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Maria Serna 3

Computer Science Department and Barcelona Graduate School on Mathematics
BGSMath, Technical University of Catalonia. Barcelona, Spain

Abstract

We consider decision models associated with cooperative influence games, the obli-
vious and the non-oblivious influence models. In those models the satisfaction and
the power measures were introduced and studied. We analyze the computational
complexity of those measures when the influence level is set to unanimity and the
rule of decision is simple majority. We show that computing the satisfaction and
the power measure in those systems are #P-hard.

Keywords: Decision model, Influence game, Satisfaction, Power, Banzhaf value

1 Partially funded by Grant MTM2015-66818-P from MINECO. Email:
xavier.molinero@upc.edu
2 Email: fabian.riquelme@uv.cl
3 Partially funded by MINECO and FEDER funds under grants TIN2017-86727-C2-1-R



1 Introduction

A decision model M is a tuple (V,D, q) where V = {1, . . . , n}, D : {0, 1}n →
{0, 1}n is a function, and 0 ≤ q ≤ n + 1. For a participants’ initial decision
vector x ∈ {0, 1}n, the final decision vector is y = D(x). The associated
collective decision function CM : {0, 1}n → {0, 1} is defined as CM(x) = 1 iff
|{i ∈ V | yi = 1}| ≥ q. Motivated by the theoretical study of the effects that
collective decision-making can have on the participants, satisfaction (Sat) and
power (Pow) measures were defined in [8]. The satisfaction of i ∈ V is the
number of initial decisions for which the final collective decision coincides with
the initial decision of i. The power of i ∈ V is the number of initial decision
for which the collective decision changes when i changes its initial decision.

An influence graph is a tuple (G, f), where G = (V,E) is a directed graph
and f is a labeling function assigning to any vertex a non-negative rational
value. Let (G, f) be an influence graph and let X ⊆ V . The activation process,
with initial activation X, at time t, 0 ≤ t ≤ n, activates a set of vertices
F t(X) defined as follows: F 0(X) = X and F t(X) = F t−1(X) ∪ {i ∈ V |
|PG(i)∩F t−1(X)| ≥ f(i)}, for 1 ≤ t ≤ n, where PG(i) = {j ∈ V | (j, i) ∈ E}
is the set of predecessors of i. The spread of influence of X in (G, f) is the set
F (X) = F n(X). As usual, for an undirected graph G, N(u) denotes the set
of neighbors of u.

Given (G, f, q,N), where (G, f) is an influence graph with positive labeling
function, 0 ≤ q ≤ N and N ⊆ V (G), The associated oblivious influence model
is the decision model Mo(G, f, q,N) = (V (G), D, q) where, for x ∈ {0, 1}n,
y = D(x) is defined as yi = 1 iff i ∈ F (X(x) ∩ N). The associated non-
oblivious influence model is the decision modelMn(G, f, q,N) = (V (G), D, q)
where y = D(x) is defined as follows. For x ∈ {0, 1}n, let p1

i (x) = |F (X(x) ∩
N) ∩ P (i)| and p0

i (x) = |P (i) \ F (X(x) ∩ N)|. For i ∈ V (G) \ N , yi = 1 iff
i ∈ F (X(x)). For i ∈ N , if for one z ∈ {0, 1}, pzi (x) ≥ f(i) and pzi (x) < f(i),
we set yi = z otherwise yi = xi.

Cooperative influence games were introduced in [4] and influence decision
models in [5] together with an analysis of the complexity of computing the Sat

measure. The computational complexity of the Pow measure was analyzed in
[6]. In those papers it is shown that the problem of computing the Sat(i)
or Pow(i) are known to be #P-hard, for oblivious and non-oblivious general
influence models. Those measures can be computed in polynomial time in
strong hierarchical and star influence graphs. However it was left open the
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particular cas ein which the final decision rule is majority.

