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Abstract

We introduce a family of Eulerian digraphs, E , associated with Dyck words. We
provide the algorithms implementing the bijection between E and W , the set of
Dyck words. To do so, we exploit a binary matrix, that we call Dyck matrix,
representing the cycles of an Eulerian digraph.
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1 Introduction and basic notions

A digraph G is Eulerian if at every vertex the in-degree equals the out-degree.
(Note that we do not require G to be connected.) The edge set of an Eulerian
digraph G can be partitioned into directed cycles.

A Dyck word on the alphabet {U,D} is a string with the same number of
U ’s and D’s, and such that the number of U ’s in any initial segment is greater
or equal to the number of D’s. We denote by W the set of all Dyck words on
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the alphabet {U,D}. A Dyck path is a lattice path in Z2 starting at (0, 0),
ending on the x-axis, with unit steps (1, 1) and (1,−1), and such that it never
passes below the x-axis. One can easily build a correspondence between Dyck
paths and Dyck words, by mapping a (1, 1) step to the character U and a
(1,−1) step to the character D. Fig. 1 shows the Dyck path associated with
the word UUUDUDDDUD.

(0, 0) (10, 0)

Fig. 1: The Dyck path UUUDUDDDUD.

The goal of this work is to establish a bijection between W and a family
E of Eulerian digraphs. Specifically, the bijection is between elements of W
with 2k steps and elements in E with k vertices. (Hence the elements of E
with k vertices are as many as the kth Catalan number.) In Section 2 we
introduce E , together with a family M of Dyck matrices, and we describe a
one-to-one correspondence between M and E . In Section 3 we establish a
bijection between M and W , and we provide algorithms implementing such
bijection. In conclusion, we highlight the connection between Dyck matrices
and other combinatorial objects.

2 Dyck-Eulerian digraphs and Dyck matrices

For a vector s = (s1, s2, . . . , sn) of positive integers, we call an Eulerian digraph
s-labelled if its edge set is partitioned into n directed cycles of length s1, s2,
. . . , sn, each with a distinguished first edge (and hence a unique second, third,
etc. edge) 4 . We refer to s as the signature of the graph. Fig. 2 shows a (3, 3, 1)-
labelled Eulerian digraph, with its 3 directed cycles of size 3, 3 and 1; the jth

edge of the ith cycle is labelled ei,j. (Note that we allow parallel edges.)

We fix an order on the vertices of s-labelled Eulerian digraphs, in accor-
dance with the order between cycles. Since cycles are rooted, an order on the
vertices of the same cycle is naturally established. If C1, . . . , Cn are the (or-
dered) cycles of an s-labelled Eulerian digraphs E, we label the vertices of E
inductively, as follows. The r vertices of C1 are labelled v1, . . . , vr, according
with the order on the edges. Suppose that we have labelled all the vertices

4 Similar digraphs are investigating in [2]. Notice that in that case s is a multiset, i.e. the
order among cycles does not matter.



v1, . . . , vs of the cycles C1, . . . , Cp. The t vertices of Cp+1 that are not vertices
of Cp−1 are labelled vs+1, . . . , vs+t, according with the order on the edges.

Definition 2.1 Let E be an s-labelled Eulerian digraph, with signature s =
(s1, s2, . . . , sn) and cycles C1, C2, . . . , Cn. We say that E is a Dyck-Eulerian
digraph, or D-E graph, for short, if and only if the following conditions hold.

(E1) No cycle shares all its vertices with another cycle.

(E2) If two cycles Ci and Ci+1 of E share k vertices, these must be the first
k vertices of both cycles.

(E3) If a vertex of Ci+1 is not a vertex of Ci, then it is not a vertex of
C1, . . . , Ci−1.

We denote by E the set of all D-E graphs.

One can easily check that the graph in Fig. 2 is a D-E graph.

e1,1

e1,2

e1,3

e2,1

e2,2

e2,3

e3,1

Fig. 2: A (3, 3, 1)-labelled Eulerian digraph.

We will construct the promised bijection between E and W exploiting a
binary matrix, defined as follows.

Definition 2.2 A binary matrix M = (mi,j) of size n×k, is a Dyck matrix if
it is the empty matrix — written ( ) —, or it satisfies the following conditions.

(M1) There exists 0 < h ≤ k such that m1,j = 1 if and only if j ≤ h.

(M2) For each 1 < i ≤ n, there exist 1 ≤ ai ≤ bi < ci ≤ k such that ai is
the smallest index satisfying mi−1,ai = 1 and mi,ai = 0, bi is the greatest
index such that mi−1,bi = 1, and ci is the greatest index such that mi,ci = 1.
Moreover, the following hold:
(M2.1) mi,j = mi−1,j , for j = 1, . . . , ai − 1;
(M2.2) mi,j = 0 , for j = ai, . . . , bi;
(M2.3) mi,j = 1 , for j = bi + 1, . . . , ci;
(M2.4) mi,j = 0 , for j = ci + 1, . . . , k.

(M3) mn,k = 1.

We denote by M the set of all Dyck matrices.



Example 2.3 Consider the following matrices:

M =

1 1 1 0 0

1 1 0 1 0

0 0 0 0 1

 , X =

1 1 1 0 0

1 0 0 1 1

0 0 0 0 1

 . (1)

The matrix M is a Dyck matrix. Conditions (M1) and (M2) are verified by
setting h = 3, a2 = 2, b2 = 3, c2 = 4, a3 = 1, b3 = 4, and c3 = 5. On the
other hand, X is not a Dyck matrix. Indeed, there are no a3, b3, and c3, with
b3 < c3, satisfying condition (M2).

