or H^- , respectively, where $H^{\pm} = \{x \pm tv : x \in H, t > 0\}$. Note that cells that intersect H and are not tangent to H will intersect both above and below.

To find the cells C_i , we will construct a nested family of v-cylinders $Z_{\ell} \subset Z_{\ell-1} \subset \cdots \subset Z_0$. The bases of Z_i will be A_i and B_i , one of which will be chosen to be C_i . To this end, assume that at the *i*-th step we have chosen A_i and B_i , and a v-cylinder Z_i that has them as bases. We put $S_i := \{C \in S : Z_i \cap C \neq \emptyset\}$. Then we choose a hyperplane H_i that weakly separates A_i from B_i (which exists since A_i and B_i are convex and with disjoint interiors).

Let \mathcal{T}_i^+ and \mathcal{T}_i^- be the cells of \mathcal{S}_i that intersect H_i above and below, respectively. Note that by perturbing H_i to $H_i \pm \epsilon v$ with ϵ arbitrarily small, the hyperplane stabs all the cells in \mathcal{T}_i^{\pm} , and hence by assumption $|\mathcal{T}_i^{\pm}| < \lambda$. Now, we subdivide $H_i^+ \cap Z_i$ into $|\mathcal{T}_i^+|$ v-monotone regions as follows. For each cell $C \in \mathcal{T}_i^+$, we consider the set of points $p \in H_i^+ \cap Z_i$ such that the last region intersected by a ray cast from p in direction -v before hitting H_i is C; that is, that the ray pierces $C \cap H_i$. If H_i is generic, these are just the intersections of $H_i^+ \cap Z_i$ with the cylinders in direction v spanned by each of the regions of $H_i \cap \mathcal{S}_i$. But since the subdivision was not required to be face-to-face and H_i might be tangent to a cell of \mathcal{S}_i , $H_i \cap \mathcal{S}_i$ is not necessarily well defined, and we have to distinguish the induced subdivision from above and from below.

The regions constructed this way cover $H_i^+ \cap Z_i$. Subtracting C from its associated region we obtain a v-cylinder Z_C^+ between C and A_i . (Some of these cylinders might be empty, if A_i intersects some cell in \mathcal{T}_i^+ .) For each $C \in \mathcal{T}_i^-$, we construct analogously a v-cylinder $Z_C^- \subset H_i^- \cap Z_i$ with bases C and B_i .

Note that the union of all these v-cylinders covers all $Z_i \setminus (\mathcal{T}_i^+ \cup \mathcal{T}_i^-)$ (and maybe more, because the cells in $\mathcal{T}_i^+ \cup \mathcal{T}_i^-$ might intersect the cylinders defined by other cells). Hence, by the pigeonhole principle, there must be one of them, that we define to be Z_{i+1} , that intersects at least

$$\frac{|\mathcal{S}_i| - |\mathcal{T}_i^+ \cup \mathcal{T}_i^-|}{|\mathcal{T}_i^+| + |\mathcal{T}_i^-|}$$

cells of S_i . If it belongs to H_i^+ we define $C_i := B_i$, $A_{i+1} := A_i$ and B_{i+1} to be the corresponding cell of \mathcal{T}_i^+ ; and if the cylinder belongs to H_i^- we set $C_i := A_i, B_{i+1} := B_i$, and A_{i+1} to be the corresponding cell of \mathcal{T}_i^- . We put $S_{i+1} := \{C \in S : Z_{i+1} \cap C \neq \emptyset\}$ and continue inductively until this set is empty.

Now, by induction on *i* we see that $|S_i| > \frac{n}{(2\lambda)^i} - 2$ for $0 \le i < \ell$. Indeed, $|S_0| = n - 2$ by construction and for i > 0 we have

$$|\mathcal{S}_i| > \frac{|\mathcal{S}_{i-1}| - 2\lambda}{2\lambda} > \frac{\frac{n}{(2\lambda)^{i-1}} - 2}{2\lambda} - 1 > \frac{n}{(2\lambda)^i} - 2.$$

In particular,

$$|\mathcal{S}_i| > \frac{\ell^{(2\ell)^{d-k}}}{2^{i}\ell^{i(2\ell)^{d-k-1}}} - 2 = \frac{\ell^{(2\ell-i)(2\ell)^{d-k-1}}}{2^i} - 2;$$

which is larger than 0 whenever $i < \ell$. Hence, the process does not finish in less than ℓ steps.

