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Abstract

We prove the following extension of Lagrange’s theorem: given a prime number p
and v1, . . . , vk ∈ Z4, 1 ≤ k ≤ 3, such that ‖vi‖2 = p for all 1 ≤ i ≤ k and 〈vi|vj〉 = 0
for all 1 ≤ i < j ≤ k, then there exists v = (x1, x2, x3, x4) ∈ Z4 such that 〈vi|v〉 = 0
for all 1 ≤ i ≤ k and

‖v‖2 = x21 + x22 + x23 + x24 = p

This means that, in Z4, any system of orthogonal vectors of norm p can be completed
to a base. We conjecture that the result holds for every norm p ≥ 1.

Keywords: Lagrange’s four-square theorem, p−orthonormal base extension
theorem, systems of p−orthonormal vectors, orthogonal lattices.

1 Introduction

Long before Lagrange proved his theorem, Diophantus had asked whether
every positive integer could be represented as the sum of four perfect squares
greater than or equal to zero. This question later became known as Bachet’s
conjecture, after the 1621 translation of Diophantus by Bachet. In parallel,
Fermat proposed the problem of representing every positive integer as a sum
of at most n n−gonal numbers. Lagrange [5] proved the square case of the
Fermat polygonal number theorem in 1770, also solving Bachet’s conjecture.
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Gauss [2] proved the triangular case in 1796 and the full polygonal number
theorem was not solved until it was finally proven by Cauchy in 1813. Later,
in 1834, Jacobi discovered a simple formula for the number of representations
of an integer as the sum of four integer squares.

The same year in which Lagrange proved his theorem, Waring asked whether
each natural number k has an associated positive integer s such that every
natural number is the sum of at most s natural numbers to the power of k.
For example, every natural number is the sum of at most 4 squares, 9 cubes,
or 19 fourth powers. The affirmative answer to the Waring’s problem, known
as the Hilbert–Waring theorem, was provided by Hilbert in 1909.

A possible generalization of Lagrange’s problem is the following: given
natural numbers a, b, c and d, can we solve n = ax21 + bx22 + cx23 + dx24 for
all positive integers n in integers x1, x2, x3 and x4? Lagrange’s four-square
theorem answered in the positive the case a = b = c = d = 1 and the general
solution was given by Ramanujan [7]. He proved that if we assume, without
loss of generality, that a ≤ b ≤ c ≤ d then there are exactly 54 possible choices
for a, b, c and d such that the problem is solvable in integers x1, x2, x3 and
x4 for all n ∈ N.

Another possible generalization, due to Mordel [6], tries to represent pos-
itive definite integral binary quadratic forms instead of positive integers. He
proved that the quadratic form x2 + y2 + z2 + u2 + v2 represents all positive
definite integral binary quadratic forms.

Sun [9] has proposed some refinements of the Lagrange’s theorem such as,
for example: n ∈ N can be written as x2 + y2 + z2 + w2 with x, y, z, w ∈ Z
such that x+ y + z (or x+ 2y, or x+ y + 2z) is a square (or a cube).

The extension of the Lagrange’s four-square theorem proposed in this ar-
ticle comes up from the study of the model of discrete quantum computation
introduced by the authors [4]. We study the simplest version of this problem,
which was already presented as a conjecture at a conference by the authors [3].

The outline of the article is as follows: In section 2 we set up notations and
discuss some basic properties. In section 3 we give some ideas about the proof
of the main result. Finally, in section 4 we expose several generalizations and
conjectures related to the proposed problem.

2 Notations and basic properties

We consider Z4 as a part of the vector space R4 provided with the inner
product 〈v|w〉 = x1y1 + x2y2 + x3y3 + x4y4, where v = (x1, x2, x3, x4) and
w = (y1, y2, y3, y4) are vectors of R4, and with the canonical base {e1, e2, e3, e4}.



Given a set of linearly independent vectors v1, . . . , vk ∈ R4, they generate
the lattice Λ = { b1v1 + · · · + bkvk | b1, . . . , bk ∈ Z } [1] and constitute a base
of Λ, B. So the dimension of Λ will be k. From now on we will only consider
bases whose vectors belong to Z4, i.e. Λ will always be an integral lattice.

