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Abstract

Let n and k be positive integers with n ≥ 2k. Consider a circle C with n points 1,
. . . , n in clockwise order. The interlacing graph IGn,k is the graph with vertices
corresponding to k-subsets of [n] that do not contain two adjacent points on C,
and edges between k-subsets P and Q if they interlace: after removing the points
in P from C, the points in Q are in different connected components. In this paper
we prove that the circular chromatic number of IGn,k is equal to n/k, hence the

chromatic number is ⌈n/k⌉, and that its independence number is
(

n−k−1
k−1

)

.
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1 Introduction

Let n and k be positive integers with n ≥ 2k. The Kneser graph KGn,k, first
introduced by Martin Kneser in [4], is the graph with vertex set corresponding
to k-subsets of [n] := {1, . . . , n}, where two vertices are adjacent if the cor-
responding sets are disjoint. Kneser conjectured that the chromatic number
of KGn,k is n − 2k + 2. In [5], Lovász proved this conjecture using topolog-
ical methods. The Schrijver graph SGn,k is the subgraph of KGn,k induced
by those vertices that correspond to k-subsets of [n] not containing adjacent
elements in [n] (here 1 and n are adjacent). In [8], Schrijver showed that
SGn,k is a vertex-critical subgraph of KGn,k and also has chromatic number
n − 2k + 2. (Vertex-critical means that the deletion of any vertex reduces
the chromatic number.) Another famous result regarding the Kneser graph
is the Erdős-Ko-Rado theorem [2], which says that the maximum size of an
independent set of KGn,k is

(

n−1
k−1

)

.

Let G a finite graph, a circular coloring of size n/k is an assignment
χ : V (G) → Z/nZ such that χ(v1) − χ(v2) ∈ {k, k + 1, . . . ,−k} mod n if
{v1, v2} is an edge of the graph. The circular chromatic number of a finite
graph G, χcirc(G), can be defined as the minimal rational number n/k for
which there exists a circular coloring of size n/k. The circular clique Kn/k

is the graph on vertices {0, . . . , n − 1} such that two vertices are adjacent
if their distance in Z/nZ is larger or equal than k. If G is a finite graph
then ⌈χcirc(G)⌉ = χ(G) (see, for instance, [10]). In [1], Chen confirmed the
conjecture from [3] that χcirc(KGn,k) = χ(KGn,k) which was previously known
for some cases, such as for even n for the Schrijver graph [6,9].

In this paper we consider a subgraph of the Kneser graph. If P and Q are
two k-subsets of [n], P = {1 ≤ p1 < . . . < pk ≤ n} and Q = {1 ≤ q1 < . . . <
qk ≤ n}, then P and Q are interlacing if either

1 ≤ p1 < q1 < p2 < q2 < · · · < pk < qk ≤ n

or
1 ≤ q1 < p1 < q2 < p2 < · · · < qk < pk ≤ n.

By distributing the elements of [n] in clockwise order around a circle we may
view P and Q as k-polygons with points on the circle. Then P and Q are
interlacing if removing the points of P divides the circle into intervals that
each contain one point of Q. We use this analogy to refer to k-subsets in [n]
as k-polygons, or just polygons when k is understood. We say that a polygon
that does not contain two adjacent points on the circle is admissible. The
interlacing graph IGn,k is the graph whose vertices correspond to admissible



k-polygons on [n], and where two vertices are adjacent if the corresponding
polygons are interlacing. As non-admissible polygons would give rise to iso-
lated vertices in the interlacing graph, only admissible polygons are considered.
Note that IGn,k also is a subgraph of the Schrijver graph SGn,k.

1.1 Main results

Our main result is the following.

Theorem 1.1 The circular chromatic number of IGn,k is equal to n/k.

Thus, we obtain that:

Corollary 1.2 The chromatic number of IGn,k is equal to ⌈n/k⌉.

We also determine the independence number of the interlacing graph.

Proposition 1.3 The independence number of IGn,k is
(

n−k−1
k−1

)

.

To prove Theorem 1.1 we find a circular clique Kn/k as a subgraph in IGn,k.
Afterwards we find a circular coloring χ of size n/k, or a graph homomorphism
from IGn,k to Kn/k. The vertex color classes induced by the coloring χ can be
naturally grouped into stable sets of maximum (or almost maximum) size.

The interlacing graph has connections with triangulations of cyclic poly-
topes. Note that if k = 2, two non-interlacing polygons on [n] are just two
non-crossing lines between vertices of an n-polygon. A maximal set of pairwise
non-interlacing polygons is a triangulation. In [7], Oppermann and Thomas
generalized this observation to higher dimensions: the set of triangulations of
the cyclic polytope with n vertices in dimension 2k − 2, are in bijection with
the independent sets of admissible polygons in IGn,k of maximal size. (The
cyclic polytope C(n, 2k−2) is the convex hull of n distinct points in R

2k−2 that
are obtained as evaluations of the curve defined by P (x) = (x, x2, . . . , x2k−2),
which is called the moment curve.) In particular, the chromatic number of
IGn,k gives the minimal size of a partition of the (k − 1)-dimensional internal
simplices of C(n, 2k − 2) (see [7]) in which no two simplices in each part in-
ternally intersect. The proof of Proposition 1.3 exploits this connection and
follows the framework developed in [7].

