On the discrete Brunn-Minkowski inequality by Gradner&Gronchi

David Iglesias¹

Departamento de Matemáticas Universidad de Murcia Murcia, Spain

Abstract

In 2002 Gardner and Gronchi obtained a discrete analogue of the Brunn-Minkowski inequality. They proved that for finite subsets $A, B \subset \mathbb{R}^n$ with dim B = n, the inequality $|A + B| \ge |D^B_{|A|} + D^B_{|B|}|$ holds, where $D^B_{|A|}, D^B_{|B|}$ are particular subsets of the integer lattice, called *B*-initial segments. The aim of this paper is to provide a method in order to compute $|D^B_{|A|} + D^B_{|B|}|$ and so, to implement this inequality.

Keywords: The Brunn-Minkowski inequality, cardinality, Minkowski addition, integer lattice, B-order.

1 Introduction and notation

Let \mathbb{R}^n denote the *n*-dimensional Euclidean space, let e_i be the *i*-th canonical unit vector. The *n*-dimensional volume (Lebesgue measure) of a compact set $K \subset \mathbb{R}^n$ is denoted by $\operatorname{vol}(K)$, and we use |A| to represent the cardinality of a finite subset $A \subset \mathbb{R}^n$. Let \mathbb{Z}^n be the integer lattice, i.e., the lattice of all points with integral coordinates in \mathbb{R}^n , and we write $\mathbb{Z}^n_+ = \{x \in \mathbb{Z}^n : x_i \geq 0\}$.

¹ Email: david.iglesias@um.es

The classical Brunn-Minkowski inequality states that if $K, L \subset \mathbb{R}^n$ are compact, then

$$\operatorname{vol}(K+L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n},$$
 (1)

with equality, when $\operatorname{vol}(K)\operatorname{vol}(L) > 0$, if and only if K and L are homothetic compact convex sets. Here, $K + L = \{x + y : x \in K, y \in L\}$ is the *Minkowski* (vectorial) addition. The Brunn-Minkowski inequality is one of the most powerful results in Convex Geometry and beyond. For an extensive survey on it we refer to [2].

There are several equivalent forms of the Brunn-Minkowski inequality (the multiplicative version, the minimal version, the analytic one called the Prékopa-Leindler inequality..., see e.g. [4, s. 7.1]). Among them, one can find the so-called Blaschke form of the Brunn-Minkowski inequality: if $K, L \subset \mathbb{R}^n$ are compact and convex and B_K, B_L are the balls (centered at 0) such that $\operatorname{vol}(K) = \operatorname{vol}(B_K), \operatorname{vol}(L) = \operatorname{vol}(B_L)$, then

$$\operatorname{vol}(K+L) \ge \operatorname{vol}(B_K + B_L).$$

$$\tag{2}$$

Next we move it to the discrete setting, i.e., we consider finite subsets of (integer) points. It can be easily seen that one cannot expect to obtain a Brunn-Minkowski inequality for the cardinality in the classical form (1). Indeed, simply taking $A = \{0\}$ to be the origin and any finite set $B \subset \mathbb{Z}^n$, then $|A + B|^{1/n} < |A|^{1/n} + |B|^{1/n}$. So, in [3] Gardner and Gronchi proposed to obtain an analogue of (2) for the cardinality, and proved the following beautiful and powerful discrete Brunn-Minkowski inequality:

Theorem 1.1 Let $A, B \subset \mathbb{Z}^n$ be finite with dim B = n. Then

$$|A + B| \ge |\mathbf{D}_{|A|}^{\mathsf{B}} + \mathbf{D}_{|B|}^{\mathsf{B}}|.$$
(3)

Here $D_{|A|}^{B}$, $D_{|B|}^{B}$ are *B*-initial segments: for $m \in \mathbb{N}$, D_{m}^{B} is the set of the first m points of \mathbb{Z}_{+}^{n} in the "*B*-order", which is a particular order defined on \mathbb{Z}_{+}^{n} depending only on |B| (see Section 2). Roughly speaking, these sets are close to the intersection of certain simplices with \mathbb{Z}^{n} . In order to show (3) the authors use the technique of the so-called "compression in a direction v", which might be seen as a discrete analog of shaking (see e.g. [1, p. 77]).

2 The *B*-weight and the *B*-order

In order to define the main object in Gardner&Gronchi's result, i.e. the initial segments, we need a certain order, depending on one of the sets, say B, in \mathbb{Z}^n .

This *B*-order is defined via a linear function that the authors called *B*-weight. As usual we write $x = (x_1, \ldots, x_n)^{\intercal}$.

