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Abstract

The connection between inequalities in additive combinatorics and analogous ver-
sions in terms of the entropy of random variables has been extensively explored over
the past few years. This paper extends a device introduced by Ruzsa in his seminal
work introducing this correspondence. This extension provides a toolbox for estab-
lishing the equivalence between sumset inequalities and their entropic versions. It
supplies simpler proofs of known results and opens a path for obtaining new ones.
Some new examples in nonabelian groups and with nonlinear functions of random
variables illustrate the power of the device.
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1 Introduction

In recent years, several authors realized that there exist certain analogies
between many of the cardinality inequalities in additive combinatorics that
have been developed over the years and some entropy inequalities. These ana-
logies appear, for instance, with many important sumset inequalities such as
the Plünnecke-Ruzsa inequalities, or with traditional entropy results such as
Shearer's inequality. In the past decade, several papers exploring these ana-
logies have appeared and many insightful results have been produced. The
seminal work of Ruzsa [8] on this topic was extended by Balister and Bol-
lobás [1], Kontoyiannis and Madiman [3], Madiman, Marcus and Tetali [4],
Madiman and Tetali [5] or Tao [10], among many others. All these papers
present di�erent techniques with which the analogy between set cardinality
inequalities and entropy inequalities can be studied. These techniques are used
to obtain many new results, especially in the form of entropy inequalities.

Let X be a discrete random variable taking values x1, x2, . . . , xn with prob-
abilities p1, p2, . . . , pn, respectively. The Shannon entropy of X is de�ned as

H(X) :=
n∑
i=1

pi log
1

pi
.

This is a concave function, and Jensen's inequality gives

H(X) ≤ log n,

where n is the cardinality of the range of X. Moreover, equality holds if and
only if X is uniformly distributed over its range. This is the key property
which allows one to translate entropy inequalities into combinatorial ones.
From this perspective, entropy inequalities can be seen as generalizations of
their combinatorial counterparts. One of the �rst examples in the literature
is the translation of the classical inequality of Han,

(n− 1)H(X1, . . . , Xn) ≤
n∑
i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn),

which provides a simple direct proof of the inequality of Loomis and Whitney

|A|n−1 ≤
n∏
i=1

|Ai|,



where A ⊂ E1 × · · · × En and Ai denotes the projection of A to the i-th
coordinate hyperplane. This example opened the path to obtaining combin-
atorial inequalities from entropy ones, and most of the work in the area was
devoted to proving entropy versions inspired by combinatorial ones.

In this sense, Ruzsa [8] introduced a device to walk the path backwards
and obtain entropy inequalities from combinatorial ones, by establishing in
fact the equivalence between the two versions. In his paper he restricted the
device to linear functions in abelian groups.

The main goal of this paper is to extend the device of Ruzsa to arbitrary
functions. By doing so we obtain a more �exible tool which allows us to give
new combinatorial proofs of entropy inequalities and also to obtain new ones,
particularly in the setting of nonabelian groups and also involving nonlinear
functions.

Given any function f : X → Y , we denote by fk the function fk : X k → Yk
induced on the k-fold cartesian power X k, namely,

fk(x1, . . . , xk) = (f(x1), . . . , f(xk))

for x1, . . . , xk ∈ X . The main result of the paper is the following.

Lemma 1.1 Let f, f1, . . . , fn be functions de�ned over a set X . Let α1, . . . , αn
be real numbers. If for all positive k and every �nite set A ⊆ X k, we have
that

|fk(A)| ≤
n∏
i=1

∣∣fki (A)∣∣αi
,

then, for every discrete random variable X taking values in X , the entropy of
f(X) satis�es that

H(f(X)) ≤
n∑
i=1

αiH(fi(X))

whenever H(fi(X)) is �nite for every i ∈ [n].

The proof of Lemma 1.1 is based mainly in the following idea. The goal is
to construct sets that �represent� random variables in some way. To this end,
given an X -random variable X, consider a vector of suitable length whose
entries are possible outcomes of X, and such that they are repeated in such a
way that we recover the distribution of X by choosing an entry of the vector
uniformly at random. Then, consider the set of all such vectors. This set is
what we call the Ruzsa set of X. One can show that the cardinality of the
Ruzsa set is asymptotically determined by H(X) as the length of the vectors
tends to in�nity. Then, the main part of the proof consists in showing that,



given a function f , the Ruzsa set of f(X) is the same as the result of applying
fk to the Ruzsa set of X. This, together with the former, means that one can
derive entropic inequalities by applying cardinality inequalities to Ruzsa sets
and letting the length of the vectors go to in�nity.

Lemma 1.1 is complemented by the following partial converse, which can
be obtained from the concavity of the entropy function.

Lemma 1.2 Let f, f1, . . . , fn be any functions de�ned over a set X . Let
α1, . . . , αn be positive real numbers. If the inequality

H(f(X)) ≤
n∑
i=1

αiH(fi(X))

holds for every random variable X with suport in a �nite set A ⊆ X , then we
have that

|f(A)| ≤
n∏
i=1

|fi(A)|αi .

