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Abstract

The sum of random variables (errors) is the key element both for its statistical
study and for the estimation and control of errors in many scientific and technical
applications. In this paper we analyze the sum of independent random variables
(independent errors) in spheres. This type of errors are very important, for example,
in quantum computing. We prove that, given two independent isotropic random
variables in an sphere, X1 and X2, the variance verifies V (X1 + X2) = V (X1) +

V (X2)− V (X1)V (X2)
2 and we conjecture that this formula is also true for non-isotropic

random variables.
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1 Introduction

Given an error (random variable) X in Rd, with mean µ, the most useful
parameter to quantify the error is the variance of X, V (X) = E[‖X − µ‖2].
Let’s assume that instead of an error X we have many, X1,. . .Xk, and that
they add up as, for example, in stochastic processes that change in discrete
time. It is well known that if they are independent the variance verifies

V (X1 + · · ·+Xk) = V (X1) + · · ·+ V (Xk)

This statement is called the Bienaymé formula ([1],1853). Nevertheless,
nothing is practically known if the errors are defined in the d dimensional
sphere of radius 1 centered in 0, Sd; surely because this analysis is more com-
plicated and there have not been important applications so far that necessarily
have to be studied from this point of view.

This approach fits, for example, the study of errors in the position of
a robotic arm whose components are connected by joints allowing rotational
motion. However, the sensors that detect the position of the robotic arm allow
a very effective control of the error in its position, making a deep analysis of
these errors unnecessary.

The behavior of errors in quantum computing [3,4] also requires the use of
random variables in spheres and, in this case, the laws of quantum mechanics
do not allow any self-correcting system like that of sensors in robotic envi-
ronments. Therefore the development of the theory of random variables in
spheres has become essential to address the challenge of quantum computing
and this work means an important achievement.

The outline of the article is as follows: In section 2 we set up notations and
discuss some basic properties of the introduced model. In section 3 we give a
hint of the proof of the formula for the variance of the sum of two independent
isotropic random variables in an sphere. In section 4 we illustrate with an
example the conjecture that the previous formula is also true for non-isotropic
errors. Finally in section 5 we explain the quantum decoherence relating it to
the behavior of the variance of independent errors.

2 Notations and basic properties

The d−dimensional sphere of radius 1 centered at 0 is the subset of Rd+1

Sd = {x ∈ Rd+1 | ‖x‖ = 1}. Given a point x = (x0, . . . , xd) ∈ Sd its polar
coordinates are (θ0, θ1, . . . , θd−1) where



0 ≤ θ0, . . . , θd−2 ≤ π

0 ≤ θd−1 < 2π
and

xj = sin(θ0) · · · sin(θj−1) cos(θj), 0 ≤ j ≤ d− 1

xd = sin(θ0) · · · sin(θd−1)

From now on, we will consider only random variables (errors) X on Sd

centered on the point P = (1, 0, . . . , 0) (θp = (0, . . . , 0) in polar coordinates),
i.e. with mean P . This assumption does not imply a loss of generality, because
we can always transfer the mean to the point P by a transformation of O(d+1)
or U(d+ 1). We will also always work in polar coordinates and will define the
random variables by means of density functions f(θ0, θ1, . . . , θd−1).

Henceforward we will denote random variable by the abbreviation r.v. and
random variables by r.vs.

The variance of a r.v. in Sd, X, is the mean of its quadratic deviation,
i.e. E[‖X − P‖2] = E[‖(x0 − 1, x1, . . . , xd)‖2] = E[2 − 2x0]. And, in polar
coordinates, the variance is E[2− 2 cos(θ0)].

Definition 2.1 The variance of a r.v. in Sd, X, centered on the point P , is
V (X) = E[2− 2 cos(θ0)].

Note that the variance will take values between 0, if the density function
is a delta at point P , and 4, if the density function is a delta at point −P .
Therefore, the Bienaymé formula can not hold for r.vs in Sd.

Definition 2.2 A r.v. in Sd is isotropic if its density function depends exclu-
sively on θ0.

For simplicity, we will assume that the density function of any isotropic
r.v. depends on cos(θ0). Indeed g(θ0) = f(cos(θ0)), where f = g ◦ arccos.

The “reasonable” density functions of isotropic r.vs (errors) are non-in-
creasing with respect to the variable θ0. This means that the error probability
(density function) does not grow when the error does. In this case, the variance
is upper bounded by 2 and takes the value 2 when the density function is
constant in Sd. For example, in quantum computing this means that the
information of a quantum algorithm has been completely lost.

In order to analyze the variance of the sum of independent isotropic r.vs
we need to obtain the expression of the resulting density function. Let X1 and
X2 be independent isotropic r.vs with density function f1 and f2 respectively
and let X = X1 + X2 and f its density function. The sum of r.vs (errors)
occurs as follows: initially there is no error and, therefore, our system is in P ;
when the first error occurs the system changes to x′, with a probability that
depends on ‖x′ − P‖2; and when the second error occurs the system goes to
x, with a probability that depends on ‖x′ − x‖2 (isotropic error with respect



to x′). Then:

f(x) =

∫
Sd

f1 f2 dx
′ (1)

Theorem 2.3 Given two independent isotropic r.vs in Sd, X1 and X2, then
the sum X = X1 +X2 is also an isotropic r.v. in Sd.

