On the discrete Brunn-Minkowski inequality by Gradner\&Gronchi

David Iglesias ${ }^{1}$
Departamento de Matemáticas
Universidad de Murcia
Murcia, Spain

Abstract

In 2002 Gardner and Gronchi obtained a discrete analogue of the Brunn-Minkowski inequality. They proved that for finite subsets $A, B \subset \mathbb{R}^{n}$ with $\operatorname{dim} B=n$, the inequality $|A+B| \geq\left|\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}\right|$ holds, where $\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}, \mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ are particular subsets of the integer lattice, called B-initial segments. The aim of this paper is to provide a method in order to compute $\left|\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}\right|$ and so, to implement this inequality.

Keywords: The Brunn-Minkowski inequality, cardinality, Minkowski addition, integer lattice, B-order.

1 Introduction and notation

Let \mathbb{R}^{n} denote the n-dimensional Euclidean space, let e_{i} be the i-th canonical unit vector. The n-dimensional volume (Lebesgue measure) of a compact set $K \subset \mathbb{R}^{n}$ is denoted by $\operatorname{vol}(K)$, and we use $|A|$ to represent the cardinality of a finite subset $A \subset \mathbb{R}^{n}$. Let \mathbb{Z}^{n} be the integer lattice, i.e., the lattice of all points with integral coordinates in \mathbb{R}^{n}, and we write $\mathbb{Z}_{+}^{n}=\left\{x \in \mathbb{Z}^{n}: x_{i} \geq 0\right\}$.

[^0]The classical Brunn-Minkowski inequality states that if $K, L \subset \mathbb{R}^{n}$ are compact, then

$$
\begin{equation*}
\operatorname{vol}(K+L)^{1 / n} \geq \operatorname{vol}(K)^{1 / n}+\operatorname{vol}(L)^{1 / n} \tag{1}
\end{equation*}
$$

with equality, when $\operatorname{vol}(K) \operatorname{vol}(L)>0$, if and only if K and L are homothetic compact convex sets. Here, $K+L=\{x+y: x \in K, y \in L\}$ is the Minkowski (vectorial) addition. The Brunn-Minkowski inequality is one of the most powerful results in Convex Geometry and beyond. For an extensive survey on it we refer to [2].

There are several equivalent forms of the Brunn-Minkowski inequality (the multiplicative version, the minimal version, the analytic one called the Prékopa-Leindler inequality..., see e.g. [4, s. 7.1]). Among them, one can find the so-called Blaschke form of the Brunn-Minkowski inequality: if $K, L \subset \mathbb{R}^{n}$ are compact and convex and B_{K}, B_{L} are the balls (centered at 0) such that $\operatorname{vol}(K)=\operatorname{vol}\left(B_{K}\right), \operatorname{vol}(L)=\operatorname{vol}\left(B_{L}\right)$, then

$$
\begin{equation*}
\operatorname{vol}(K+L) \geq \operatorname{vol}\left(B_{K}+B_{L}\right) \tag{2}
\end{equation*}
$$

Next we move it to the discrete setting, i.e., we consider finite subsets of (integer) points. It can be easily seen that one cannot expect to obtain a Brunn-Minkowski inequality for the cardinality in the classical form (1). Indeed, simply taking $A=\{0\}$ to be the origin and any finite set $B \subset \mathbb{Z}^{n}$, then $|A+B|^{1 / n}<|A|^{1 / n}+|B|^{1 / n}$. So, in [3] Gardner and Gronchi proposed to obtain an analogue of (2) for the cardinality, and proved the following beautiful and powerful discrete Brunn-Minkowski inequality:

Theorem 1.1 Let $A, B \subset \mathbb{Z}^{n}$ be finite with $\operatorname{dim} B=n$. Then

$$
\begin{equation*}
|A+B| \geq\left|\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}\right| . \tag{3}
\end{equation*}
$$

Here $\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}, \mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ are B-initial segments: for $m \in \mathbb{N}, D_{m}^{B}$ is the set of the first m points of \mathbb{Z}_{+}^{n} in the " B-order", which is a particular order defined on \mathbb{Z}_{+}^{n} depending only on $|B|$ (see Section 2). Roughly speaking, these sets are close to the intersection of certain simplices with \mathbb{Z}^{n}. In order to show (3) the authors use the technique of the so-called "compression in a direction v ", which might be seen as a discrete analog of shaking (see e.g. [1, p. 77]).

2 The B-weight and the B-order

In order to define the main object in Gardner\&Gronchi's result, i.e. the initial segments, we need a certain order, depending on one of the sets, say B, in \mathbb{Z}^{n}.

This B-order is defined via a linear function that the authors called B-weight. As usual we write $x=\left(x_{1}, \ldots, x_{n}\right)^{\top}$.

