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Abstract

We prove that, for any t ≥ 3, there exists a constant c = c(t) > 0 such that any
d-regular n-vertex graph with the second largest eigenvalue in absolute value λ sat-
isfying λ ≤ cdt−1/nt−2 contains (1 − o(1))n/t vertex-disjoint copies of Kt. This
provides further support for the conjecture of Krivelevich, Sudakov and Szábo [Tri-
angle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), pp. 403–
426] that (n, d, λ)-graphs with n ∈ 3N and λ ≤ cd2/n for a suitably small absolute
constant c > 0 contain triangle-factors.
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1 Introduction

The study of conditions under which certain spanning or almost spanning
structures are forced in random or pseudorandom graphs is one of the central
topics in extremal graph theory and in random graphs.

An (n, d, λ)-graph is an n-vertex d-regular graph whose second largest
eigenvalue in absolute value is at most λ. Graphs with λ � d are consid-
ered to be pseudorandom, i.e., they behave in certain respects as random
graphs do; for example, the edge count between ‘not too small’ vertex subsets
is close to what one sees in random graphs of the same density. As usual, let
e(A,B) = eG(A,B) denote the number of pairs (a, b) ∈ A×B so that ab is an
edge of G (note that edges in A ∩B are counted twice). The following result
makes what we discussed above precise.

Theorem 1.1 (Expander mixing lemma, see e.g. [6]) If G is an (n, d, λ)-
graph and A, B ⊆ V (G), then∣∣∣∣e(A,B)− d

n
|A||B|

∣∣∣∣ < λ
√
|A||B|.(1)

As starting points to the extensive literature on pseudorandom graphs, the
reader is refereed to, e.g., [6, Chapter 9] and [11].

It is an interesting problem to understand optimal or asymptotically opti-
mal conditions on the parameter λ in terms of d and n that force an (n, d, λ)-
graph to possess a desired property. To demonstrate the optimality of a con-
dition, one needs to show the existence of an (n, d, λ)-graph that certifies that
the condition is indeed optimal.

Unfortunately, there are very few examples certifying optimality. A cele-
brated example is due to Alon, who showed [3] that there are (n, d, λ)-graphs
that are K3-free and yet satisfy λ = cd2/n for some absolute constant c > 0.
This is in contrast with the fact that, as it follows easily from the expander
mixing lemma above, for, say, λ ≤ 0.1d2/n, any (n, d, λ)-graph contains a tri-
angle (in fact, every vertex lies in a triangle). It turns out that (n, d, λ)-graphs
with λ = Θ(d2/n) must satisfy d = Ω(n2/3). The construction of Alon [3] pro-
vides an example of the essentially sparsest possible K3-free (n, d, λ)-graph
with d = Θ(n2/3) and λ = Θ(n1/3). The other known example is a generaliza-
tion of this construction by Alon and Kahale [5] (see also [11, Section 3]) to
graphs without odd cycles of length at most 2`+ 1.

Our focus here is on spanning or almost spanning structures in (n, d, λ)-
graphs. One of the simplest spanning structures is that of a perfect matching.
Alon, Krivelevich and Sudakov (see [11]) proved that (n, d, λ)-graphs with



λ ≤ d − 2 and n even contain perfect matchings. Factors generalize perfect
matchings: for a graph F , an F -factor in a graph G is a collection of vertex-
disjoint copies of F in G whose vertex sets cover V (G) (this requires that
v(G) := |V (G)| should be divisible by v(F )). Motivated by the study of
spanning structures in graphs, Krivelevich, Sudakov and Szabó [12] proved
that (n, d, λ)-graphs with λ = o (d3/(n2 log n)) contain a triangle-factor if 3 | n.

A fractional triangle-factor in a graph G = (V,E) is a non-negative weight
function f on the set K3(G) of all triangles T of G, such that, for every v ∈
V , we have

∑
T :v∈V (T ) f(T ) = 1. Krivelevich, Sudakov and Szabó further

proved [12] that (n, d, λ)-graphs with λ ≤ 0.1d2/n admit a fractional triangle-
factor. Moreover, they conjectured the following.