Given a point v ∈ Λ, described by its coordinates in B, v = (bi)B, the
number N(v) = ‖v‖2 = 〈v|v〉 is called the norm of v and can be calculated
by the expression N(v) = btGb, where G is the Gram matrix of the vectors
of B. The determinant of G, det(G), is an invariant of Λ whose square root
is denoted by det(Λ). So det(Λ) =

√
det(G) and, geometrically, it is inter-

preted as the volume of the fundamental parallelepiped of Λ. The matrix G
is symmetric and positive definite and is associated to a quadratic form that
collects the main properties of Λ.

Let us consider the coordinate matrix V , formed by the vectors of the base
B placed by rows. If V is a square matrix, we can compute the determinant
of Λ from V , det(Λ) = |det(V )|, and it holds that det2(V ) = det(G).

Given a set of vectors v1, . . . , vk ∈ Z4 such that N(vi) = p for all 1 ≤ i ≤ k
and 〈vi|vj〉 = 0 for all 1 ≤ i < j ≤ k, we will say that S = { v1, . . . , vk } is a
p−orthonormal system and, if k = 4, that S is a p−orthonormal base. The
support of S is supp(S) = { k | ∃j such that the k−coordinate of vj 6= 0 }.

However, we are not interested in Λ, but rather in its orthogonal lattice
Λ⊥ = { v ∈ Z4 | 〈vi|v〉 = 0 for all 1 ≤ i ≤ k }. The resolution method of
systems of linear Diophantine equations computes a base of Λ⊥ with 4 − k
vectors. Then the dimension of Λ⊥ will be k⊥ = 4− k. In order to do this we
have to solve the linear system V X = 0, computing the Smith normal form [8]
of V and its invariant factors α1, . . . , αk:

LV R =


α1

. . .

αk

 = N such that

L ∈ GLk(Z), R ∈ GL4(Z)

0 < α1, · · · , αk

α1|α2, . . . αk−1|αk

Lemma 2.1 Given a number p ≥ 1 and a p−orthonormal system S = { v1,
. . . , vk }, 1 ≤ k ≤ 3, with associated lattice Λ, then the last 4 − k columns of
the matrix R, in the Smith normal form of V , constitute a base of Λ⊥.

Proof. It holds that V X = 0 ⇔ LV RR−1X = L 0 = 0 and, considering
Y = R−1X, we have that V X = 0 ⇔ N Y = 0 ⇔ y1 = · · · = yk = 0. So,
the base that generates the solutions of V X = 0 is B⊥ = {Rek+1, . . . , R e4 },
i.e. the set with the last 4− k columns of R. 2



Throughout the article we will use identities among polynomials in many
variables whose demonstration only requires the polynomial expansion of the
difference of both members of the equalities. We will call this type of proof
polynomial checking.

Proposition 2.2 Given a prime number p and a p−orthonormal system S =
{ v1, v2 }, v1 = (x1, . . . , x4) and v2 = (y1, . . . , y4), with |supp(S)| > 2, then
gcd(x1, . . . , x4) = gcd(y1, . . . , y4) = 1 and the invariant factors of V also verify
α1 = α2 = 1.

Proof. Suppose, by contradiction, that gcd(x1, . . . , x4) = g > 1. Then

N(v1) = g2(x′ 21 + · · · + x′ 24 ) = p, where x′i =
xi
g

for all 1 ≤ i ≤ 4, and

this fact contradicts the primality of p. So, we have that gcd(x1, . . . , x4) = 1
and in the same way we conclude that gcd(y1, . . . , y4) = 1. Applying these
results, together with the property of the first invariant factor, we get α1 = 1.

In order to obtain the value of α2 we will use the following identity, that
can be proved by polynomial checking:

N(v1)N(v2)− 〈v1|v2〉2 =

∣∣∣∣∣∣x1 x2y1 y2

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣x1 x3y1 y3

∣∣∣∣∣∣
2

+ · · ·+

∣∣∣∣∣∣x3 x4y3 y4

∣∣∣∣∣∣
2

By hypothesis, N(v1)N(v2)− 〈v1|v2〉2 = p2. Suppose, again by contradiction,
that g = gcd(m12, . . . ,m34) > 1, where

mij =

∣∣∣∣∣∣xi xjyi yj

∣∣∣∣∣∣ and m′ij =
mij

g

Then p2 = g2(m′ 212 + · · · + m′ 234) and there are, at least, two minors different
from 0 because |supp(S)| > 2. These facts contradict the primality of p. So,
we have that gcd(m12, . . . ,m34) = 1 and, since this value matches the second
invariant factor, we get α2 = 1. 2

Finally, we introduce the fundamental result of the branch of number the-
ory called the geometry of numbers, proved by Minkowski in 1889.