2 Applications

As was already mentioned, Lemma 1.1 can be used as a black box to prove
many of the entropy inequalities which are usually obtained directly from
entropy properties, so displaying their combinatorial nature. The following is
an important example.

Theorem 2.1 Let G be a (not necessarily commutative) group. The two fol-
lowing statements hold and are equivalent:

(i) For any A, B and C �nite non-empty sets in G,

|B − C| ≤ |B − A||A− C|
|A|

.

(ii) For any X, Y and Z discrete random variables taking values in G such
that X is independent from (Y, Z) and the entropies of X, Y − X and
X − Z are �nite, the entropy of Y − Z is also �nite and satis�es

H(Y − Z) ≤ H(Y −X) +H(X − Z)−H(X).

Both statements in Theorem 2.1 are well-known. The �rst one is Ruzsa's
triangle inequality (see e.g. [7]) and the second one is its analogous entropy
version, proved by Tao [10] and Ruzsa [8] independently by using entropy



methods. The equivalence between the two is provided by the combination of
Lemma 1.1 and Lemma 1.2.

The second application considers random variables in non-commutative
groups. Petridis [6], building on previous work by Tao [9], gave the �rst non-
commutative version of the Plünnecke-Ruzsa inequalities. These inequalities
provide upper bounds on the cardinality of iterated sumsets in terms of 2-fold
sumsets and have been extensively used in applications. The inequality of Pet-
ridis we consider reads as follows. Let A be a �nite set in a non-commutative
group. Assume that |A2| ≤ α|A| and |A3| ≤ β|A|. Then, for any n ≥ 3 and
any choice of εi ∈ {1,−1}, i ∈ [n],

|Aε1Aε2Aε3 · · ·Aεn| ≤ αn−1βn−2|A|.

The next result is an entropy analog for random variables taking values in
a nonabelian group. Inequalities in this setting are scarce in the literature.

Theorem 2.2 Let G be a group and n ≥ 3. Let X be a discrete G-random
variable. Let Xi, i ∈ [n], be independent copies of X. Assume that the
entropies of X, X1X2 and X1X2X3 are all �nite. Then, for every choice of
εi ∈ {1,−1}, the entropy of Xε1

1 X
ε2
2 · · ·Xεn

n is �nite and satis�es

H(Xε1
1 X

ε2
2 X

ε3
3 · · ·Xεn

n ) ≤ (n−1)H(X1X2)+(n−2)H(X1X2X3)−2(n−2)H(X).

As before, Theorem 2.2 can be proved using Lemma 1.1. However, in this
case Lemma 1.2 cannot be applied, so the equivalence between the statements
has not been proved.

3 Final remarks

The results shown in Section 2 are only some examples of the versatility of
Lemma 1.1. The results that can be obtained from it are very varied. It
is noteworthy that most of the entropy inequalities obtained by Kontoyiannis
and Madiman [3], Madiman, Marcus and Tetali [4], Madiman and Tetali [5] or
Tao [10], which use sometimes sophisticated entropy arguments, are obtained
through Lemma 1.1 and their combinatorial counterparts in a straightorward,
uni�ed way. The examples in Section 2 illustrate how the device presented in
this paper can be used to extend the entropy analogs of combinatorial inequal-
ities in the nonabelian setting or involving non linear functions. Additional
examples and complete proofs can be found in [2].



References

[1] Balister, P. and B. Bollobás, Projections, entropy and sumsets, Combinatorica
32 (2012), pp. 125�141.

[2] Espuny Díaz, A. and O. Serra, Entropy versions of additive inequalities,
Manuscript (2018).

[3] Kontoyiannis, I. and M. Madiman, Sumset and inverse sumset inequalities for

di�erential entropy and mutual information, IEEE Trans. Inform. Theory 60

(2014), pp. 4503�4514.

[4] Madiman, M., A. W. Marcus and P. Tetali, Entropy and set cardinality

inequalities for partition-determined functions, Random Structures Algorithms
40 (2012), pp. 399�424.

[5] Madiman, M. and P. Tetali, Information inequalities for joint distributions,

with interpretations and applications, IEEE Trans. Inform. Theory 56 (2010),
pp. 2699�2713.

[6] Petridis, G., New proofs of Plünnecke-type estimates for product sets in groups,
Combinatorica 32 (2012), pp. 721�733.

[7] Ruzsa, I. Z., Sums of �nite sets, in: Number theory (New York, 1991�1995),
Springer, New York, 1996 pp. 281�293.

[8] Ruzsa, I. Z., Sumsets and entropy, Random Structures Algorithms 34 (2009),
pp. 1�10.

[9] Tao, T., Product set estimates for non-commutative groups, Combinatorica 28

(2008), pp. 547�594.

[10] Tao, T., Sumset and inverse sumset theory for Shannon entropy, Combin.
Probab. Comput. 19 (2010), pp. 603�639.


	Introduction
	Applications
	Final remarks
	References

