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Abstract

In previous work we classified all empty 4-simplices of width at least three. We here
classify those of width two. There are 2 two-parameter families that project to the
second dilation of a unimodular triangle, 29 + 23 one-parameter families of them
that project to hollow 3-polytopes, and 2282 individual ones that do not.
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1 Introduction

Recall that a lattice polytope is the convex hull in Rd of finitely many points of
Zd (or of any other geometric lattice Λ ⊂ Rd). A lattice d-simplex is a lattice
d-polytope whose vertices are affinely independent and with no other lattice
point. Equivalently, it is a lattice d-polytope with exactly d+ 1 lattice points.
By classification we mean modulo unimodular equivalence.

Lattice polytopes have been widely studied for their relations to algebraic
geometry and integer optimization, among other fields. For example, empty
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lattice simplices correspond to the so called terminal quotient singularities in
the minimal model program of Mori for the birational classification of alge-
braic varieties. Their classification in dimension three is sometimes dubbed
the terminal lemma, and quite some effort has been devoted towards the clas-
sification of 4-dimensional ones. In particular, Mori et al. [7] conjectured a
classification of the empty 4-dimensional simplices of prime volume into a
three-parameter family, one two-parameter family, 29 one-parameter families,
and a finite list of exceptions, of volumes up to 419. This classification was
later proved by Bober [3] (see also [4,9]).

For the non-prime case, [1] claimed that the classification of Mori et al. ex-
tended without change (except for an increase in the number of exceptional
simplices) but this statement was found in [2] to be false, where additional
infinite families were found. In our previous work [6] we completely classified
empty 4-simplices of width three or more, proving that the maximum volume
among them is 179, as conjectured in [5]. We here report on a complete clas-
sification of simplices of width two, which finishes the task since simplices of
width one are easy to classify in arbitrary dimension.

2 Preliminaries on the classification

2.1 Normalized volume and lattice width

We first introduce the two basic invariants for the classification of empty sim-
plices (or more general lattice polytopes), already mentioned in the previous
paragraphs: their normalized volume and their width. Let Λ be a geometric
d-dimensional lattice in Rd.

A unimodular simplex is a lattice simplex whose vertices form an affine
basis for Λ. All unimodular simplices are unimodularly equivalent and, in
particular, they have the same volume, sometimes called the determinant of
Λ. The normalized volume in Rd is the Euclidean volume normalized to the
lattice, so that unimodular simplices have volume one. For example, if Λ = Zd

then the normalized volume equals the Euclidean volume multiplied by d!.
In particular, the normalized volume of every lattice polytope is a positive
integer, and it equals one exactly for unimodular simplices.

The width of a body K ⊂ Rd with respect to a linear functional f : Rd →
R is the length of the interval f(K), that is, the difference maxx∈K f(x) −
minx∈K f(x). We call (lattice) width of a lattice polytope P the minimum
width of P with respect to all non-constant affine functionals with f(Λ) ⊂ Z.

The classification of empty simplices of dimension up to three is classical.



In dimension two every empty triangle is unimodular. In dimension three there
are infinitely many empty simplices which were classified by White [10] giving
a complete characterization. All of them have width one.

In dimension 4 the same is not true. Haase and Ziegler in [5] showed that
there are infinitely many non-equivalent lattice 4-simplices of width two and
conjectured both parts of the following recent result:

Theorem 1 (i) There are only finitely many empty 4-simplices of width
greater than two [2].

(ii) All empty 4-simplices of width greater than two have volume between 41
and 179. There are exactly 178 classes of witdth three, a single one of
width four, and none of larger width [6].

Empty simplices of width 1 are easy to classify à la White (see details
below), so most of the task in this paper is to classify empty 4-simplices of
width two.

2.2 Lattice simplices as finite subgroups of the torus

Before giving details about the classification itself, let us explain an intrinsic
way of representing a lattice simplex (empty or not).

