Stabbing convex subdivisions with k-flats

Alfredo Hubard ${ }^{\text {a,1,2 }}$ and Arnau Padrol ${ }^{\text {b,1,3 }}$
${ }^{a}$ Université Paris-Est, LIGM, Marne-la-Vallée, France
${ }^{\text {b }}$ Sorbonne Université, IMJ-PRG, Paris, France

Abstract

We prove that for every convex subdivision of \mathbb{R}^{d} into n cells there exists a k-flat stabbing $\Omega\left((\log n / \log \log n)^{1 /(d-k)}\right)$ of them. As a corollary we deduce that every d-polytope with n vertices has a k-shadow with $\Omega\left((\log n / \log \log n)^{1 /(d-k)}\right)$ vertices.

Keywords: Convex subdivision, stabbing number, Moser's shadow problem

1 Introduction

In a famous list of open problems in combinatorial geometry from 1966 (see [2] and [4]), Moser asked for the largest $\mathfrak{s}(n)$ such that every 3 -polytope with n vertices has a 2 -dimensional projection with at least $\mathfrak{s}(n)$ vertices. The solution to this problem, popularly known as Moser's shadow problem, was implicit in the work of Chazelle, Edelsbrunner and Guibas in 1989 [1] but went unnoticed until recently [3].

[^0]The results of [1] imply that $\mathfrak{s}(n)=\theta(\log n / \log \log n)$. The lower bound was derived from a related result concerning stabbing numbers of convex subdivisions of the plane by lines, that Tóth generalized to stabbing numbers of convex subdivisions of \mathbb{R}^{d} by lines [5]. He showed that for each convex subdivision of \mathbb{R}^{d} into n regions there is a line stabbing $\Omega\left((\log n / \log \log n)^{1 /(d-1)}\right)$ cells. In the polytopal set-up, this implies that every d-polytope with n vertices has a 2 -dimensional shadow with at least $\Omega\left((\log n / \log \log n)^{1 /(d-2)}\right)$ vertices, and the case $d=2$ for subdivisions and $d=3$ for convex polytopes is the aforementioned work [1].

In this note, we consider the same questions with lines and 2-dimensional shadows replaced by k-flats and k-shadows (open problems formulated in [5] and [3], respectively). In particular, we prove that for every convex subdivision of \mathbb{R}^{d} into n cells there exists a k-flat stabbing $\Omega\left((\log n / \log \log n)^{1 /(d-k)}\right)$ of its cells, and that every d-polytope with n vertices has a k-shadow with $\Omega\left((\log n / \log \log n)^{1 /(d-k)}\right)$ vertices.

2 Stabbing convex subdivisions with k-flats

A convex subdivision of \mathbb{R}^{d} is a finite collection of closed convex d-dimensional sets, the cells, that cover \mathbb{R}^{d} and whose interiors are pairwise disjoint. We say that a k-flat, an affine subspace of dimension k, stabs a cell if it intersects its interior. Following Chazelle-Edelsbrunner-Guibas [1] and Tóth [5] we prove the following:
Theorem 2.1 There exists a constant $c_{d}>0$ such that for any subdivision of \mathbb{R}^{d} into n convex cells, and $0<k<d$, there exists a k-flat stabbing at least $c_{d}\left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}$ cells of the subdivision.

It follows easily from the following lemma.
Lemma 2.2 Let \mathcal{S} be convex subdivision of \mathbb{R}^{d} into $n>\ell^{(2 \ell)^{d-k}}$ cells, where $0<k<d$ and $\ell \geq 2$. Then for any generic direction v, either there is a line parallel to v stabbing ℓ cells, or there is hyperplane transversal to v stabbing at least $\ell^{(2 \ell)^{d-k-1}}$ cells.

Proof. Set $\lambda=\ell^{(2 \ell)^{d-k-1}}$ and assume that there is no hyperplane transversal to v stabbing at least λ cells. In ℓ steps, we will construct a collection of cells C_{0}, \ldots, C_{ℓ} that are all simultaneously stabbed by the same line in direction v.

First consider the infinite cells A_{0} and B_{0} such that $t v \in A_{0}$ and $-t v \in B_{0}$ for all $t>0$ sufficiently large. We set $Z_{0}:=\mathbb{R}^{d} \backslash\left(A_{0} \cup B_{0}\right)$ and $\mathcal{S}_{0}:=$ $\mathcal{S} \backslash\left\{A_{0}, B_{0}\right\}$. Note that all the points $p \in Z_{0}$ are between A_{0} and B_{0} in
the direction v; that is, the intersection of any line parallel to v with Z_{0} is a segment starting at A_{0} and finishing at B_{0} (and thus if the line intersects the interior of Z_{0} it will stab both A_{0} and B_{0}). We call such a set a v-cylinder, and A_{0} and B_{0} its bases. Note also that $\mathcal{S}_{0}=\left\{C \in \mathcal{S}: Z_{0} \cap C \neq \emptyset\right\}$.

