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Abstract

A family A of k-subsets of {1, 2, . . . , N} is a Sidon system if the sumsets A + A′,
A,A′ ∈ A are pairwise distinct. We show that the largest cardinality Fk(N) of a
Sidon system of k-subsets of [N ] satisfies Fk(N) ≤

(

N−1
k−1

)

+N−k and the asymptotic

lower bound Fk(N) = Ωk(N
k−1). More precise bounds on Fk(N) are obtained for

k ≤ 3. We also obtain the threshold probability for a random system to be Sidon
for k = 2 and 3.
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1 Introduction and Results

The study of Sidon sets of maximum cardinality is a classic topic in additive
number theory; see e.g. the survey by O’Bryant [10]. A set A of integers is
a Sidon set if the twofold sums of elements in A are pairwise distinct. The
notion can be extended in a natural way to set systems.

Definition 1.1 Let A = {Ai : i ∈ I, Ai ⊆ Z} be a family of subsets of the
integers. We say that A is a Sidon system if

Ai + Aj = Ai′ + Aj′ =⇒ {i, j} = {i′, j′}.

The analogous in this setting is to estimate the maximum cardinality of a
Sidon system. We restrict ourselves to uniform set systems of k-subsets of the
integer interval [N ] = {1, 2, . . . , N}.

Definition 1.2 Given integers N > k ≥ 1, we denote by Fk(N) the largest
cardinality of a Sidon system A ⊆

(

[N ]
k

)

.

The case k = 1 corresponds to classical Sidon sets and it is well-known
that F1(N) ∼ N1/2. We address here the problem for k ≥ 2. First we give
an upper bound for Fk(N).

Theorem 1.3 For 2 ≤ k < N we have

Fk(N) ≤
(

N − 1

k − 1

)

+N − k.

This upper bound is tight for k = 2, that is, F2(N) = 2N − 3. We believe
that it is asymptotically sharp for any k ≥ 2, but we are only able to prove
this for k = 2 and k = 3. For k ≥ 4, we prove that Nk−1 is the right order of
magnitude.

Theorem 1.4

F2(N) = 2N − 3

F3(N) ≥ N2/2−O(N)

Fk(N) = Ωk(N
k−1), k ≥ 4.

We also consider the problem of determining the size of a typical Sidon sys-
tem. We consider the following model for random uniform families of subsets
of [N ].



Definition 1.5 Let N > k be positive integers and 0 < p ≤ 1. A random set
system A in

(

[N ]
k

)

is obtained by choosing independently every set A ∈
(

[N ]
k

)

with probability p. We write A ∈ S(N, k, p) to denote that A is a random
system in this model.

For k = 1 the above definition corresponds to the binomial model of ran-
dom subsets. Godbole, Janson, Locantore and Rapoport [7] showed, among
more general results, that N−1/4 is the threshold probability for a random
set in [N ] to be a Sidon set. In the case of random systems we obtain the
threshold probability for k = 2 and 3.

Theorem 1.6 Let A ∈ S(N, k, p) be a random system. Then, for 2 ≤ k ≤ 3,

lim
N→∞

Pr(A is Sidon) =

{

1, if p = o(N−(2k+1)/4)

0, if p = ω(N−(2k+1)/4)
.

The full version of this paper is available at [4].

2 Related Work

The extension of additive problems in the integers or in additive groups to
the monoid of sumsets has also been considered in the literature. For in-
stance, Cilleruelo, Hamidoune and Serra [3] proved analogues of the Cauchy–
Davenport and Vosper theorems in this setting. An important question re-
lated to the current work is whether a certain set can be expressed as a
sumset in multiple ways. Alon [1] used probabilistic arguments combined
with spectral techniques to improve earlier bounds by Green [9] on the max-
imal cardinality of subsets of a cyclic group of prime order that cannot be
expressed as a sumset. Fan and Tringali [5] used tools from factorization
theory to give (among other results) necessary and sufficient conditions for
when certain subsets of integers can be written as sumsets in more than
one way. Selfridge and Straus [11] showed that the representation function
rA(n) = |{(a, a′) ∈ A × A : n = a + a′}| of a subset A in a field of character-
istic zero determines the set. They also considered the general case of s-fold
sumsets sA and gave necessary conditions when the representation function of
this sumset completely determines the set A. These results were later general-
ized by Gordon, Fraenkel and Straus [8] to torsion free abelian groups. For a
more detailed look on these problems, see also the recent survey by Fomin [6].
In contrast to these results, in the asymmetric case, the representation func-
tion does not determine the pair of original sets, even in the case of twofold



sumsets A+B.

3 Proof Ideas

We start off by giving a needed definition. For integers N > k, let
(

[N ]
k

)

0
denote the family of k-subsets of {0, 1, . . . , N} that all contain 0.

The key idea for the proof of Theorem 1.3 is to consider for each A in
(

[N−1]
k

)

0
the set of positive integers x such that x + A is an element of the

Sidon system, and to note that the set of positive differences of those sets will
be pairwise disjoint due to the Sidon property.

For Theorem 1.4, we use different approaches for the cases k = 2, k = 3,
and k ≥ 4. In the first case, we just give an explicit family where verification of
the Sidon property is easy. For k = 3, we make use of the alteration method,
that is, we start by taking the family

(

[N−1]
3

)

0
, which will not be a Sidon

system, and then employ a case analysis to show that one can remove O(N)
sets in order to make it Sidon. Finally, for k ≥ 4, we use a sufficiently dense
Sidon set to define disjoint intervals such that the sumsets of these intervals
will also be disjoint. One then considers the family A of sets that contain
exactly one element from each interval.