Theorem 2.3 (Minkowski [1]) Let K be a convex set in Rn which is sym-
metric with respect to the origin. If the volume of K is greater than 2n times
the volume of the fundamental domain (parallelepiped) of a lattice Λ, then K
contains a non-zero lattice point.



3 Extended Lagrange’s four-square theorem

We are dealing with the following problem: given a prime number p and a
p−orthonormal system S = { v1, . . . , vk }, 1 ≤ k ≤ 3, with associated lattice
Λ, prove that there exists vk+1 ∈ Λ⊥ with norm N(vk+1) = p.

Analyzing the problem we find four cases. The first two are trivial: S has a
single vector and S has two vectors with |supp(S)| = 2. The third one, S has
three vectors, can be easily proved using the exterior product of the vectors.

The last one, S has two vectors with |supp(S)| > 2, requires a detailed
study of the lattice Λ⊥ and its associated Gram matrix G. As a result of this
analysis, we have that p |G. So, vtGv = p if and only if vtG′v = 1, where
G′ = G/p is a unimodular matrix. Finally, the existence of v is deduced from
the theorem 2.3. In this way, the proof of the following result is concluded.

Theorem 3.1 Given a prime number p and a p−orthonormal system in Z4,
S, then S can be extended to a p−orthonormal base.

4 Generalizations and conjectures

We have verified (exhaustively) the result of the theorem 3.1 for every 1 ≤
p ≤ 10000. Hence, we conjecture that the following result holds.

Conjecture 4.1 Given an integer number p ≥ 1 and a p−orthonormal sys-
tem in Z4, S, then S can be extended to a p−orthonormal base.

The most natural generalization of the problem is to consider it in any
dimension n ≥ 1, i.e. to study the problem in Zn.

Problem 4.2 Given an integer number p ≥ 1 and a p−orthonormal system
in Zn, S, ¿can S be extended to a p−orthonormal base?

The answer for n = 2 is true (trivial). The case n = 4 has already been
studied and, in the case n = 8, we have checked the result for 1 ≤ p ≤ 36.

We try to find counterexamples, in order to understand the problem. Given
p ≥ 1, we consider the p−orthonormal base in Z4 S1 = {v1, v2, v3, v4} and the
matrix A, which is obtained by placing these vectors by rows,

v1 = (x1, x2, x3, x4) v3 = (−x3, x4, x1,−x2)

v2 = (−x2, x1,−x4, x3) v4 = (x4, x3,−x2,−x1)
where p = x21+x

2
2+x

2
3+x

2
4.

If p is the sum of two squares, p = y21 + y22, we define the p−orthonormal base
in Z2 S2 = {u1, u2} and the matrix B, which is again obtained by placing



these vectors by rows: u1 = (y1, y2) and v2 = (−y2, y1). Then, the rows of the
matrices C1, C2 y C3 define non-extensible p−orthonormal systems.

(i) C1 if p is not a square, n = 1 mod 4 and n 6= 1.

(ii) C2 if p cannot be written as a sum of two squares, n = 2 mod 4 and n 6= 2.

(iii) C3 if p is not a square and can be written as a sum of two squares and
n = 3 mod 4.

C1 =


A · · · 0 0
...

. . .
...

...

0 · · · A 0

 C2 =


A · · · 0 0 0
...

. . .
...

...
...

0 · · · A 0 0

 C3 =


A · · · 0 0 0
...

. . .
...

...
...

0 · · · A 0 0

0 · · · 0 B 0


These facts make us think that conjecture 4.1 should be generalized as follows.

Conjecture 4.3 Given n = 0mod 4 (n ≥ 1) and p ≥ 1 and a p−orthonormal
system in Zn, S, then S can be extended to a p−orthonormal base.
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