In the following we consider only hyperplanes that are transversal to the direction v. For a given such hyperplane H, we will consider the cells that intersect it in a $(d-1)$-face. We will say that such a cell intersects H above or below if it intersects H^{+}or H^{-}, respectively, where $H^{ \pm}=\{x \pm t v: x \in$ $H, t>0\}$. Note that cells that intersect H and are not tangent to H will intersect both above and below.

To find the cells C_{i}, we will construct a nested family of v-cylinders $Z_{\ell} \subset$ $Z_{\ell-1} \subset \cdots \subset Z_{0}$. The bases of Z_{i} will be A_{i} and B_{i}, one of which will be chosen to be C_{i}. To this end, assume that at the i-th step we have chosen A_{i} and B_{i}, and a v-cylinder Z_{i} that has them as bases. We put $\mathcal{S}_{i}:=\left\{C \in \mathcal{S}: Z_{i} \cap C \neq \emptyset\right\}$. Then we choose a hyperplane H_{i} that weakly separates A_{i} from B_{i} (which exists since A_{i} and B_{i} are convex and with disjoint interiors).

Let \mathcal{T}_{i}^{+}and \mathcal{T}_{i}^{-}be the cells of \mathcal{S}_{i} that intersect H_{i} above and below, respectively. Note that by perturbing H_{i} to $H_{i} \pm \epsilon v$ with ϵ arbitrarily small, the hyperplane stabs all the cells in $\mathcal{T}_{i}^{ \pm}$, and hence by assumption $\left|\mathcal{T}_{i}^{ \pm}\right|<\lambda$. Now, we subdivide $H_{i}^{+} \cap Z_{i}$ into $\left|\mathcal{T}_{i}^{+}\right| v$-monotone regions as follows. For each cell $C \in \mathcal{T}_{i}^{+}$, we consider the set of points $p \in H_{i}^{+} \cap Z_{i}$ such that the last region intersected by a ray cast from p in direction $-v$ before hitting H_{i} is C; that is, that the ray pierces $C \cap H_{i}$. If H_{i} is generic, these are just the intersections of $H_{i}^{+} \cap Z_{i}$ with the cylinders in direction v spanned by each of the regions of $H_{i} \cap \mathcal{S}_{i}$. But since the subdivision was not required to be face-to-face and H_{i} might be tangent to a cell of $\mathcal{S}_{i}, H_{i} \cap \mathcal{S}_{i}$ is not necessarily well defined, and we have to distinguish the induced subdivision from above and from below.

The regions constructed this way cover $H_{i}^{+} \cap Z_{i}$. Subtracting C from its associated region we obtain a v-cylinder Z_{C}^{+}between C and A_{i}. (Some of these cylinders might be empty, if A_{i} intersects some cell in \mathcal{T}_{i}^{+}.) For each $C \in \mathcal{T}_{i}^{-}$, we construct analogously a v-cylinder $Z_{C}^{-} \subset H_{i}^{-} \cap Z_{i}$ with bases C and B_{i}.

Note that the union of all these v-cylinders covers all $Z_{i} \backslash\left(\mathcal{T}_{i}^{+} \cup \mathcal{T}_{i}^{-}\right)$ (and maybe more, because the cells in $\mathcal{T}_{i}^{+} \cup \mathcal{T}_{i}^{-}$might intersect the cylinders defined by other cells). Hence, by the pigeonhole principle, there must be one of them, that we define to be Z_{i+1}, that intersects at least

$$
\frac{\left|\mathcal{S}_{i}\right|-\left|\mathcal{T}_{i}^{+} \cup \mathcal{T}_{i}^{-}\right|}{\left|\mathcal{T}_{i}^{+}\right|+\left|\mathcal{T}_{i}^{-}\right|}
$$

cells of \mathcal{S}_{i}. If it belongs to H_{i}^{+}we define $C_{i}:=B_{i}, A_{i+1}:=A_{i}$ and B_{i+1} to be the corresponding cell of $\mathcal{T}_{i}^{+} ;$and if the cylinder belongs to H_{i}^{-}we set $C_{i}:=A_{i}, B_{i+1}:=B_{i}$, and A_{i+1} to be the corresponding cell of \mathcal{T}_{i}^{-}. We put $\mathcal{S}_{i+1}:=\left\{C \in \mathcal{S}: Z_{i+1} \cap C \neq \emptyset\right\}$ and continue inductively until this set is empty.