Let P = conv(v0, . . . , vd) be a lattice d-simplex of a certain volume V
with respect to a given lattice Λ. Let Λ0 be the affine sublattice generated
by v0, . . . , vd, so that V = |Λ : Λ0|. Then, every point p ∈ aff(Λ) can be
uniquely reperesented in barycentric coordinates by a vector b = (b0, . . . , bd)
with

∑
i bi = 1, meaning by this that p =

∑
i bipi. Moreover, two points p, p′

have barycentric coordinates differing by an integer vector if and only if they
lie in the same translate of Λ0.

In particular, if we let

Td := {b ∈ Rd+1 :
∑
i

bi = 1}/{b ∈ Zd+1 :
∑
i

bi = 1} ∼= Rd/Λ0

be the homogeneous real torus of dimension d, then every lattice simplex P
of volume V induces a subgroup G(P ) ∼= Λ/Λ0 of order V of Td. Moreover:

Proposition 2 Two simplices P and P ′ are equivalent if and only if G(P )
and G(P ′) are the same group modulo permutation of coordinates.

That is, we can represent a lattice simplex P as a finite subgroup G(P ) of
Td.

We can relax the condition that
∑

i bi = 1 for our barycentric coordinates
and ask only that

∑
i bi ∈ Z taking into account that



{(b0, . . . , bd) ∈ Rd+1 :
∑
i

bi = 1}/{(b0, . . . , bd) ∈ Zd+1 :
∑
i

bi = 1}

= {(b0, . . . , bd) ∈ Rd+1 :
∑
i

bi ∈ Z}/{(b0, . . . , bd) ∈ Zd+1}.

Thus, every element of Td can be uniquely represented by a vector in
[0, 1)d+1 with integer sum of coordinates. P is empty if, and only if, no element
of G(P ) (expressed in this canonical form) has sum of coordinates equal to 1.

We call a lattice simplex P cyclic if G(P ) is a cyclic group. Barile et
al. [1, Theorem 1] showed that every empty lattice simplex of dimension four
is cyclic, so that we can identify by a generator of G(P ). Thus:

Corollary 3 Every cyclic d-simplex (in particular, every empty d-simplex
with d ≤ 4) of volume V can be described by a (d + 1)-tuple of numbers in
1
V
Zd+1. Two tuples represent the same simplex if (and only if) they generate

the same (modulo permutation of coordinates) subgroup of Td+1.

Example 4 The empty 3-simplex T (p, q) = conv{0, (1, 0, 0), (0, 0, 1), (p, q, 1)}
has the associated 4-tuple 1

q
(−p, p,−1, 1), since Λ = Z3, Λ0 = {(a, b, c) ∈ Z3 :

b = 0 (mod q)} and Λ/Λ0 is generated by

(0, 1, 0) =

(
1− p

q

)
(0, 0, 0) +

p

q
(1, 0, 0)− 1

q
(0, 0, 1) +

1

q
(p, q, 1).

2.3 Hollow projections of hollow polytopes

One last ingredient that is useful in order to state (and prove) our classification
is the following result of Nill and Ziegler. A hollow polytope is a lattice
polytope with no interior lattice points. We say that a hollow polytope P ⊂ Rd

projects to a hollow polytope Q ⊂ Rd′ , d′ < d, if there is an affine integer map
π : Rd → Rd′ with π(Zd) = Zd′ and π(P ) = Q.

Theorem 5 ([8]) For each dimension d there is only finitely many hollow
d-polytopes that do not project to any hollow (d− 1)-polytope.

In particular, an interesting invariant of hollow polytopes (in particular,
empty simplices) is what is the minimal dimension of a hollow polytope they
project to. Observe that a hollow polytope projects to dimension 1 if and only
if it has width one.

