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Abstract

We prove that for every convex subdivision of Rd into n cells there exists a k-flat
stabbing Ω

(
(log n/log logn)1/(d−k)

)
of them. As a corollary we deduce that every

d-polytope with n vertices has a k-shadow with Ω
(
(log n/log logn)1/(d−k)

)
vertices.
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1 Introduction

In a famous list of open problems in combinatorial geometry from 1966 (see [2]
and [4]), Moser asked for the largest s(n) such that every 3-polytope with n
vertices has a 2-dimensional projection with at least s(n) vertices. The solution
to this problem, popularly known as Moser’s shadow problem, was implicit in
the work of Chazelle, Edelsbrunner and Guibas in 1989 [1] but went unnoticed
until recently [3].
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The results of [1] imply that s(n) = θ (log n/log log n). The lower bound
was derived from a related result concerning stabbing numbers of convex sub-
divisions of the plane by lines, that Tóth generalized to stabbing numbers of
convex subdivisions of Rd by lines [5]. He showed that for each convex subdi-
vision of Rd into n regions there is a line stabbing Ω

(
(log n/ log log n)1/(d−1)

)
cells. In the polytopal set-up, this implies that every d-polytope with n-
vertices has a 2-dimensional shadow with at least Ω

(
(log n/ log log n)1/(d−2)

)
vertices, and the case d = 2 for subdivisions and d = 3 for convex polytopes
is the aforementioned work [1].

In this note, we consider the same questions with lines and 2-dimensional
shadows replaced by k-flats and k-shadows (open problems formulated in [5]
and [3], respectively). In particular, we prove that for every convex subdivi-
sion of Rd into n cells there exists a k-flat stabbing Ω

(
(log n/log log n)1/(d−k)

)
of its cells, and that every d-polytope with n vertices has a k-shadow with
Ω
(
(log n/log log n)1/(d−k)

)
vertices.

2 Stabbing convex subdivisions with k-flats

A convex subdivision of Rd is a finite collection of closed convex d-dimensional
sets, the cells, that cover Rd and whose interiors are pairwise disjoint. We say
that a k-flat, an affine subspace of dimension k, stabs a cell if it intersects its
interior. Following Chazelle-Edelsbrunner-Guibas [1] and Tóth [5] we prove
the following:

Theorem 2.1 There exists a constant cd > 0 such that for any subdivision of
Rd into n convex cells, and 0 < k < d, there exists a k-flat stabbing at least

cd
(

logn
log logn

) 1
d−k cells of the subdivision.

It follows easily from the following lemma.

Lemma 2.2 Let S be convex subdivision of Rd into n > `(2`)
d−k

cells, where
0 < k < d and ` ≥ 2. Then for any generic direction v, either there is a line
parallel to v stabbing ` cells, or there is hyperplane transversal to v stabbing
at least `(2`)

d−k−1
cells.

Proof. Set λ = `(2`)
d−k−1

and assume that there is no hyperplane transversal
to v stabbing at least λ cells. In ` steps, we will construct a collection of cells
C0, . . . , C` that are all simultaneously stabbed by the same line in direction v.

First consider the infinite cells A0 and B0 such that tv ∈ A0 and −tv ∈ B0

for all t > 0 sufficiently large. We set Z0 := Rd r (A0 ∪ B0) and S0 :=
S r {A0, B0}. Note that all the points p ∈ Z0 are between A0 and B0 in



the direction v; that is, the intersection of any line parallel to v with Z0 is a
segment starting at A0 and finishing at B0 (and thus if the line intersects the
interior of Z0 it will stab both A0 and B0). We call such a set a v-cylinder,
and A0 and B0 its bases. Note also that S0 = {C ∈ S : Z0 ∩ C 6= ∅}.

In the following we consider only hyperplanes that are transversal to the
direction v. For a given such hyperplane H, we will consider the cells that
intersect it in a (d − 1)-face. We will say that such a cell intersects H above
or below if it intersects H+ or H−, respectively, where H± = {x ± tv : x ∈
H, t > 0}. Note that cells that intersect H and are not tangent to H will
intersect both above and below.

To find the cells Ci, we will construct a nested family of v-cylinders Z` ⊂
Z`−1 ⊂ · · · ⊂ Z0. The bases of Zi will be Ai and Bi, one of which will be chosen
to be Ci. To this end, assume that at the i-th step we have chosen Ai and Bi,
and a v-cylinder Zi that has them as bases. We put Si := {C ∈ S : Zi∩C 6= ∅}.
Then we choose a hyperplane Hi that weakly separates Ai from Bi (which
exists since Ai and Bi are convex and with disjoint interiors).

