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Abstract

Given two sets of points A and B in a normed plane, we prove that there are
two linearly separable sets A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤
diam(B), and A′ ∪ B′ = A ∪ B. As a result, some Euclidean clustering algorithms
are adapted to normed planes, for instance, those that minimize the maximum,
the sum, or the sum of squares of the diameters (or the radii) of k clusters. Some
specific solutions are presented for k = 2 and k = 3 that minimize the diameter of
the clusters. The 2-clustering problem when two different bounds are imposed to
the diameters is also studied.
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1 Introduction and preliminaries

Given a set S of n points in the plane, a cluster is any non-empty subset of
S, and a k-clustering is a set of k disjoint clusters such that any point of S
belongs to some cluster. For a fixed distance function on the plane, in general,
a clustering problem asks for a k-clustering of S that verify some conditions,
for example minimizing the maximum diameter of the clusters.

From now on, we denote by E2 the Euclidean plane, and by M2 a normed
plane. We call B(x, r) to the ball with center x ∈ M2 and radius r > 0, and
S(x, r) to the sphere of B(x, r). We use the usual abbreviations diam(A) and
conv(A) for the diameter and the convex hull of a set A, ab for the line segment
meeting two points a, b ∈ M2, and ⟨a, b⟩ for its affine hull. p(A) denotes the
perimeter of conv(A).

We say that two sets of points in M2 are linearly separable if there exists
a line L such that every set is situated in a different closed half-plane defined
by L. We present the following theorem that extends an Euclidean result ([4])
to any normed plane.

Theorem 1.1 Let A and B be two finite sets in M2. Then, there are two
linearly separable sets A′ and B′ such that diam(A′) ≤ diam(A), diam(B′) ≤
diam(B), A′ ∪B′ = A ∪B. Besides, p(A) + p(B) ≥ p(A′) + p(B′).

Sketch of the proof. The structure of our proof is similar to that pre-
sented for E2, but some important modifications are necessary due to the
general framework of M2. Let us assume that diam(A) ≥ diam(B). The
first step is to consider the sequences of polygons (clockwise) {A1, A2, ..., Ak}
and {B1, B2, . . . , Bk} such that

∪k
i=1Ai = conv(A) \ conv(B) and

∪k
j=1Bj =

conv(B) \ conv(A). We say that (Ai, Bj) is a bad pair if diam(Ai ∪ Bj) >
diam(A). In such a case we say that both Ai and Bj are bad polygons. The
second step is to make a group with each subsequences of adjacent (clockwise)
bad polygons Ai from A (intervening subsets Bj of B inside a group from A
must not be bad), and the same is made with B. In the final step, we separate
the sets: for a fixed a group, let Ai be the last bad set (clockwise) of such a
group, and let Bj′ be the last bad partner of Ai; let Bj be the first bad set after
Ai, and Ai′ be the first bad partner of Bj; the separating line L goes through
the point of conv(A) ∩ conv(B) before Bj and the point conv(A) ∩ conv(B)
after Bj′ . We define B′ to be the points in A ∪B lying on the same side of L
as Bj and Bj′ , and A′ as the remaining points.



2 Some algorithms for clustering problems

We assume that in our computation model an oracle answers the required
questions about the unit ball of M2 (see Section 3.3 of [6]).

Theorem 2.1 Given a set of n points in M2, the 2-clustering problem of
minimizing the maximum diameter can be solved in O(n2 log2 n) time.

Proof. The following works correctly (Theorem 1.1): sort the distances di
between the points of S into increasing order (O(n2 log n) time); locate the
minimum di that admits a stabbing line by a binary search. Use the graph
(S,Edi), where Edi is the set of edges meeting two points of S at distance
more than di, and the algorithm by Edelsbrunner et al. ([5]) in order to find
the stabbing line for Edi as a subroutine (O(m logm), where m is the number
of edges). 2

The above approach was presented by Avis [1] for the Euclidean case
(O(n2 log2 n) time) and was improved by Asano et al. ([2], O(n log n) time)
using a maximum spanning tree of S. There is not an efficient method for
building a maximum spanning tree for any normed plane.

Theorem 2.2 Given a set S of n points in M2, and d1 ≥ d2 > 0, the 2-
clustering problem of dividing S into two sets S1 and S2 such that diam(S1) ≤
d1 and diam(S2) ≤ d2 can be computed in O(n2 log2 n) time.

Proof. Let Ed1 be the set of edges meeting two points of S at a distance of
more than d1. Sort the distances between the points of S into increasing order
and build the graph (S,Ed1) in O(n2 log n) time. Test if Ed1 has a stabbing
line (in O(n log n) time with the algorithm presented in [5]). If the stabbing
line does not exist, there is no solution (Theorem 1.1). Check if a stabbing
line separates a set with a diameter less than or equal to d2. 2

The Euclidean approach to this problem by Hershberger and Suri ([8],
O(n log n) time) does not work in M2 because they use the fact (not true in
M2) that if ∥a− b∥ ≥ d1, then B(a, d2)∩B(b, d1) can always be split into two
subsets whose diameters are at most d1 and d2, respectively.

Theorem 2.3 Let S be a set of n points in M2. Consider the k-clustering
problem of minimizing a monotone increasing function F : Rk → R to the
diameters or to the radii of k subsets of S. Then there is an optimal k-
clustering such that each pair of clusters is linearly separable. A solution can
be obtained by the algorithm presented by Capoyleas, Rote, and Woeginger
([4]), and it takes polynomial time for the case of the diameters.



Proof. Regarding the diameter, the argument used in ([4]) for the Euclidean
case is valid applying Theorem 1.1.