Each s-labelled Eulerian digraph with n cycles and k vertices can be rep-
resented by a binary matrix M = (mi,j) of size n × k, where rows represent
the cycles, in order, columns represent the vertices, in order, and mi,j = 1 if
and only if vj is a vertex of Ci. The matrix M is the cycle-vertex incidence
matrix of E. One can easily check that the matrix M in (1) is the cycle-vertex
incidence matrix of the D-E graph in Fig. 2.

A one-to-one correspondence between E and M holds:

Proposition 2.4 An s-labelled Eulerian digraph E is a D-E graph if and only
if its cycle-vertex incidence matrix is a Dyck matrix.

Proof. We sketch the proof. We observe that Condition (M2.3) guarantees
(E1), Conditions (M2.1) and (M2.2) guarantee (E2) and (E3), and (M2.1),
together with (M2.3) and (M1), bring the correct order on the vertices of the
graph.

On the other side, take a D-E graph on k vertices v1, . . . , vk, with cycles
C1, . . . , Cn, and consider its cycle-vertex incidence matrix M . Since the first
h vertices are the vertices of C1, condition (M1) holds on M . By (E1), for
each i = 2, . . . , n there exist bi < ci ≤ k satisfying (M2.3). Conditions (E2)
and (E3) guarantee the existence of ai ≤ bi satisfying (M2.1) and (M2.2).
Conditions (M2.4) and (M3) are satisfied by construction. 2

3 Dyck matrices and Dyck words

3.1 From Dyck words to Dyck matrices

We supply an online algorithm that converts a Dyck word into a Dyck matrix.
The basic idea is that we can split a Dyck word into slopes, i.e. maximal
continuous sequences of U ’s, and descents, i.e. maximal continuous sequences
of D’s. A peak is a slope followed by a descent. Every peak represents a cycle:



the number of U ’s from the beginning of the slope to its end is the number of
new vertices (not shared with the previous cycles), while the number of vertices
shared with the subsequent cycle is given by the difference between the total
number of U ’s and D’s (since the beginning of the word). Our algorithm is
input by a stream of U ’s and D’s forming a Dyck word, and outputs a Dyck
matrix, performing the following steps.

getMatrix(s) — Input: a Dyck word s of U ’s and D’s

1: U := 0, D := 0 (counters for U ’s and D’s), k := 0 (number of vertices shared by
two consecutive cycles), p := U (previous character), c := EOS (current character,
set to End Of String), R := () (a binary vector), M := () (a binary matrix).

2: Read the next character and store it in c.

3: If c = D, then increment D and set p := D.

4: Else If c = U do the following.

4.1: If p = U , then increment U.
4.2: Else, do the following.

4.2.1: Modify R: maintain the first k 1’s and reset the others elements to 0.
4.2.2: Append to R a sequence of U − k 1’s.
4.2.3: Append R to M, as a new row.
4.2.4: Fill the previews rows of M with 0’s, till their length equals that of R.
4.2.5: Set p = U , k = U−D, U = k+1, D = 0.

5: Repeat from Step 2, until there are no characters left to read (c = EOS).

6: Add the last row to M: perform Steps 4.2.1–4.2.4.

7: Return M.

Note that if we run the algorithm on the word UUUDUDDDUD we obtain
the matrix M in (1), that is the Dyck matrix associated with the D-E graph
in Fig. 2. The intermediate steps of the execution are illustrated in Fig. 3.

UUUD UUUDUDDD UUUDUDDDUD(
1 1 1

) (
1 1 1 0

1 1 0 1

) 1 1 1 0 0

1 1 0 1 0

0 0 0 0 1


Fig. 3. From UUUDUDDDUD to the associated Dyck matrix, step by step.

3.2 From Dyck matrices to Dyck words

The main idea to convert a Dyck matrix into a Dyck word is to scan the
whole matrix using a vertical two-value sliding window (a mask showing two



elements of the matrix one on top of the other).

getWord(M=(mi,j)) — Input: a binary Matrix M of size n× k

1: w := “ ” (string of U ’s and D’s).

2: Insert two rows of 0’s in M, one at the beginning and one at the end.

3: For i := 1 to n + 1
3.1: For j := 1 to k

3.2.1: If (mi,j,mi+1,j) = (0, 1), then append U to the word w.
3.2.2: If (mi,j,mi+1,j) = (1, 0), then append D to the word w.

4: Return w.

3.3 Main result

Showing that the algorithms described in Sections 3.1 and 3.2 are correct, in
that they associate a Dyck word with a Dyck matrix, and viceversa, and that
the algorithms are the inverse of each other, we can prove the following.

Theorem 3.1 W and M are in bijection.

4 Conclusion and future work

In [3], the authors provide a combinatorial interpretation of the Stirling num-
bers (of the second kind) of a Dyck word w in terms of stable partitions of a
graph associated with w. Using some ideas from [2], we plan to describe the
same numbers in terms of suitable transformations on an Eulerian digraphs,
in fact a D-E graph, associated with w.

Acknowledgments. We thank M. Genuzio for his work in programming the
algorithms in [1], of which the present note is an improved version.
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