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Abstract

In 2002 Gardner and Gronchi obtained a discrete analogue of the Brunn-Minkowski
inequality. They proved that for finite subsets A, B C R" with dim B = n, the
inequality |A + B| > ‘DB\\ + Dll?g'} holds, where DE%I’ Dﬁa\ are particular subsets of
the integer lattice, called B-initial segments. The aim of this paper is to provide a
method in order to compute ‘Dlli\ + D%“ and so, to implement this inequality.
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1 Introduction and notation

Let R™ denote the n-dimensional Euclidean space, let e; be the ¢-th canonical
unit vector. The n-dimensional volume (Lebesgue measure) of a compact set
K C R" is denoted by vol(K), and we use |A] to represent the cardinality of
a finite subset A C R"™. Let Z" be the integer lattice, i.e., the lattice of all
points with integral coordinates in R", and we write Z7 = {x el x; > O}.
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The classical Brunn-Minkowski inequality states that if K, L C R" are
compact, then

vol(K + L)Y™ > vol(K)!/™ + vol(L)"/", (1)
with equality, when vol(K')vol(L) > 0, if and only if K and L are homothetic
compact convex sets. Here, K + L ={x+vy:x € K,y € L} is the Minkowski
(vectorial) addition. The Brunn-Minkowski inequality is one of the most pow-
erful results in Convex Geometry and beyond. For an extensive survey on it
we refer to [2].

There are several equivalent forms of the Brunn-Minkowski inequality
(the multiplicative version, the minimal version, the analytic one called the
Prékopa-Leindler inequality..., see e.g. [4, s. 7.1]). Among them, one can find
the so-called Blaschke form of the Brunn-Minkowski inequality: if K, L C R"

are compact and convex and By, By, are the balls (centered at 0) such that
vol(K) = vol(Bg), vol(L) = vol(Bp), then

vol(K + L) > vol(Bk + Byr). (2)

Next we move it to the discrete setting, i.e., we consider finite subsets of
(integer) points. It can be easily seen that one cannot expect to obtain a
Brunn-Minkowski inequality for the cardinality in the classical form (1). In-
deed, simply taking A = {0} to be the origin and any finite set B C Z", then
|A+ B|Y/™ < |A|Y™ + |B|*/™. So, in [3] Gardner and Gronchi proposed to ob-
tain an analogue of (2) for the cardinality, and proved the following beautiful
and powerful discrete Brunn-Minkowski inequality:

Theorem 1.1 Let A, B C Z" be finite with dim B = n. Then
|A+ B| > Dy + Dy | (3)

Here DE’M,D%' are B-initial segments: for m € N, DB is the set of the
first m points of Z7 in the “B-order”, which is a particular order defined on
Z" depending only on |B| (see Section 2). Roughly speaking, these sets are
close to the intersection of certain simplices with Z™. In order to show (3)
the authors use the technique of the so-called “compression in a direction v”,
which might be seen as a discrete analog of shaking (see e.g. [1, p. 77)).

2 The B-weight and the B-order

In order to define the main object in Gardner&Gronchi’s result, i.e. the initial
segments, we need a certain order, depending on one of the sets, say B, in Z".



This B-order is defined via a linear function that the authors called B-weight.
As usual we write x = (xq,...,2,)7.

Definition 2.1 [B-weight] Let B C Z" be finite with |B| > n + 1. The
B-weight function wg : Z" — R is defined as

T -
=2

The B-weight function allows to define the B-order in Z":

Definition 2.2 [B-order| Given z,y € Z", we say that z <g y if

* wp(z) <wp(y) or
* wp(r) = wp(y) and there exists j € {1,...,n} such that x; > y; and z; = y;
for all ¢+ < j.
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Fig. 1. The B-order in Z2 for |B| = 6.

We note that the minimum of Z7 in any B-order is always the origin.
Moreover, one can check that the first |B| points in any B-order are

O<pe <p2e <pidei---<p (|B| —n)el <pe€y<pes3<p---<pe,. (4)
Another important observation is that initial segments behave well with the

Minkowski addition: if F' = DZ is the m-initial segment in the B-order, then
F+ D|BB| is also a initial segment in the same B-order.