Let us consider the k-clustering problem of minimizing F applied to the
radii. Let Ci and Cj be two clusters of S from an optimal solution, and B(ci, ri)
and B(cj, rj) be two minimal enclosing discs of Ci and Cj, respectively, such
that Ci ⊂ B(ci, ri) and Cj ⊂ B(cj, rj). If S(ci, ri) ∩ S(cj, rj) is the empty set
or has only one connected component, Ci and Cj are separable. If S(ci, ri) ∩
S(cj, rj) has two different components, let us consider a line meeting two
points p1 and p2, one point from each component. Let Hij be the half-plane
defined by the line that contains p1−(cj−ci) and p2−(cj−ci), and Hji be the
other half-plane. Let S1(ci, ri) be the part of S(ci, ri) on Hij, and S2(ci, ri) be
the part of S(ci, ri) on Hji. Let S1(cj, rj) be the part of S(cj, rj) on Hji, and
S2(cj, rj) be the part of S(cj, rj) on Hij. Then, S2(ci, ri) ⊆ conv(S1(cj, rj))
and S2(cj, rj) ⊆ conv(S1(ci, ri)) (see Banasiak [3]).

We can reassign the points according to their position relative to the sep-
arating lines:

C ′
i := S ∩B(ci, ri) ∩ (

k∩
j=1,j ̸=i

Hij) i = 1, ..., k.

The new clusters are separable and the value of F does not increase.

2

Theorem 2.4 Given a set of n points in M2 and d > 0, we can determine in
O(n3 log2 n) time with the approach by Hagauer and Rote ([7]) whether there
is a partition of S into sets A,B,C with diameters at most d, and construct in
O(n3 log3 n) time a 3-partition of S such that the largest of the three diameters
is as small as possible.

Proof. (Scheme) We fix a normal basis {x, y} in M2 such that x is Birkhoff
orthogonal to y (namely, such that ∥x∥ ≤ ∥x + λy∥ for every λ ∈ R). It is
assumed that two given points of S have different x and y coordinates (the
points are rotated if it is necessary). Given d > 0, the algorithm searches
all the possible linearly separable subsets A,B,C, such that the maximum
diameter is less than or equal to d. The point a ∈ S with the minimum x-
coordinate is placed in A, and each point a′ ∈ S such as ∥a− a′∥ ≤ d is tested
as the possible point of A with the maximum x-coordinate. Any u ∈ S∩aa′ is
assigned to A. The plane is divided into the following three zones by the lines
⟨a, a′⟩ and a′ + βy (β ∈ R). East contains the points of S on the ”right” of
the line a′ + βy. The points of S on the left of a′ + βy are contained either



in North (if they are ”above” aa′) or in South (if they are ”below” aa′).
Solutions are tested in three different cases: Case 1, North ⊆ A; Case 2,
South ⊆ A; and Case 3, North and South are not completely contained
in A. We note Acand to the set of points that could be placed in A for every
candidate a′:

Acand = S ∩B(a, d) ∩B(a′, d).

Theorem 2.4 is proved in E2 using some lemmas (from Lemma 3 to Lemma
6 in [7]) and Theorem 1.1 (for E2). We prove results similar to the rest of the
lemmas in [7] for any normed plane (using Birkhoff orthogonality). We present
below Lemma 2.5 as an example. Regarding the complexity of the algorithm,
we can justify that the data structure introduced by Hershberger and Suri (
[8]) is usable in the same way as in [4]. Finally, a binary search on the

(
n
2

)
distances occurring in S solves the optimization problem. 2

Lemma 2.5 Let us assume the following conditions in M2: A,B,C are sep-
arable; max{diam(A), diam(B), diam(C)} ≤ d; B ∩ North ̸= ∅ and C ∩
South ̸= ∅. If there exists a pair of points u = (ux, uy), v = (vx, vy) ∈ East
such that ∥u− v∥ > d and uy > vy, then u ∈ B and v ∈ C.

Proof. Since ∥u− v∥ > d, the points u and v cannot be situated in the same
subset of the partition A,B,C. We can choose u′ = (u′

x, u
′
y) ∈ B ∩ North

and v′ = (v′x, v
′
y) ∈ C ∩ South.

Let us consider the shaded zone, that is the part of the East hidden behind
the segment u, v′ or behind the aa′ from the point of view u′ (see Figure 1).

Let see what happens if u′
y > uy > v′y (the analysis is similar in the rest of

the possible relative positions of u, u′ y v′). There are three cases (regarding
the position of v).

Case 1: v belongs to the shaded zone. Then v must belong to C, because
in another case either the pair vu′ and uv′ or the pair vu′ and aa′ cross.

Case 2: v does not belong to the shaded zone and ux < vx (for instance,
v = v1 in Figure 1). Then, we consider the two intersection points of the line
u + λy with the line v + λx and with the line v + λ(u′ − v), that we denote
by ū and ũ, respectively. Since x is Birkhoff orthogonal to y, u+ λy supports
S(v, ∥ū− v∥) on ū, and ∥v − u′∥ ≥ ∥v − ũ∥ ≥ ∥v − u∥ ≥ ∥v − ū∥. As a result
of ∥v − u′∥ ≥ ∥v − u∥ > d, v ∈ C.

Case 3: v does not belong to the shaded zone and ux > vx (for instance,
v = v2 in Figure 1). Then, we consider the two intersection points of the line
v+ λy with the line u+ λx and with the line u+ λ(u− v′), that we note by v̄
and ṽ, respectively. Since x is Birkhoff orthogonal to y, the line v + λy is the
support line of S(u, ∥u− v̄∥) on v̄, and ∥u−v′∥ ≥ ∥u− ṽ∥ ≥ ∥u−v∥ ≥ ∥u− v̄∥.



Fig. 1.

As a result of ∥u− v′∥ ≥ ∥u− v∥ > d, u ∈ B.
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