3 The classification

Theorem 6 (Classification of empty 4-simplices) Let P be an empty 4-
simplex of normalized volume V and let d′ ∈ {1, 2, 3, 4} be the minimum di-



1
2 (0, 0, 1, 1, 0) + 1

V (6,−2,−12, 4, 4)

1
2 (1, 0, 0, 0, 1) + 1

V (8,−6, 2,−8, 4)

1
2 (0, 0, 1, 0, 1) + 1

V (8,−4,−12, 6, 2)

1
2 (1, 0, 0, 0, 1) + 1

V (4, 6,−2,−16, 8)

1
2 (0, 1, 1, 0, 0) + 1

V (2,−12, 4, 12,−6)

1
2 (1, 0, 1, 0, 0) + 1

V (12,−16, 8,−6, 2)

1
2 (0, 1, 0, 0, 1) + 1

V (2, 12,−8,−12, 6)

1
2 (1, 0, 0, 0, 1) + 1

V (8, 6,−2,−24, 12)

1
2 (0, 1, 0, 0, 1) + 1

V (6,−2, 8,−24, 12)

1
4 (2, 1, 1, 0, 0) + 1

V (12,−12, 4,−8, 4)

1
4 (0, 1, 1, 0, 2) + 1

V (4, 8,−4,−16, 8)

1
4 (0, 0, 1, 2, 1) + 1

V (4,−16, 4, 16,−8)

1
4 (0, 1, 1, 0, 2) + 1

V (4, 12,−4,−24, 12)

1
3 (0, 0, 2, 1, 0) + 1

V (−9, 6, 3, 3,−3)

1
3 (1, 0, 2, 0, 0) + 1

V (9,−9, 3,−6, 3)

1
3 (0, 0, 1, 2, 0) + 1

V (−9, 3, 6, 6,−6)

1
3 (0, 0, 1, 2, 0) + 1

V (12,−6,−12, 3, 3)

1
3 (1, 0, 2, 0, 0) + 1

V (9,−18, 6, 6,−3)

1
3 (1, 0, 2, 0, 0) + 1

V (12,−18, 3, 6,−3)

1
3 (1, 0, 2, 0, 0) + 1

V (12,−9, 3,−12, 6)

1
3 (1, 0, 2, 0, 0) + 1

V (6,−3, 6,−18, 9)

1
3 (0, 0, 1, 1, 1) + 1

V (3,−18, 6, 18,−9)

1
6 (1, 0, 0, 4, 1) + 1

V (6,−18, 6, 12,−6)

Table 1
The 23 non-primitive quintuples.

mension of a hollow polytope that P projects to. Then P lies in one of the
following explicitly described categories, depending on d′:

d′ = 1: (That is, P has width one). Then P can be represented by a 5-tuple of the

form 1
V

(−a,−b, a+ b,−1, 1), where gcd(a, b, V ) = 1. P is equivalent to the
simplex

conv{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 1), (a, b, V, 1)}.

d′ = 2: P projects to the doubled unimodular triangle, the only hollow 2-polytope of

width > 1. There are two possibilities for the tuple, namely:

1

V
(a,−2a, b,−2b, a+ b), and

1

2
(0, 0, 1, 0, 1) +

1

V
(2,−1,−1, a,−a).

d′ = 3: There are 29 + 23 possibilities for the tuple. The first 29 are the “stable

quintuples” identified by Mori, Morrison and Morrison [7]. The other 23
are “non-primitive families” that we list in Table 1, separated according to
their index, which is an integer in {2, 3, 4, 6}.



d′ = 4: There are exactly 2461 (classes of) empty 4-simplices that do not project

to a hollow 3-polytope. Their volumes range from 24 to 419 and according
to their width they fall in 2282, 178 and 1 classes of widths 2, 3 and 4,
respectively.

Observe that not all possibilities for the parameters a, b, and V in the
statement produce empty simplices. Our claim is that all empty 4-simplices
fall into this classification. (It is not difficult, but tedious, to specify the exact
conditions on a, b and V that make the simplices empty, for each case).
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