Definition 2.1 [*B*-weight] Let $B \subset \mathbb{Z}^n$ be finite with $|B| \ge n + 1$. The *B*-weight function $w_B : \mathbb{Z}^n \longrightarrow \mathbb{R}$ is defined as

$$w_B(x) = \frac{x_1}{|B| - n} + \sum_{i=2}^n x_i$$

The *B*-weight function allows to define the *B*-order in \mathbb{Z}^n :

Definition 2.2 [B-order] Given $x, y \in \mathbb{Z}^n$, we say that $x <_B y$ if

- $w_B(x) < w_B(y)$ or
- $w_B(x) = w_B(y)$ and there exists $j \in \{1, ..., n\}$ such that $x_j > y_j$ and $x_i = y_i$ for all i < j.

Fig. 1. The *B*-order in \mathbb{Z}^2_+ for |B| = 6.

We note that the minimum of \mathbb{Z}_{+}^{n} in any *B*-order is always the origin. Moreover, one can check that the first |B| points in any *B*-order are

$$0 <_B e_1 <_B 2e_1 <_B 3e_1 \cdots <_B (|B| - n)e_1 <_B e_2 <_B e_3 <_B \cdots <_B e_n.$$
(4)

Another important observation is that initial segments behave well with the Minkowski addition: if $F = D_m^B$ is the *m*-initial segment in the *B*-order, then $F + D_{|B|}^B$ is also a initial segment in the same *B*-order.

3 Computing the cardinality $\left| D_{|A|}^{B} + D_{|B|}^{B} \right|$

If we want to estimate the cardinality of the sum of two finite sets $A, B \subset \mathbb{Z}^n$ by below, one might have the impression that inequality (3) cannot help us, because we are replacing the problem of estimating |A + B| by the one of computing the cardinality of another Minkowski addition, namely, $|D^B_{|A|} + D^B_{|B|}|$. However, $D^B_{|A|}$ and $D^B_{|B|}$ are very special sets: they are *B*-initial segments, and therefore $D^B_{|A|} + D^B_{|B|}$ is also a *B*-initial segment. And so, in order to know its cardinality, it is enough to find the point $p \in D^B_{|A|} + D^B_{|B|}$ of maximum position in the *B*-order, because

$$x \in D^{B}_{|A|} + D^{B}_{|B|}$$
 if and only if $x <_{B} p$;

or equivalently, $|D_{|A|}^{B} + D_{|B|}^{B}|$ is the position of the "last" point $p \in D_{|A|}^{B} + D_{|B|}^{B}$ in the *B*-order.

We also note that $p = a + b \in D^{B}_{|A|} + D^{B}_{|B|}$ is the maximum position point in the *B*-order if and only if $a \in D^{B}_{|A|}$ and $b \in D^{B}_{|B|}$ are the maximum position points (in the *B*-order) of *A* and *B*, respectively. And moreover, we already know that the maximum position point in $D^{B}_{|B|}$ is always e_n (cf. (4)).

Thus, the problem of computing the cardinality $|D_{|A|}^{B} + D_{|B|}^{B}|$ is reduced to have a method which allows to know the position in the *B*-order of any point of \mathbb{Z}_{+}^{n} , and vice versa. Once we have such a method, we may compute $|D_{|A|}^{B} + D_{|B|}^{B}|$ as follows:

Step 1: To find the point $a \in \mathbb{Z}_+^n$ whose position is |A| (in the *B*-order). **Step 2:** To compute the position *s* (in the *B*-order) of $p = a + e_n$. **Step 3:** Then $|A + B| \ge s$.

Example 3.1 In the example shown in Figure 1, if |A| = 54 then $a = (6, 3)^{\intercal}$, and hence $p = a + e_2 = (6, 4)^{\intercal}$. Therefore, $|A + B| \ge |D_{|A|}^{B} + D_{|B|}^{B}| = 77$.

If we want to know the position of a point in a certain *B*-order, we just need to "*B*-order" the points of \mathbb{Z}_{+}^{n} , taking also into account that the *B*-order depends only on the cardinality of *B* but not on its "shape". In order to make this process easier, one can group the points of \mathbb{Z}_{+}^{n} , according to their *B*-weight. Following this idea we can use the sets P_{m} , also a key-point in the proof of Gardner&Gronchi, which are defined as

$$P_m = \left\{ x \in \mathbb{Z}_+^n : w_B(x) = \frac{m}{|B| - n} \right\} \quad m \in \mathbb{N}.$$

Since the *B*-order organizes the points according to their *B*-weight, if we know the cardinality of each set P_m , $m \in \mathbb{N}$, then we will also know the *B*-weight of the point $x \in \mathbb{Z}_+^n$ occupying the *s*-th position for any $s \in \mathbb{N}$; in fact,

$$x \in P_m$$
 if and only if $\sum_{i=0}^{m-1} |P_i| < s \le \sum_{i=0}^m |P_i|$.