Proof. Given x′0 and x0, let us consider S ′ and S, the d − 1 dimensional
spheres of radius 1−x′ 20 and 1−x20 centered on (x′0, 0, . . . , 0) and (x0, 0, . . . , 0)
respectively. S ′ and S are “parallels” of Sd passing through x′0 and x0 respec-
tively, if we consider P as the Sd polar point. By the symmetry of S ′ and S
and the isotropy of f1 and f2 we can conclude that the integral (1), restricted
to S ′, is constant in S. Therefore the integral (1) is also constant in S and,
consequently, the sum X of the two independent isotropic r.vs is an isotropic
r.v. in Sd. 2

Corollary 2.4 Given two independent isotropic r.vs X1 and X2 in S
d, d ≥ 3,

then the density function of the sum X = X1 +X2 is

f(θ0) = |Sd−2|
∫ π

0

∫ π

0

f1(α) f2(β) sind−1(θ′0) sind−2(θ′1) dθ
′
0 dθ

′
1 (2)

where |Sd−2| is the area of Sd−2, f1 and f2 the density functions of X1 and X2

respectively, α = cos(θ′0) and β = cos(θ0) cos(θ′0) + sin(θ0) sin(θ′0) cos(θ′1).

In quantum computing [4] algorithms work with n−qubits that belong to
a complex vector space of dimension 2n and have norm 1. Therefore quantum
computation errors can be considered as r.vs in Sd with d = 2n+1− 1 and the
results presented in this article can be applied to them.

3 Variance of the sum of independent isotropic random
variables

We shall work with the family of functions

gk(θ) =
1 + cosk θ∫

Sd(1 + cosk θ)dSd
, θ ∈ [0, π], k ∈ N

The functions gk are a family of isotropic density functions on Sd (as they
are bounded, positive, and their integral is 1). Furthermore, they are a base
of the space of isotropic density functions. This fact can be proved using the
Stone-Weierstrass Theorem ({1, x, x2, . . . } is a complete base on L2[−1, 1]),
and deducing from it that {cosk(θ)|k ≥ 0} is a complete base on L2[0, π].

We prove that V (gk + gl) = 2(V (gk)+V (gl))−V (gk)V (gl)
2

for every k, l. It suffices
to compute the integral expressions: for k or l even, both sides of the formula



equal 2. For k and l odd, proving the formula reduces to check that

b∑
c=0

(
b
c

)
(2c+d−2)!!(2(a+ b− c)+1)!! =

(2a+ 1)!!(d− 2)!!(2(a+ b) + d+ 1)!!

(2a+ d+ 1)!!
,

which can be shown through a combinatorial argument. As there are (2n−1)!!
increasing ordered trees with n + 1 vertices ([2]), we count in two different
ways the number of increasing ordered rooted trees with basic subtrees of size
bd/2c and a + 2, after adding b vertices with greater labels. The arguments
are slightly different for even and odd d.

Theorem 3.1 Given two independent isotropic r.vs in Sd, X1 and X2,

V (X1 +X2) = V (X1) + V (X2)−
V (X1)V (X2)

2

Proof. Let us decompose the density functions of X1 and X2, f1 and f2
respectively, into infinite linear combinations of density functions of the base
B = { gk | k ∈ N+} of L2[0, π]:

f1 =
∞∑
j=0

αj gj and f2 =
∞∑
k=0

βk gk such that
∞∑
j=0

αj =
∞∑
k=0

βk = 1

The result is obtained using that the formula holds for the family gk. 2

4 The non-isotropic case

We conjecture that Theorem 3.1 also holds for general (non-isotropic) r.vs on
Sd. Next we check it for an isotropic and a non-isotropic r.v.

Example 4.1 Let us consider the density functions on S7:

g1 =
2 + cos(θ0) sin2(θ1) + cos(θ1) sin(θ2)∫

S7(2 + cos(θ0) sin2(θ1) + cos(θ1) sin(θ2))dS7
, g2 =

1 + cos(θ0)∫
S7(1 + cos(θ0))dS7

.

A computation shows that in this case,

2(V (g1) + V (g2))− V (g1)V (g2)

2
=

445

224
= V (g1 + g2)

(generalizing corollary 2.4 to get the density function of g1 + g2).

5 Decoherence of quantum states

Let us assume that we are running a fault-tolerant quantum algorithm and
that, each time the correction circuit is applied, a decoherence error, that has



an isotrope component with variance σ, occurs. The behavior of this error
can be analyzed through a stochastic process that changes in discrete time.
If the complete process involves k errors and these are independent, because
they occur at different times, then the final error of the n−qubit generated by
the algorithm will be:

V (E1 + · · ·+ Ek) = 2− 2
(

1− σ

2

)k
The above formula can be easily demonstrated by induction from Theorem 3.1,
and can be generalized for different variances σ1, . . . , σk:

V (E1 + · · ·+ Ek) =
k∑
j=1

(−1)j+1 sj
2j−1

where

s1 = σ1 + σ2 + · · ·+ σk

s2 = σ1σ2 + σ1σ3 + · · ·+ σk−1σk

· · ·

sk = σ1σ2 · · ·σk

The figure below shows the error behavior when k = 100 for variances
σ = 0.1, 0.075, 0.05, 0.025 and 0.01. Mark the exponential growth towards
the asymptotic value σ̄ = 2. Note also that, to keep the error reasonably
controlled, the variance of the errors that occur in each time interval must be
smaller than 1

k
(the inverse of the algorithm’s execution time).
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