Now, by induction on i we see that $\left|\mathcal{S}_{i}\right|>\frac{n}{(2 \lambda)^{i}}-2$ for $0 \leq i<\ell$. Indeed, $\left|\mathcal{S}_{0}\right|=n-2$ by construction and for $i>0$ we have

$$
\left|\mathcal{S}_{i}\right|>\frac{\left|\mathcal{S}_{i-1}\right|-2 \lambda}{2 \lambda}>\frac{\frac{n}{(2 \lambda)^{i-1}}-2}{2 \lambda}-1>\frac{n}{(2 \lambda)^{i}}-2 .
$$

In particular,

$$
\left|\mathcal{S}_{i}\right|>\frac{\ell^{(2 \ell)^{d-k}}}{2^{i} \ell^{i(2 \ell)^{d-k-1}}}-2=\frac{\ell^{(2 \ell-i)(2 \ell)^{d-k-1}}}{2^{i}}-2 ;
$$

which is larger than 0 whenever $i<\ell$. Hence, the process does not finish in less than ℓ steps.

Observe that our construction ensures that $\left\{A_{i}, B_{i}\right\} \neq\left\{A_{i+1}, B_{i+1}\right\}$, and that the chosen cells $C_{i} \in\left\{A_{i}, B_{i}\right\} \backslash\left\{A_{i+1}, B_{i+1}\right\}$ are all distinct. Since the cylinders are nested, $Z_{i+1} \subset Z_{i}$, any line in direction v through the interior the last non-empty cylinder stabs each of the cells C_{i}.

Proof of Theorem 2.1 We prove, by induction on d, that for any subdivision of \mathbb{R}^{d} into $n>\ell^{(2 \ell)^{d-k}}$ convex cells, there exists a k-flat intersecting at least ℓ cells. For $d=r$ there is nothing to prove. If $d>r$, assume that for any convex subdivision of \mathbb{R}^{d-1} into $\ell^{(2 \ell)^{d-1-r}}$ cells there exists a k-flat intersecting at least ℓ-cells.

Applying the lemma to the original subdivision we get an alternative: if the subdivision contains a line stabbing ℓ elements then we are done as any k-flat containing the line intersects at least this number of cells. Otherwise there exists a hyperplane H intersecting $\ell^{(2 \ell)^{d-r-1}}$ cells. By the induction hypothesis on the subdivision induced on H, there is a k-flat contained in H that intersects at least ℓ cells.

3 Moser's shadow problem in high dimensions

A k-shadow of a convex polytope P is a k-dimensional polytope that is the image of P under a linear map.

Theorem 3.1 There exists a constant $c_{d}^{\prime}>0$ such that for $1<k<d$, every d-polytope with n vertices has a k-shadow with at least $c_{d}^{\prime}\left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}$ vertices.

Proof. Let P be a d-polytope with n vertices, and π the orthogonal projection of \mathbb{R}^{d} onto a k-dimensional linear subspace L. Then, if $\mathcal{N}(P)$ is the normal fan of P, the normal fan of $\pi(P)$ is isomorphic to $\mathcal{N}(P) \cap L$ (see [6, Lem. 7.11]).

Now consider the spherical subdivision of \mathbb{S}^{d-1} induced by $\mathcal{N}(P)$. It has n ($d-1$)-dimensional regions, one for each vertex, and after a suitable rotation we might assume that the lower hemisphere intersects at least $\frac{n}{2}$ of them. Central projection from the origin maps this subdivision of the lower hemisphere onto a convex subdivision of \mathbb{R}^{d-1} into at least $\frac{n}{2}$ cells. By Theorem 2.1, there is a ($k-1$)-flat that intersects at least

$$
c_{d}\left(\frac{\log \frac{n}{2}}{\log \log \frac{n}{2}}\right)^{\frac{1}{(d-1)-(k-1)}} \geq c_{d}^{\prime}\left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}
$$

cells of this subdivision. The pre-image of this ($k-1$)-flat spans a k-dimensional linear subspace L intersecting at least $c_{d}^{\prime}\left(\frac{\log n}{\log \log n}\right)^{\frac{1}{d-k}}$ cells of $\mathcal{N}(P)$. Therefore, the orthogonal projection of P onto L is a k-shadow with at least this many vertices.

References

[1] Bernard Chazelle, Herbert Edelsbrunner, and Leonidas J. Guibas, The complexity of cutting complexes, Discrete Comput. Geom. 4 (1989), no. 2, 139181.
[2] Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy, Unsolved problems in geometry, Problem Books in Mathematics, Springer-Verlag, New York, 1994, Corrected reprint of the 1991 original, Unsolved Problems in Intuitive Mathematics, II.
[3] Jeffrey C. Lagarias, Yusheng Luo, and Arnau Padrol, Moser's Shadow Problem, (2017), Preprint available at arXiv:1310.4345.
[4] William O.J. Moser, Problems, problems, problems, Discrete Applied Mathematics 31 (1991), no. 2, $201-225$.
[5] Csaba D. Tóth, Convex subdivisions with low stabbing numbers, Period. Math. Hungar. 57 (2008), no. 2, 217-225.
[6] Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.

[^0]: ${ }^{1}$ Supported by the grant ANR-17-CE40-0018 of the French National Research Agency ANR (project CAPPS).
 ${ }^{2}$ Email:alfredo.hubard@u-pem.fr
 ${ }^{3}$ Email:arnau.padrol@imj-prg.fr