We analyze here the computational complexity of the Sat and the Pow

measures in oblivious and non-oblivious influence decision models in the par-
ticular case of unanimous majority influence models. In a unanimous majority
influence model the graph G is undirected. Besides the nodes require unani-
mity for a change of opinion, i.e., f(i) = |N(i)|, and the final decision is

taken by the simple majority rule, i.e., q = b |V |
2
c + 1. We show #P-hardness

that computing Sat(i) or Pow(i) is #P-hard, for oblivious and non-oblivious
unanimous majority influence models.

2 Computing Satisfaction

In order to show #P-hardness we provide reductions from the problem of
counting the number of vertex covers of a given graph. The problem is known
to be #P-complete for bipartite graphs, even for 3-regular planar bipartite
graphs [9].

Our reductions make use of the following construction. Let G = (V,E) be
a connected graph with n nodes. The influence game Γ(G) = (G′, f, q,N) is
defined by G′ = (V ′E ′) which is a graph on 2n+1 vertices; V ′ = V ∪W ∪{a, b}
where W = {w1, . . . , wn−1} and E ′ = E ∪ {(a, wi) | 1 ≤ i ≤ n − 1}. f(u) =
|NG(u)|, for u ∈ V , f(u) = 1, for u ∈ W , f(a) = n − 1 and f(b) = 1.
q = n + 1 and N = V ∪ {a, b}. Observe firstly that G′ has 2n + 1 vertices,
thus a decision is taken by simple majority rule on the final decision vector.
Secondly, as f(u) = |NG(u)|, for u ∈ V , the set of coalitions X ⊆ V having
F (X) = V coincides with the set of vertex covers of G.

We can prove the following properties of the winning coalitions in the game
Γ(G), depending on the decisions of a and b.

Lemma 2.1 Let G = (V,E) be a connected graph with n and let Γ = Γ(G).
For a coalition S, we have the following characterization. If a, b ∈ S, then S
is wining. If a /∈ S and b ∈ S, S is winning iff S ∩ V (G) is a vertex cover of
G. If a ∈ S and b /∈ S, S is winning iff |S ∩ V | ≥ 1. If a, b /∈ S, then S is
losing.

Note that, in the oblivious model, the winning coalitions coincide with the
decision vectors in which the collective decision is 1.

Theorem 2.2 Computing the satisfaction measure is #P-hard for oblivious
unanimous majority influence models even on 3-regular bipartite planar graphs.

Proof. [Sketch] Let G be a graph and consider the influence game Γ(G) as



described before. Recall that in the oblivious model, the wining coalitions of
Γ(G) lead to a final decision vector with a majority of 1’s and therefore the
collective decision is 1. On the other hand, losing coalitions force a majority of
0’s in the final decision vector and the collective decision is then set to 0. Recall
that in the oblivious model the initial decision of the non-players is disregarded
therefore the result is independent of the initial decision of the nodes in W .
Thus, taking into account the characterization given in Lemma 2.1 we can
prove the following expression for Sat(b),

Sat(b) = 2n−1 [2n + #V C(G) + 1 + 2n] ,

where #V C(G) is the number of vertex covers of G. As computing #V C(G)
is #P-hard even for 3-regular planar bipartite graphs the claim follows. 2

For the non-oblivious model the interactions in Γ(G) are more complex.
We have to take care of those players that change their initial inclination to a
0. Our next result characterize the final collective decision on Γ(G) according
to the initial decision of a and b in the non-oblivious model.

Lemma 2.3 Let G = (V,E) be a connected graph with n and let M be the
non-oblivious model associated to Γ(G). For an initial decision vector x, we
have the following characterization. If xa = xb = 1, C(x) = 1. If xa = 0 and
xb = 1, C(x) = 1 iff X(x)∩ V is a vertex cover of G. If xa = 1 and xb = 0, if
there exists u ∈ V with xu = 0 and NG(u) ⊆ X(x), then C(x) = 1; otherwise,
C(x) = 0 iff (V \X(x)) is a vertex cover of G. If xa = xb = 0, C(x) = 0.

