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Abstract

We introduce the autoparatopism variant of the autotopism stabilized colouring
game on the n × n rook’s graph as a natural generalization of the latter so that
each board configuration is uniquely related to a partial Latin square of order n
that respects a given autoparatopism (θ;π). To this end, we distinguish between
π ∈ {Id, (12)} and π ∈ {(13), (23), (123), (132)}. The complexity of this variant
is examined by means of the autoparatopism stabilized game chromatic number.
Some illustrative examples and results are shown.
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1 Introduction

The colouring game [4,9] is played on a finite graph G. During the game, two
players (Alice and Bob, with Alice playing first) alternately colour exactly one
uncoloured vertex of G with a colour taken from a given palette so that none
two adjacent vertices have the same colour. Alice wins if all the vertices are
coloured at the end of the game; otherwise, Bob wins. The game chromatic
number χg(G) is the least integer k for which Alice has a winning strategy in
case of dealing with a palette of k colours. As the game may change signif-
icantly when Bob begins, it has been distinguished [1, 2] between the game
chromatic numbers χgA(G) and χgB(G) depending, respectively, on whether
Alice or Bob begins the game.

In 2011, Schlund [13] dealt with colouring games on n × n rook’s graphs,
during which every board configuration corresponds to a partial Latin square
of order n, that is, an n × n array L = (lij) in which each cell (i, j) is either
empty or contains one symbol chosen from the set [n] := {1, . . . , n} so that
each symbol occurs at most once in each row and in each column. This is
uniquely related to a partial colouring of a labeled n × n rook’s graph, and
uniquely determined by its entry set Ent(L) := {(i, j, L[i, j]) ∈ [n]× [n]× [n]}.
Any triple (i, j, L[i, j]) ∈ Ent(L) is called an entry of L.

Let Sn and PLS(n) respectively denote the symmetric group on [n] and
the set of partial Latin squares of order n. For each L ∈ PLS(n), every tuple
Θ = (α, β, γ;π) ∈ (Sn × Sn × Sn)o S3 gives rise to LΘ ∈ PLS(n) such that

Ent(LΘ) = {(α(eπ(1)), β(eπ(2)), γ(eπ(3))) | (e1, e2, e3) ∈ Ent(L)}.

The tuple Θ is called a paratopism of PLS(n). This is an isotopism if π = Id
is the trivial permutation in S3. Further, if LΘ = L, then Θ is called an
autoparatopism of L (an autotopism, if π = Id). Motivated by the current
growing research on autotopisms of partial Latin squares and related struc-
tures [5,6,8,10,11,14,15], the authors [3,7] have recently generalized the colour-
ing game proposed by Schlund by introducing the (α, β, γ)-stabilized colouring
game on the n× n rook’s graph so that each board configuration corresponds
to a partial Latin square having a given triple (α, β, γ) ∈ Sn × Sn × Sn as an
autotopism. In this paper, we introduce the autoparatopism variant of this
last colouring game so that each board configuration is uniquely related to a
partial Latin square having a given tuple (α, β, γ; π) ∈ (Sn × Sn × Sn) o S3

as an autoparatopism. The autotopism stabilized colouring game arises when
π = Id. See [8,12,14] for recent studies and applications on autoparatopisms.



2 Cell orbits

Let An := (Sn×Sn×Sn)oS3. The action of a paratopism Θ = (α, β, γ;π) ∈ An

over a triple (e1, e2, e3) ∈ [n]× [n]× [n] gives rise to the triple

Θ((e1, e2, e3)) := (α(eπ(1)), β(eπ(2)), γ(eπ(3))).(1)

Let pt denote the projection over the tth coordinate. We define the k-cell orbit
of a pair (i, j) ∈ [n]× [n] under the action of Θ as

ok;Θ((i, j)) := {(p1(Θm((i, j, k))), p2(Θ
m((i, j, k)))) | m ∈ N}.(2)

Then, we define the cell orbit of the pair (i, j) under the action of Θ as

oΘ((i, j)) :=
∪
k∈[n]

ok;Θ((i, j)).(3)

This generalizes the concept of cell orbit [3, 7, 12, 15] concerning those cases
where π ∈ {Id, (12)}. In such cases, the third component of the triple under
consideration does not play any role, and hence, all the sets in (3) coincide.
This does not happen in general when π ∈ {(13), (23), (123), (132)}, as the
following example illustrates.

Example 2.1 Let Θ = ((123), (123), (123); (123)) ∈ A3. Then, oΘ((1, 2)) =
{(1, 1), (1, 2), (1, 3), (2, 2), (3, 2)}. To see it, observe the following three partial
Latin squares of order three, all of them having Θ as an autoparatopism. They
determine the 1-, 2- and 3-cell orbits of the pair (1, 2) under the action of Θ.

1 3

3

3 2

3

3

�

3 Description of the colouring game

Let Θ = (α, β, γ;π) ∈ An. The Θ-stabilized colouring game is played by two
players, Alice and Bob, on the empty partial Latin square L ∈ PLS(n) as
board, by using n′ ≥ n colours. Alternately, they choose an empty cell (i, j)
in the board and a symbol k ∈ [n′], and colour the former by the latter by
setting (i, j, k) ∈ E(L). The resulting configuration must obey the next rules.