3 Computing the cardinality DIAI ﬁ)_%l‘

If we want to estimate the cardinality of the sum of two finite sets A, B C Z"
by below, one might have the impression that inequality (3) cannot help us,
because we are replacing the problem of estimating |A + B| by the one of
computing the cardinality of another Minkowski addition, namely, |D| A|+D|B|

However, D‘ and D|B‘ are very special sets: they are B-initial segments, and
therefore DEXI + Dﬁsl is also a B-initial segment. And so, in order to know its

cardinality, it is enough to find the point p € D| AT D of maximum position
in the B-order, because

T € D\AI —i—Dﬁgl if and only if x <p p;

or equivalently, |D|A‘ IBI| is the position of the “last” point p € D‘A‘ + D\B|
in the B-order.

We also note that p =a+b € D|A‘ + D‘B‘ is the maximum position point
in the B-order if and only if a € D| Al and b € Dﬁg| are the maximum position
points (in the B-order) of A and B, respectively. And moreover, we already
know that the maximum position point in Dy is always e, (cf. (4)).

Thus, the problem of computing the cardinality |D‘ A |B|] is reduced
to have a method which allows to know the position in the B-order of any
point of Z, and vice versa. Once we have such a method, we may compute
\D At DlB\‘ as follows:

Step 1: To find the point a € Z7 whose position is [A| (in the B-order).
Step 2: To compute the position s (in the B-order) of p = a + e,.
Step 3: Then |A+ B| > s.

Example 3.1 In the example shown in Figure 1, if |A| = 54 then a = (6, 3)7,
and hence p = a + ex = (6,4)7. Therefore, |A + B| > |D s D|B‘| =TT.

If we want to know the position of a point in a certain B-order, we just
need to “B-order” the points of Z'}, taking also into account that the B-order
depends only on the cardinality of B but not on its “shape”. In order to
make this process easier, one can group the points of Z, according to their
B-weight. Following this idea we can use the sets P,,, also a key-point in the
proof of Gardner&Gronchi, which are defined as

Pm:{erﬁsz(x):wlL_n} m € N.



Since the B-order organizes the points according to their B-weight, if we know
the cardinality of each set P,,, m € N, then we will also know the B-weight
of the point x € Z'} occupying the s-th position for any s € N; in fact,

m—1 m
x € P, if and only if Z|Pi|<s§Z]Pi|.
=0 i=0

In this regard, we have proved the following result. As usual in the literature,
we write |-| to represent the floor function.

Theorem 3.2 Let m € N and let B € Z7} be finite. Then

et || -1
)

Proof. First we prove that the cardinality of P,, does not depend on m but
on {IBIL—HJ Indeed, let m, k € Z such that 0 < k < |B| —n and

| Pn| = (5)

m m
= 7.
B~ n LB|—nJ ©

On the one hand, if x € P,,, then x+ke; € P4, which implies that P,,+ke; C
P, ir. On the other hand, if y € P, 4, then

o _ _ om+k
wB(y)_\B|——n+Zyi—\B|——n’

and so
v —k
B —n
Therefore, since 0 < k/(|B|—n) < 1, we infer that k/(|B|—n) is the fractional
part of wg(y). Hence y; — k > 0 and thus

€ Z.

Y =y—ker = —kys,...,yn) €Z.

Now, since wg(y') = m/(|B| — n), we have y' € P,, N Z" and, consequently,
Poix —key C Py, ie., Py C P, + key. This shows that P, + ke; = P&
and, therefore, |P,,| = |Py4k|, as required.



So, it is enough to prove (5) when

m

= c 7.
" B[=n

We observe that, for any x € P,,,

n
|B|$1_n:r—2xi€Z,

=2

and hence we can consider the function ¢, : P,, — {0,1}"*"~! given by

Ty

cm(z) = (0,(?:w),0,1J1(?@,0,1,..,0,@&%0).

This function ¢,,(x) is a bijection between P, and {0,1}"""~! and, moreover,
in ¢,,(x) exactly r zeros appear. So, the cardinality of P, is precisely the
number of possible combinations we can have if we take r elements from a
family with n +r — 1 elements, i.e., |P,| = ("+T_1). O

T

The “coding function” ¢, can be also used to B-order the points in each
P,,. Indeed, given x,y € P, then x <p y if and only if ¢,,(x) < ¢, (y) in
the lexicographical order. Moreover, since the points in P, ; are “B-greater”
than the ones of P,,, and since we know |P,,| (see Theorem 3.2), the function
¢y allows to determine, as a consequence, the position of any point of Z in
the B-order.
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