Definition 2.1 [B-weight] Let $B \subset \mathbb{Z}^{n}$ be finite with $|B| \geq n+1$. The B-weight function $w_{B}: \mathbb{Z}^{n} \longrightarrow \mathbb{R}$ is defined as

$$
w_{B}(x)=\frac{x_{1}}{|B|-n}+\sum_{i=2}^{n} x_{i} .
$$

The B-weight function allows to define the B-order in \mathbb{Z}^{n} :
Definition 2.2 [B-order] Given $x, y \in \mathbb{Z}^{n}$, we say that $x<_{B} y$ if

- $w_{B}(x)<w_{B}(y)$ or
- $w_{B}(x)=w_{B}(y)$ and there exists $j \in\{1, \ldots, n\}$ such that $x_{j}>y_{j}$ and $x_{i}=y_{i}$ for all $i<j$.

Fig. 1. The B-order in \mathbb{Z}_{+}^{2} for $|B|=6$.

We note that the minimum of \mathbb{Z}_{+}^{n} in any B-order is always the origin. Moreover, one can check that the first $|B|$ points in any B-order are

$$
\begin{equation*}
0<B \mathrm{e}_{1}<{ }_{B} 2 \mathrm{e}_{1}<{ }_{B} 3 \mathrm{e}_{1} \cdots<_{B}(|B|-n) \mathrm{e}_{1}<_{B} \mathrm{e}_{2}<_{B} \mathrm{e}_{3}<B \cdots<_{B} \mathrm{e}_{n} . \tag{4}
\end{equation*}
$$

Another important observation is that initial segments behave well with the Minkowski addition: if $F=D_{m}^{B}$ is the m-initial segment in the B-order, then $F+D_{|B|}^{B}$ is also a initial segment in the same B-order.

3 Computing the cardinality $\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$

If we want to estimate the cardinality of the sum of two finite sets $A, B \subset \mathbb{Z}^{n}$ by below, one might have the impression that inequality (3) cannot help us, because we are replacing the problem of estimating $|A+B|$ by the one of computing the cardinality of another Minkowski addition, namely, $\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$. However, $\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}$ and $\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ are very special sets: they are B-initial segments, and therefore $\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ is also a B-initial segment. And so, in order to know its cardinality, it is enough to find the point $p \in \mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ of maximum position in the B-order, because

$$
x \in \mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}} \text { if and only if } x<_{B} p ;
$$

or equivalently, $\left|\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}\right|$ is the position of the "last" point $p \in \mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ in the B-order.

We also note that $p=a+b \in \mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ is the maximum position point in the B-order if and only if $a \in \mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}$ and $b \in \mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ are the maximum position points (in the B-order) of A and B, respectively. And moreover, we already know that the maximum position point in $\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}$ is always e_{n} (cf. (4)).

Thus, the problem of computing the cardinality $\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$ is reduced to have a method which allows to know the position in the B-order of any point of \mathbb{Z}_{+}^{n}, and vice versa. Once we have such a method, we may compute $\left|D_{|A|}^{B}+D_{|B|}^{B}\right|$ as follows:
Step 1: To find the point $a \in \mathbb{Z}_{+}^{n}$ whose position is $|A|$ (in the B-order).
Step 2: To compute the position s (in the B-order) of $p=a+\mathrm{e}_{n}$.
Step 3: Then $|A+B| \geq s$.
Example 3.1 In the example shown in Figure 1, if $|A|=54$ then $a=(6,3)^{\top}$, and hence $p=a+\mathrm{e}_{2}=(6,4)^{\top}$. Therefore, $|A+B| \geq\left|\mathrm{D}_{|\mathrm{A}|}^{\mathrm{B}}+\mathrm{D}_{|\mathrm{B}|}^{\mathrm{B}}\right|=77$.

If we want to know the position of a point in a certain B-order, we just need to " B-order" the points of \mathbb{Z}_{+}^{n}, taking also into account that the B-order depends only on the cardinality of B but not on its "shape". In order to make this process easier, one can group the points of \mathbb{Z}_{+}^{n}, according to their B-weight. Following this idea we can use the sets P_{m}, also a key-point in the proof of Gardner\&Gronchi, which are defined as

$$
P_{m}=\left\{x \in \mathbb{Z}_{+}^{n}: w_{B}(x)=\frac{m}{|B|-n}\right\} \quad m \in \mathbb{N} .
$$

Since the B-order organizes the points according to their B-weight, if we know the cardinality of each set $P_{m}, m \in \mathbb{N}$, then we will also know the B-weight of the point $x \in \mathbb{Z}_{+}^{n}$ occupying the s-th position for any $s \in \mathbb{N}$; in fact,

$$
x \in P_{m} \quad \text { if and only if } \quad \sum_{i=0}^{m-1}\left|P_{i}\right|<s \leq \sum_{i=0}^{m}\left|P_{i}\right| .
$$

In this regard, we have proved the following result. As usual in the literature, we write $\lfloor\cdot\rfloor$ to represent the floor function.