(i) It must be a partial Latin square.



(ii) It must be Θ-compatible, that is, for each m ∈ N, either Θm((i, j, k)) ∈
Ent(L) or the cell (p1(Θ

m((i, j, k))), p2(Θ
m((i, j, k)))) is empty.

(iii) For each m ∈ N, there does not exist an entry (p1(Θ
m((i, j, k))), j′,

p3(Θ
m((i, j, k)))) or (i′, p2(Θ

m((i, j, k))), p3(Θ
m((i, j, k)))) in the entry set

Ent(L), where j′ ̸= p2(Θ
m((i, j, k))) and i′ ̸= p1(Θ

m((i, j, k))).

As in the conventional colouring game, Alice wins if all the cells of the board
are filled at the end of the game; otherwise, Bob wins. Similarly to the auto-
topism stabilized colouring game described in [3,7], not every paratopism can
be used to describe a well-defined autoparatopism stabilized colouring game.

Firstly, the paratopism Θmust be feasible. That is, for each triple (i, j, k) ∈
[n] × [n] × [n], if there exist two positive integers m1,m2 ∈ N such that
pt(Θ

m1((i, j, k))) = pt(Θ
m2((i, j, k))), for both t ∈ {1, 2}, then this condi-

tion also holds for t = 3. This enables the first player to fill, as first move,
any cell (i, j) of the board with any given symbol k ∈ [n] so that the colouring
of every cell within the k-cell orbit ok;Θ((i, j)) is uniquely determined by the
action of Θ over the entry (i, j, k).

Secondly, Θ must be extendable. That is, the paratopism Θ′ = (α′, β′, γ′;π) ∈
An′ must be feasible, for all n′ > n and α′, β′, γ′ ∈ Sn′ , where

• If π ∈ {Id, (12)}, then α′ = α; β′ = β; and γ′(k) = γ(k), if k ≤ n, and
γ′(k) = k, otherwise.

• If π ∈ {(13), (23), (123), (132)}, then, for each δ ∈ {α, β, γ}, we have that
δ′(k) = δ(k), if k ≤ n, and δ′(k) = k, otherwise.

This enables both players to use any previously stipulated number n′ ≥ n of
colours during the game without breaking the rule of extendability.

Remark that, if π ∈ {Id, (12)}, then the order of the board remains the
same during all the game. This is, however, not true in case of being π ∈
{(13), (23), (123), (132)}. In such cases, the order of the board is increased one
unit for each extra colour k > n that is used by the players. In practice, we
can suppose that this increase only takes place at the precise moment in which
Alice uses a colour k > n that has not been used before, and that she is always
the first player who can use such extra colours. Otherwise, we can suppose Θ′

to be the initial paratopism. Even if this modification of the original board is
allowed by none currently known graph colouring game, during which edges
and vertices of the graph under consideration do not change, the study of this
variant could give rise to new open questions to deal with.



Example 3.1 Let Θ be the paratopism defined in Example 2.1. The following
sequence of configurations describes a possible development of a Θ-autotopism
stabilized colouring game. Keeping in mind the passing board technique de-
scribed in [7], each move is represented by (a) filling a cell (i, j) with a symbol
k; (b) colouring in black the background of the rest of cells within the k-cell
orbit ok;Θ((i, j)); and (c) writing the symbol that these cells should contain
according to the second rule of the game.

1 3

3 →

1 3

2 3

1 2

→

4 1 3

2 3

1 2 3

2

→

4 1 3

2 3 4

1 2 3

2 4 1

→

Alice Bob Alice Bob

4 1 3 2

2 3 4

1 4 2 3

3 2 4 1

→

4 1 3 2

2 3 1 4

1 4 2 3

3 2 4 1

Alice Bob �

As in the conventional colouring game, the complexity of each Θ-stabilized
game chromatic number is examined by means of its Θ-stabilized game chro-
matic number, which consists of the least positive integer χΘ

gA
for which Alice

has a winning strategy. Similarly to the classical colouring game, we distin-
guish the variant χΘ

gB
in case of being Bob who starts the game. This gives

rise to the following question.

Problem 3.2 Do both numbers, χΘ
gA

and χΘ
gB
, exist for any feasible and ex-

tendable paratopism?

As a first stage to deal with this question, we illustrate both numbers for
some feasible and extendable paratopisms of partial Latin squares of small
order.

Theorem 3.3 The following results hold.

a) If n = 2, then χ
(Id,(12),(12);π)
g = 2, for all g ∈ {gA, gB} and π ∈ S3.

b) If n = 2, then χ
(Id,Id,Id;π)
g = 2, for all g ∈ {gA, gB} and π ∈ S3 \ {Id}.

c) If n = 3, then χ
((123),(123),(123);π)
g = 3, for all g ∈ {gA, gB} and π ∈ S3.

d) If n = 3, then χ
(Id,Id,Id;(12))
gA = 4 > 3 = χ

(Id,Id,Id;(12))
gB .
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