Let T +
i and T −i be the cells of Si that intersect Hi above and below,

respectively. Note that by perturbing Hi to Hi ± εv with ε arbitrarily small,
the hyperplane stabs all the cells in T ±i , and hence by assumption |T ±i | < λ.
Now, we subdivide H+

i ∩Zi into |T +
i | v-monotone regions as follows. For each

cell C ∈ T +
i , we consider the set of points p ∈ H+

i ∩Zi such that the last region
intersected by a ray cast from p in direction −v before hitting Hi is C; that
is, that the ray pierces C ∩Hi. If Hi is generic, these are just the intersections
of H+

i ∩ Zi with the cylinders in direction v spanned by each of the regions
of Hi ∩ Si. But since the subdivision was not required to be face-to-face and
Hi might be tangent to a cell of Si, Hi∩Si is not necessarily well defined, and
we have to distinguish the induced subdivision from above and from below.

The regions constructed this way cover H+
i ∩ Zi. Subtracting C from its

associated region we obtain a v-cylinder Z+
C between C and Ai. (Some of these

cylinders might be empty, if Ai intersects some cell in T +
i .) For each C ∈ T −i ,

we construct analogously a v-cylinder Z−C ⊂ H−i ∩ Zi with bases C and Bi.

Note that the union of all these v-cylinders covers all Zi r (T +
i ∪ T −i )

(and maybe more, because the cells in T +
i ∪ T −i might intersect the cylinders

defined by other cells). Hence, by the pigeonhole principle, there must be one
of them, that we define to be Zi+1, that intersects at least

|Si| − |T +
i ∪ T −i |

|T +
i |+ |T −i |



cells of Si. If it belongs to H+
i we define Ci := Bi, Ai+1 := Ai and Bi+1 to

be the corresponding cell of T +
i ; and if the cylinder belongs to H−i we set

Ci := Ai, Bi+1 := Bi, and Ai+1 to be the corresponding cell of T −i . We put
Si+1 := {C ∈ S : Zi+1 ∩ C 6= ∅} and continue inductively until this set is
empty.

Now, by induction on i we see that |Si| > n
(2λ)i
− 2 for 0 ≤ i < `. Indeed,

|S0| = n− 2 by construction and for i > 0 we have

|Si| >
|Si−1| − 2λ

2λ
>

n
(2λ)i−1 − 2

2λ
− 1 >

n

(2λ)i
− 2.

In particular,

|Si| >
`(2`)

d−k

2i`i(2`)d−k−1 − 2 =
`(2`−i)(2`)

d−k−1

2i
− 2;

which is larger than 0 whenever i < `. Hence, the process does not finish in
less than ` steps.

Observe that our construction ensures that {Ai, Bi} 6= {Ai+1, Bi+1}, and
that the chosen cells Ci ∈ {Ai, Bi} r {Ai+1, Bi+1} are all distinct. Since the
cylinders are nested, Zi+1 ⊂ Zi, any line in direction v through the interior
the last non-empty cylinder stabs each of the cells Ci. 2

Proof of Theorem 2.1 We prove, by induction on d, that for any subdivision
of Rd into n > `(2`)

d−k
convex cells, there exists a k-flat intersecting at least

` cells. For d = r there is nothing to prove. If d > r, assume that for any
convex subdivision of Rd−1 into `(2`)

d−1−r
cells there exists a k-flat intersecting

at least `-cells.

Applying the lemma to the original subdivision we get an alternative: if
the subdivision contains a line stabbing ` elements then we are done as any
k-flat containing the line intersects at least this number of cells. Otherwise
there exists a hyperplane H intersecting `(2`)

d−r−1
cells. By the induction

hypothesis on the subdivision induced on H, there is a k-flat contained in H
that intersects at least ` cells. 2

3 Moser’s shadow problem in high dimensions

A k-shadow of a convex polytope P is a k-dimensional polytope that is the
image of P under a linear map.



Theorem 3.1 There exists a constant c′d > 0 such that for 1 < k < d, every

d-polytope with n vertices has a k-shadow with at least c′d
(

logn
log logn

) 1
d−k vertices.

Proof. Let P be a d-polytope with n vertices, and π the orthogonal projection
of Rd onto a k-dimensional linear subspace L. Then, if N (P ) is the normal fan
of P , the normal fan of π(P ) is isomorphic to N (P ) ∩ L (see [6, Lem. 7.11]).

Now consider the spherical subdivision of Sd−1 induced by N (P ). It has n
(d−1)-dimensional regions, one for each vertex, and after a suitable rotation we
might assume that the lower hemisphere intersects at least n

2
of them. Central

projection from the origin maps this subdivision of the lower hemisphere onto
a convex subdivision of Rd−1 into at least n

2
cells. By Theorem 2.1, there is a

(k − 1)-flat that intersects at least

cd

(
log n

2

log log n
2

) 1
(d−1)−(k−1)

≥ c′d

(
log n

log log n

) 1
d−k

cells of this subdivision. The pre-image of this (k−1)-flat spans a k-dimensional

linear subspace L intersecting at least c′d(
logn

log logn
)

1
d−k cells of N (P ). Therefore,

the orthogonal projection of P onto L is a k-shadow with at least this many
vertices. 2
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