Conjecture 1.2 (Conjecture 7.1 in [12]) There exists an absolute constant
c > 0 such that if λ ≤ cd2/n, then every (n, d, λ)-graph G on n ∈ 3N vertices
has a triangle-factor.

The tth power H t of a graphH is the graph on the vertex set V (H) where uv
(u 6= v) is an edge if there is a u-v-path of length at most t in H. Since the
(t − 1)st power of a Hamilton cycle contains a Kt-factor if t | n, powers of
Hamilton cycles are also of interest when investigating clique-factors.

Allen, Böttcher, Hàn and two of the authors [2] proved that, if λ =
o(d3t/2n1−3t/2) and t ≥ 3, then any (n, d, λ)-graph contains the tth power of
the Hamilton cycle (and thus a Kt+1-factor if (t+ 1) | n).

In the case t = 2, it was further proved in [2] that the condition λ =
o
(
d5/2/n3/2

)
suffices to guarantee squares of Hamilton cycles, and thus K3-

factors, improving over the aforementioned result of Krivelevich, Sudakov and
Szabó. Very recently, it was proved in [8] that λ = o(dt/nt−1) guarantees a
Kt-factor, which further improved [2] for t ≥ 4.

The construction of Alon of K3-free (n, d, λ)-graphs shows that the condi-
tion on λ in Conjecture 1.2 cannot be weakened. The result from [12] on the
existence of fractional triangle-factors supports Conjecture 1.2. As a further
evidence in support of that conjecture we prove here the following result.

Theorem 1.3 For any t ≥ 3, there is n0 > 0 such that the following holds.
Every (n, d, λ)-graph G with n ≥ n0 and λ ≤ (1/(50t4t−2))dt−1/nt−2 contains
vertex-disjoint copies of Kt covering all but at most n1−1/(8t4) vertices of G.

We remark that, under the condition λ ≤ cdt−1/nt−2 for some appropriate
c = c(t) > 0, Krivelevich, Sudakov and Szabó [12] proved that any (n, d, λ)-
graph contains a fractional Kt-factor.

A näıve approach to proving Theorem 1.3 is to pick cliques Kt one af-



ter another, each vertex-disjoint from the previous ones, by appealing to the
pseudorandomness of G via the expander mixing lemma. However, even for
triangles, if λ = cd2/n, then all what one gets this way is that G has (1−c)n/3
vertex-disjoint triangles: one can see that a set of cn vertices in G induces a
graph of average degree roughly cd, but the condition on λ and the expander
mixing lemma do not guarantee that sets of size roughly cd contain an edge,
and hence we do not know whether cn vertices necessarily span a triangle.
Thus our näıve greedy approach will get stuck leaving cn vertices uncovered.
What our result establishes is that, even for some absolute constant c > 0, we
can cover all but o(n) vertices of G by vertex-disjoint copies of K3. Moreover,
o(n) can be taken to be of the form n1−ε for some ε > 0. We have restricted
ourselves to triangles in this paragraph, but a similar reasoning applies to
general cliques Kt as well.

Now let p = d/n and suppose G = (V,E) is an (n, d, λ)-graph with λ ≤
cd2/n. Inequality (1) implies that∣∣∣∣e(A,B)

|A||B|
− p
∣∣∣∣ < cp2n√

|A||B|
≤ c1/2(2)

for all A, B ⊆ V with |A|, |B| ≥ c1/2n. Let us now focus on the case in
which d is linear in n, that is, p = d/n is a constant independent of n. The
powerful blow-up lemma of Komlós, Sárközy and Szemerédi [9] implies that,
if c is small enough in comparison with p and 1/t, then any graph G = (V,E)
on n vertices with minimum degree at least pn that satisfies (2) contains a
Kt-factor as long as t | n. Thus, Conjecture 1.2 holds for dense graphs.

We remark that the blow-up lemmas for sparse graphs developed recently
by Allen, Böttcher, Hàn and two of the authors [1] provide bounds on λ to
establish the existence of Kt-factors, but those bounds are worse than those
from [2] discussed above.