2 Graph parameters of IGn,k

2.1 The independence number

The proof of Proposition 1.3 uses a standard counting argument.



Lemma 2.1 The number of admissible k-polygons on [n] containing a specific

point on the circle is
(

n−k−1
k−1

)

. In particular, the number of vertices of IGn,k is
n
k

(

n−k−1
k−1

)

.

The combination of Lemma 2.1 with the techniques and arguments ap-
pearing in [7] show Proposition 1.3

2.2 Lower bound for the circular chromatic number

The following lemma gives the lower bound to the circular chromatic number
for the interlacing graph.

Lemma 2.2 Let n, k be positive integers, n ≥ 2k, and let n′, k′ be coprime

positive integers such that n′/k′ = n/k. The subgraph of IGn,k induced by the

n′ polygons {P j}j∈[0,n−1],

P j = {j + n, j + ⌈n/k⌉, j + ⌈2n/k⌉, . . . , j + ⌈in/k⌉, . . . , j + ⌈(k − 1)n/k⌉}

is a circular clique Kn′/k′.

Lemma 2.2 follows by coloring P j with color jk′ in Z/n′
Z and observing

that the edges are precisely between the claimed polygons (see, for instance,
Lemma 2.5).

2.3 A circular coloring matching the lower bound

We show Theorem 1.1 using the following auxiliary technical lemma and its
consequences.

Lemma 2.3 Let y1, . . . , yk ∈ R≥0 and let
∑k

i=1 yi = z. Then there exists a

j0 ∈ [k] such that for all m ∈ [k],
∑j0+m−1

i=j0
yi ≥ mz/k, where the indices

are taken modulo k. Moreover, either there exists an m′ ∈ [k] for which
∑j0+m′−1

i=j0
yi > m′z/k, or yi = z/k for each i ∈ [k].

A pigeonhole argument combined with an induction on k shows Lemma 2.3.

For a k-polygon P = {1 ≤ y1 < ... < yk ≤ n} on the circle with points
1, ..., n in clockwise order, define the k-tuple of distances between the consec-
utive points s(P ) := (y2 − y1, y3 − y2, . . . , y1 − yk + n) ∈ Z

k
≥1. We call s(P )

the shape of P . We say that the k-polygon with points y1 + 1, ..., , yk + 1 is
obtained from P by a clockwise rotation of 1 (the addition is modulo n). For
i ≥ 0, the k-polygon obtained by rotating clockwise i times is denoted by
ρi(P ).



The following corollary of Lemma 2.3 shows that every polygon can be
rotated to contain n and such that the i-th point on the polygon is at a
distance larger or equal than ⌈in/k⌉ to the point n (in the counterclockwise
direction).

Corollary 2.4 Let P = {1 ≤ y1 < ... < yk ≤ n} be a k-polygon and write

s(P ) = (d1, ..., dk) for the shape of P . Then there is a j0 ∈ [k] such that

for i′ = n− yj0 we have

n ∈ ρi′(P ) and |ρi′(P ) ∩ {1, . . . , ⌊mn/k⌋}| ≤ m for all m ∈ [k].

Additionally, for m ∈ [k] we have

|ρi′(P )∩{1, . . . , ⌊mn/k⌋}| = m ⇐⇒ ⌊mn/k⌋ = mn/k and

j0+m−1
∑

i=j0

di = mn/k.

For a vector d = (d1, .., dk) ∈ Z
k
≥2 with

∑k
i=1 di = n, let P ◦

d be the k-
polygon with s(P ◦

d ) = d and containing the point n. Note that P ◦
d is ad-

missible. The set of k-polygons of the form P ◦
d (for some d as above) is an

independent set in IGn,k. Define

Ln,k := {P ◦
d | d = (d1, ..., dk) ∈ Z

k
≥2 and

t
∑

i=1

di ≥ tn/k for all t ∈ [k]} .

The next lemma summarizes the main properties of the polygons in Ln,k.

Lemma 2.5 For any j, i ∈ [0, n], {ρj(Ln,k), ρj+⌊in/k⌋(Ln,k)} and {ρj(Ln,k),
ρj+⌈in/k⌉(Ln,k)} are independent sets, where ρi(Ln,k) = {ρi(Q) | Q ∈ Ln,k}.

Indeed, if P ∈ Ln,k and Q ∈ ρ⌊in/k⌋(Ln,k) (resp. Q ∈ ρ⌈in/k⌉(Ln,k)), then
between n and ⌈in/k⌉ (resp. ⌊in/k⌋) Q contains i + 1 point. On the other
side, either P contains at most i point between n and ⌈in/k⌉ (resp. ⌊in/k⌋),
or both share the poin in/k if ⌊in/k⌋ = in/k (resp. they share ⌊in/k⌋) if P
also contains i + 1 in such interval. The same argument applies if both sets
Ln,k and ρ⌊in/k⌋(Ln,k) (or ρ⌈in/k⌉(Ln,k)) are rotated by ρj.

The remaining part of the argument to show Theorem 1.1 can now be
sketched. Any polygon is the rotation of a polygon in Ln,k, by Corollary 2.4.
The map χ colors the polygon P with i · k ∈ Z/nZ if i is the minimal index
in [0, n − 1] such that P ∈ ρi(Ln,k). Lemma 2.5 shows that the coloring χ is
indeed a circular coloring with n/k colors.
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