Observe that our construction ensures that $\{A_i, B_i\} \neq \{A_{i+1}, B_{i+1}\}$, and that the chosen cells $C_i \in \{A_i, B_i\} \setminus \{A_{i+1}, B_{i+1}\}$ are all distinct. Since the cylinders are nested, $Z_{i+1} \subset Z_i$, any line in direction v through the interior the last non-empty cylinder stabs each of the cells C_i .

Proof of Theorem 2.1 We prove, by induction on d, that for any subdivision of \mathbb{R}^d into $n > \ell^{(2\ell)^{d-k}}$ convex cells, there exists a k-flat intersecting at least ℓ cells. For d = r there is nothing to prove. If d > r, assume that for any convex subdivision of \mathbb{R}^{d-1} into $\ell^{(2\ell)^{d-1-r}}$ cells there exists a k-flat intersecting at least ℓ -cells.

Applying the lemma to the original subdivision we get an alternative: if the subdivision contains a line stabbing ℓ elements then we are done as any *k*-flat containing the line intersects at least this number of cells. Otherwise there exists a hyperplane *H* intersecting $\ell^{(2\ell)^{d-r-1}}$ cells. By the induction hypothesis on the subdivision induced on *H*, there is a *k*-flat contained in *H* that intersects at least ℓ cells. \Box

3 Moser's shadow problem in high dimensions

A k-shadow of a convex polytope P is a k-dimensional polytope that is the image of P under a linear map.

Theorem 3.1 There exists a constant $c'_d > 0$ such that for 1 < k < d, every *d*-polytope with *n* vertices has a *k*-shadow with at least $c'_d \left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}$ vertices.

Proof. Let P be a d-polytope with n vertices, and π the orthogonal projection of \mathbb{R}^d onto a k-dimensional linear subspace L. Then, if $\mathcal{N}(P)$ is the normal fan of P, the normal fan of $\pi(P)$ is isomorphic to $\mathcal{N}(P) \cap L$ (see [6, Lem. 7.11]).

Now consider the spherical subdivision of \mathbb{S}^{d-1} induced by $\mathcal{N}(P)$. It has n (d-1)-dimensional regions, one for each vertex, and after a suitable rotation we might assume that the lower hemisphere intersects at least $\frac{n}{2}$ of them. Central projection from the origin maps this subdivision of the lower hemisphere onto a convex subdivision of \mathbb{R}^{d-1} into at least $\frac{n}{2}$ cells. By Theorem 2.1, there is a (k-1)-flat that intersects at least

$$c_d \left(\frac{\log \frac{n}{2}}{\log \log \frac{n}{2}}\right)^{\frac{1}{(d-1)-(k-1)}} \ge c_d' \left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}$$

cells of this subdivision. The pre-image of this (k-1)-flat spans a k-dimensional linear subspace L intersecting at least $c'_d(\frac{\log n}{\log \log n})^{\frac{1}{d-k}}$ cells of $\mathcal{N}(P)$. Therefore, the orthogonal projection of P onto L is a k-shadow with at least this many vertices. \Box

References

- Bernard Chazelle, Herbert Edelsbrunner, and Leonidas J. Guibas, The complexity of cutting complexes, Discrete Comput. Geom. 4 (1989), no. 2, 139– 181.
- [2] Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1994, Corrected reprint of the 1991 original, Unsolved Problems in Intuitive Mathematics, II.
- [3] Jeffrey C. Lagarias, Yusheng Luo, and Arnau Padrol, Moser's Shadow Problem, (2017), Preprint available at arXiv:1310.4345.
- [4] William O.J. Moser, Problems, problems, problems, Discrete Applied Mathematics 31 (1991), no. 2, 201 – 225.
- [5] Csaba D. Tóth, Convex subdivisions with low stabbing numbers, Period. Math. Hungar. 57 (2008), no. 2, 217–225.

[6] Günter M. Ziegler, *Lectures on polytopes*, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.