In order to prove Theorem 1.6, we follow the approach of Godbole et al. [7]
and look at the set of quadruples violating the Sidon property. One can then
partition these further depending on how many distinct sets they contain,
such that the probability for any quadruple in the same block to be contained
in the random family is uniform. The remaining aspect is then to estimate
the cardinality of these blocks, which in our case is more complicated than
in [7]. The 1-statement is then obtained by an easy application of Markov’s
inequality, while for the 0-statement the Janson inequality (see e.g. Theorem
8.1.1 in [2]) is used.

4 Concluding Remarks

The most begging question left open by the current work is whether Theo-
rem 1.4 is asymptotically sharp for k ≥ 4. Since for k ≥ 3, translations cannot
generate a significant number of new sets, this is essentially equivalent to say-
ing that one can remove o(Nk−1) sets from

(

[N−1]
k

)

0
such that the resulting

family is a Sidon system. If we consider the family
(

[N−1]
k

)

0
+
(

[N−1]
k

)

0
, then a

randomly chosen element S will asymptotically almost surely have cardinality
k2, so it is reasonable to assume that sumsets of this cardinality are the most



important case to consider. However, while sumsets of this type have only one
representation in the case k = 3, this will in general not be true anymore for
larger values of k. To see this, consider for instance the case k = 4, and let
a, b, c, d be integers such that

S = {0, a}+ {0, b}+ {0, c}+ {0, d} and |S| = 16.

Then, in general, we have three different representations for S as a sumset of
two 4-sets, namely by pairing {0, a} with one of the remaining three 2-sets,
and pairing the other two. Similar constructions can be done for any k that is
composite. Numerical experiments for moderate values of N and k (N = 100
for k = 4, N = 60 for k = 5) suggest that these might be the only instances
of sumsets of cardinality k2 that violate the Sidon property. However, note
that this does in general not refute the statement in the beginning of this
section, since k-sets constructed in such a way will always obey some linear
equations. In the case k = 4 for example, the largest element of a 4-set always
has to be the sum of the other two nonzero elements, and hence there are
only N2 = o(N3) such sets, and one can remove them from

(

[N−1]
4

)

0
without

affecting the asymptotic density.

Another immediate open question is that of generalizing Theorem 1.6 to
arbitrary k ≥ 2. The main obstruction is that we currently rely on a case
analysis to bound one particular type of partition block, which becomes in-
tractable for larger k. Note that this is mainly related to the 1-statement. In
fact, a generalization of the 0-statement is true not only for the case of twofold
sumsets, but more generally for h-fold sumsets.

It is also possible to further generalize the definition of a Sidon system, in
the same way that Sidon sets can be generalized to so called Bh[g] sets. For a
familyA of integer subsets, a set of integers C, and an integer h ≥ 2, let rhA(C)
denote the number of different multisets {A1, A2, . . . , Ah}, Ai ∈ A such that
A1 +A2 + · · ·+Ah = C. A Bh[g] system is a family A of integer subsets such
that rhA(C) ≤ g for all sets C ⊆ Z. So a Sidon system is a B2[1] system. One
can now define Fk,g,h(N) as the largest cardinality of a Bh[g] system A ⊆

(

[N ]
k

)

.
We consider h = 2, and write Fk,g,2(N) = Fk,g(N). As proved in Theorems 1.3
and 1.4, for k ≥ 2 we have Fk,1(N) = Θk(N

k−1). Interestingly, we can show
that for any g ≥ 2, it actually holds that Fk,g(N) = Θk(

√
gNk−1/2). Indeed,

since any fixed sumset A+ B with A,B ∈
(

[N ]
k

)

is essentially a translation of

a sumset of two sets in
(

[N ]
k

)

0
, there are at most Ok(N

2k−1) of them. Now,
any one of these has at most g representations in A + A, which implies the
upper bound. On the other hand, take a Bh[⌊g/2⌋] set A ⊆ {1, 2, . . . , N/2}



of size |A| = Ω(
√
gN), which is well known to exist, and a Sidon system

I ⊆
(

[N/2]
k

)

0
, of size |I| = Ωk(N

k−1), which exists by Theorem 1.4. Using the
definition of Bh[g] sets and Sidon systems, it is then not hard to see that the
set A = A + I will be a B2[g] system, and the lower bound follows. One
particularly interesting aspect of this is that while Theorem 1.3 and 1.4 are
not consistent with the case k = 1, these results in fact are.

Finally, all these problems can also be studied in arbitrary additive groups
instead of in the integers.

References

[1] Alon, N., Large sets in finite fields are sumsets, J. Number Theory 126 (2007),
pp. 110–118.

[2] Alon, N. and J. H. Spencer, “The probabilistic method. With an appendix on
the life and work of Paul Erdős. 3rd ed.” Hoboken, NJ: John Wiley & Sons,
2008, 3rd ed. edition, xv + 352 pp.

[3] Cilleruelo, J., Y. O. Hamidoune and O. Serra, Addition theorems in acyclic

semigroups, in: Additive number theory. Festschrift in honor of the sixtieth

birthday of Melvyn B. Nathanson, New York, NY: Springer, 2010 pp. 99–104.
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