2 A proof outline

In the following we provide a proof overview in the case of triangles, since the
general case is similar. Our arguments combine tools from linear programming
with probabilistic techniques. In fact, they can be seen as a synthesis of
some methods in Alon, Frankl, Huang, Rödl, Ruciński and Sudakov [4] and
in Krivelevich, Sudakov and Szabó [12].

Let an (n, d, λ)-graph G with λ ≤ cd2/n be given. From the expander mix-
ing lemma, Theorem 1.1, it follows that every vertex ofG lies in 1

2
(d3/n± λd) =

(d3/2n) (1± c) triangles. The näıve greedy approach above does not guaran-



tee a collection of (1 − o(1))n/3 vertex-disjoint triangles. Another attempt
would be to apply some theorem that would tell us that the 3-uniform hy-
pergraph K3(G) of the triangles in G contains an almost perfect matching. A
theorem of Pippenger (see [7]) would do if we knew that K3(G) is pseudoran-
dom enough (roughly speaking, one needs thatK3(G) should be approximately
`-regular for some ` → ∞ and that pairs of vertices of K3(G) should be con-
tained in o(`) triples ofK3(G) (i.e., the ‘codegrees’ should be small)). However,
for c an absolute constant, this property of K3(G) cannot be deduced.

We circumvent the fact thatK3(G) is not necessarily pseudorandom enough
by finding a subhypergraph H of K3(G) in which the ‘deviation’ of the number
of triangles at any vertex is ‘smoothed out’ (thus H will be almost `-regular).
This can be done if G has ` = nΘ(1) fractional K3-factors f1, . . . , f` such that∑`

i=1 fi(T ) ≤ 1 for each T ∈ K3(G) and, for any edge e ∈ E(G), the sum of
the weights on the triangles containing e across f1, . . . , f` is at most `1−γ for
some γ ∈ (0, 1). This latter condition helps us force small codegrees.

Indeed, with these fractional K3-factors, we can select H ⊆ K3(G) at
random, by including each T ∈ K3(G) in H independently with probability∑`

i=1 fi(T ). Then Chernoff’s inequality guarantees that H satisfies, with high
probability, the assumptions of a packing result in [10], a strengthening of
Pippenger’s result. Such a ‘randomization’ strategy has previously been suc-
cessfully employed in [4] in the context of perfect matchings in hypergraphs.

Thus, it suffices to find such K3-factors f1, . . . , f`. In fact, we find such fi
with the property that, for any e ∈ E(G), we have

∑
e∈E(T )

∑`
i=1 fi(T ) ≤ 1

(hence
∑`

i=1 fi(T ) ≤ 1 for each T ∈ K3(G) is automatically true).

Theorem 1.3 is vacuously true for d = o(n2/3) when t = 3. We thus
suppose d = Ω(n2/3). We consider two cases. We pick any β ∈ (0, 1/3)
independent of n. Our first approach works as long as d is not too small, say,
d ≥ n2/3+β. In contrast, the second approach works as long as d is not too
large, say, d ≤ n1−β.

In the first approach, we consider edge-weighted graphs and we repeatedly
‘remove’ fractional K3-factors from G (removing from edges e the weights of
the triangles T with e ⊆ V (T )). We show that we can repeat this process nβ

times. To establish this, we use linear programming techniques to find frac-
tional triangle-factors in weighted graphs. In doing so, we generalize the linear
programming arguments from [12] used to study fractional triangle-factors in
(n, d, λ)-graphs.

When d is close to n2/3, our approach above fails because we cannot exe-
cute it sufficiently many times. To circumvent this, we randomly split E(G)



into ` = nΩ(1) sets E1, . . . , E`, with each subgraph Gi := (V,Ei) distributed as
a random subgraph Gp of G, where each edge is included in Gp with proba-
bility p = 1/`, independently of all the other edges. Then we find in each Gi

a fractional K3-factor fi with high probability, again by linear programming
arguments. This second approach works only for d ≤ n1−o(1), which makes
both approaches necessary.
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