For the non-oblivious models, the relationship with the number of vertex
covers is less clear. Observe that the condition there exists u ∈ V , xu = 0
and NG(u) ⊆ X(x) identifies the so-called i-essential sets. According to [2]
the problem of computing the number of i-essential sets in polynomial time
is open. The vertex covers verifying the negated condition are the so-called
total vertex covers. To the best of our knowledge the complexity of counting
the number of total vertex covers is an open problem.

Our hardness result holds for a family of graphs that we call 1-almost
bipartite, those graphs that become bipartite after removing one vertex.

Theorem 2.4 Computing the satisfaction measure is #P-hard for non-oblivious
unanimous majority influence models even on 1-almost 3-regular bipartite pla-
nar graphs.

Proof. [Sketch] Let G be a graph with n− 1 vertices and consider the graph
G′′ = (V ′′, E ′′) where V ′′ = V ∪{c} and E ′′ = E ∪{(c, u) | u ∈ V } and the in-



fluence game Γ(G′′) using the construction described before. From Lemma 2.3
we can prove that

Sat(b) =
[
22n−1 + 2n−1#V C(G′′) + 2n−1#TV C(G′′) + 22n−1

]
,

where #TV C(G) is the number of total vertex covers of G. We can show that
#TV C(G′′) = #V C(G) + 1, and therefore, the claim follows. 2

As a consequence of the previous result we have the following.

Corollary 2.5 The problem of computing the number of total vertex covers
in a given graph is #P-complete.

3 Related Results

A family of subsetsW ⊆ P(N) is said to be monotonic when, for any X ∈ W
and Z ∈ P(N), if X ⊆ Z , then Z ∈ W . A simple game Γ is given by
a tuple (N,W) where N is a finite set of players and W is a monotonic
family of subsets of N . The subsets in W are the winning coalitions. The
Banzhaf value (Bz) measures the proportion of coalitions in which a player
plays a critical role, i.e., if he jumps out from a winning coalition leaves a
losing coalition [1]. The Rae index (Rae) measures the number of winning
coalitions containing player i and the number of losing coalitions in which
player i does not participate [7]. In [3] it was shown that, for each player i,
Rae(i) = Bz(i) + 2n−1. Thus, the computational complexity of the two indices
is the same. Computing the Bz(i) is polynomial time solvable for simple games
represented by the set of winning coalitions, but it is #P-complete for simple
games represented by the set of minimal winning coalitions. The problem is
also known to be #P-hard for weighted voting games and influence games.

To any decision model M = (V,D, q) we can associate the set system
SM = {S ⊆ V | CM(x(X)) = 1}. In [5] we shown that when M is and influ-
ence decision models (oblivious or non-oblivious) the family SM is monotonic.
Therefore, Γ(M) = (V,SM) is a simple game. Furthermore, the satisfaction
measure on M coincides with the Rae index in Γ(M). We can show a linear
relationship and the power measure is twice the Banzhaf value.

Theorem 3.1 Let M =Mo(G, f, q,N) or M =Mn(G, f, q,N) and let Γ =
Γ(M). Then, for i ∈ V , PowM(i) = 2BzΓ(i) and PowM(i) = 2(SatM(i) −
2n−1).

From the last equality, all the results on the complexity of computing
satisfaction apply also to the problem of computing power.



Theorem 3.2 Computing the power measure is #P-hard for oblivious una-
nimous majority influence models even on 3-regular bipartite planar graphs
and for non-oblivious unanimous majority influence models even on 1-almost
3-regular bipartite planar graphs.

Also the computation of the Rae index or the Banzhaf value, in the simple
games corresponding to such families are #P-hard. Thus, our results extend
the subfamilies of simple games for which the complexity of the computa-
tion of the Banzhaf value is known. We are working towards getting a better
understanding of the combinatorial characterization of such games. In parti-
cular they include the simple games defined by the family of vertex covers of
a minimum size which are of independent interest.
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