In this regard, we have proved the following result. As usual in the literature, we write $\lfloor \cdot \rfloor$ to represent the floor function.

Theorem 3.2 Let $m \in \mathbb{N}$ and let $B \in \mathbb{Z}^n_+$ be finite. Then

$$|P_m| = \begin{pmatrix} n + \left\lfloor \frac{m}{|B| - n} \right\rfloor - 1 \\ \left\lfloor \frac{m}{|B| - n} \right\rfloor \end{pmatrix}.$$
 (5)

Proof. First we prove that the cardinality of P_m does not depend on m but on $\left|\frac{m}{|B|-n}\right|$. Indeed, let $m, k \in \mathbb{Z}$ such that $0 \le k < |B| - n$ and

$$\frac{m}{|B|-n} = \left\lfloor \frac{m}{|B|-n} \right\rfloor \in \mathbb{Z}.$$

On the one hand, if $x \in P_m$, then $x + ke_1 \in P_{m+k}$, which implies that $P_m + ke_1 \subset P_{m+k}$. On the other hand, if $y \in P_{m+k}$, then

$$w_B(y) = \frac{y_1}{|B| - n} + \sum_{i=2}^n y_i = \frac{m+k}{|B| - n},$$

and so

$$\frac{y_1 - k}{|B| - n} \in \mathbb{Z}.$$

Therefore, since $0 \le k/(|B|-n) < 1$, we infer that k/(|B|-n) is the fractional part of $w_B(y)$. Hence $y_1 - k \ge 0$ and thus

$$y' = y - ke_1 = (y_1 - k, y_2, \dots, y_n) \in \mathbb{Z}_+^n.$$

Now, since $w_B(y') = m/(|B| - n)$, we have $y' \in P_m \cap \mathbb{Z}^n_+$ and, consequently, $P_{m+k} - ke_1 \subset P_m$, i.e., $P_{m+k} \subset P_m + ke_1$. This shows that $P_m + ke_1 = P_{m+k}$ and, therefore, $|P_m| = |P_{m+k}|$, as required. So, it is enough to prove (5) when

$$r := \frac{m}{|B| - n} \in \mathbb{Z}.$$

We observe that, for any $x \in P_m$,

$$\frac{x_1}{|B|-n} = r - \sum_{i=2}^n x_i \in \mathbb{Z},$$

and hence we can consider the function $c_m: P_m \longrightarrow \{0,1\}^{n+r-1}$ given by

$$c_m(x) = \left(0, \frac{\binom{x_1}{|B|-n}}{\dots}, 0, 1, 0, \frac{(x_2)}{\dots}, 0, 1, \dots, 0, \frac{(x_n)}{\dots}, 0\right).$$

This function $c_m(x)$ is a bijection between P_m and $\{0,1\}^{n+r-1}$ and, moreover, in $c_m(x)$ exactly r zeros appear. So, the cardinality of P_m is precisely the number of possible combinations we can have if we take r elements from a family with n + r - 1 elements, i.e., $|P_m| = \binom{n+r-1}{r}$.

The "coding function" c_m can be also used to *B*-order the points in each P_m . Indeed, given $x, y \in P_m$, then $x <_B y$ if and only if $c_m(x) < c_m(y)$ in the lexicographical order. Moreover, since the points in P_{m+1} are "*B*-greater" than the ones of P_m , and since we know $|P_m|$ (see Theorem 3.2), the function c_m allows to determine, as a consequence, the position of any point of \mathbb{Z}^n_+ in the *B*-order.

References

- Bonnesen, T., and W. Fenchel, "Theory of Convex Bodies," BCS Associates, Moscow, Idaho, U.S.A., 1987. German original: Springer, Berlin, 1934.
- [2] Gardner, R. J., The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (3) (2002), 355–405.
- [3] Gardner, R. J., and P. Gronchi, A Brunn-Minkowski inequality for the integer lattice, Trans. Amer. Math. Soc. 353 (10) (2001), 3995-4024.
- [4] SCHNEIDER, R., "Convex bodies: The Brunn-Minkowski theory," Cambridge University Press, Cambridge, 2nd expanded edition, 2014.