Theorem 3.2 Let $m \in \mathbb{N}$ and let $B \in \mathbb{Z}_{+}^{n}$ be finite. Then

$$
\begin{equation*}
\left|P_{m}\right|=\binom{n+\left\lfloor\frac{m}{|B|-n}\right\rfloor-1}{\left\lfloor\frac{m}{|B|-n}\right\rfloor} . \tag{5}
\end{equation*}
$$

Proof. First we prove that the cardinality of P_{m} does not depend on m but on $\left\lfloor\frac{m}{|B|-n}\right\rfloor$. Indeed, let $m, k \in \mathbb{Z}$ such that $0 \leq k<|B|-n$ and

$$
\frac{m}{|B|-n}=\left\lfloor\frac{m}{|B|-n}\right\rfloor \in \mathbb{Z}
$$

On the one hand, if $x \in P_{m}$, then $x+k \mathrm{e}_{1} \in P_{m+k}$, which implies that $P_{m}+k \mathrm{e}_{1} \subset$ P_{m+k}. On the other hand, if $y \in P_{m+k}$, then

$$
w_{B}(y)=\frac{y_{1}}{|B|-n}+\sum_{i=2}^{n} y_{i}=\frac{m+k}{|B|-n},
$$

and so

$$
\frac{y_{1}-k}{|B|-n} \in \mathbb{Z}
$$

Therefore, since $0 \leq k /(|B|-n)<1$, we infer that $k /(|B|-n)$ is the fractional part of $w_{B}(y)$. Hence $y_{1}-k \geq 0$ and thus

$$
y^{\prime}=y-k \mathrm{e}_{1}=\left(y_{1}-k, y_{2}, \ldots, y_{n}\right) \in \mathbb{Z}_{+}^{n} .
$$

Now, since $w_{B}\left(y^{\prime}\right)=m /(|B|-n)$, we have $y^{\prime} \in P_{m} \cap \mathbb{Z}_{+}^{n}$ and, consequently, $P_{m+k}-k \mathrm{e}_{1} \subset P_{m}$, i.e., $P_{m+k} \subset P_{m}+k \mathrm{e}_{1}$. This shows that $P_{m}+k \mathrm{e}_{1}=P_{m+k}$ and, therefore, $\left|P_{m}\right|=\left|P_{m+k}\right|$, as required.

So, it is enough to prove (5) when

$$
r:=\frac{m}{|B|-n} \in \mathbb{Z} .
$$

We observe that, for any $x \in P_{m}$,

$$
\frac{x_{1}}{|B|-n}=r-\sum_{i=2}^{n} x_{i} \in \mathbb{Z},
$$

and hence we can consider the function $c_{m}: P_{m} \longrightarrow\{0,1\}^{n+r-1}$ given by

$$
\left.c_{m}(x)=\left(0, \stackrel{x_{1}}{|B|-n}\right), 0,1,0, \stackrel{\left(x_{2}\right)}{?}, 0,1, \ldots, 0, \stackrel{\left(x_{n}\right)}{\xrightarrow{n}}, 0\right)
$$

This function $c_{m}(x)$ is a bijection between P_{m} and $\{0,1\}^{n+r-1}$ and, moreover, in $c_{m}(x)$ exactly r zeros appear. So, the cardinality of P_{m} is precisely the number of possible combinations we can have if we take r elements from a family with $n+r-1$ elements, i.e., $\left|P_{m}\right|=\binom{n+r-1}{r}$.

The "coding function" c_{m} can be also used to B-order the points in each P_{m}. Indeed, given $x, y \in P_{m}$, then $x<_{B} y$ if and only if $c_{m}(x)<c_{m}(y)$ in the lexicographical order. Moreover, since the points in P_{m+1} are " B-greater" than the ones of P_{m}, and since we know $\left|P_{m}\right|$ (see Theorem 3.2), the function c_{m} allows to determine, as a consequence, the position of any point of \mathbb{Z}_{+}^{n} in the B-order.

References

[1] Bonnesen, T., and W. Fenchel, "Theory of Convex Bodies," BCS Associates, Moscow, Idaho, U.S.A., 1987. German original: Springer, Berlin, 1934.
[2] Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (3) (2002), 355-405.
[3] Gardner, R. J., and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (10) (2001), 3995-4024.
[4] Schneider, R., "Convex bodies: The Brunn-Minkowski theory," Cambridge University Press, Cambridge, 2nd expanded edition, 2014.

[^0]: ${ }^{1}$ Email: david.iglesias@um.es

