Edges incident with a vertex of degree greater than four and a lower bound on the number of contractible edges in a 4-connected graph

Shunsuke Nakamura ${ }^{1}$, Yoshimi Egawa
Department of Applied Mathematics
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
Keiko Kotani ${ }^{2}$
Department of Mathematics
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

In this paper, we prove that the number of 4 -contractible edges (edges that after contraction do not change the connectivity of the initial graph) of a 4 -connected graph G is at least $(1 / 28) \sum_{x \in V_{75}(G)} \operatorname{deg}_{G}(x)$, where $V_{\geq 5}(G)$ denotes the set of those vertices of G which have degree greater than or equal to 5 . This is the refinement of the result proved by Ando et al. [On the number of 4 -contractible edges in 4-connected graphs, J. Combin. Theory Ser. B 99 (2009) 97-109].

Keywords: 4-connected graph, contractible edge, degree

[^0]
1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges. For terminology and notation not defined in this paper, we refer the reader to [4].

Let $G=(V(G), E(G))$ be a graph. For $x \in V(G), N_{G}(x)$ denotes the neighborhood of x and $\operatorname{deg}_{G}(x)$ denotes the degree of x; thus $\operatorname{deg}_{G}(x)=$ $\left|N_{G}(x)\right|$. For $e \in E(G)$, we let $V(e)$ denote the set of endvertices of e. The complete graph of order n is denoted by K_{n}. The complete bipartite graph $K_{1, n}$ with partite sets of cardinalities 1 and n is called a star. For a graph H, let $n H$ denote the graph with n components, each isomorphic to H. For an integer $i \geq 0$, we let $V_{i}(G)$ denote the set of vertices x of G with $\operatorname{deg}_{G}(x)=i$ and we let $V_{\geq i}(G)=\cup_{j \geq i} V_{j}(G)$. A subset S of $V(G)$ is called a cutset if $G-S$ is disconnected. For an integer $k \geq 1$, we say that G is k-connected if $|V(G)| \geq k+1$ and G has no $(k-1)$-cutset.

Let G be a 4-connected graph. For $e \in E(G)$, we let G / e denote the graph obtained from G by contracting e into one vertex (and replacing each resulting pair of double edges by a simple edge). We say that e is 4 -contractible or 4noncontractible according as G / e is 4 -connected or not. A 4 -noncontractible edge $e=a b$ is said to be trivially 4-noncontractible if there exists a vertex z of degree 4 such that $z a, z b \in E(G)$. We let $E_{c}(G), E_{n}(G)$ and $E_{t n}(G)$ denote the set of 4 -contractible edges, the set of 4 -noncontractible edges and the set of trivially 4 -noncontractible edges, respectively.

The following characterization of 4-connected graphs with $E_{c}(G)=\emptyset$ was obtained by Fontet and independently by Martinov.
Theorem A (Fontet [7]; Martinov [10]) Let G be a 4-connected graph of order n with $E_{c}(G)=\emptyset$. Then one of the following holds:
(1) G is the square of the cycle of order n; i.e., we can write $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ so that $E(G)=\left\{v_{i} v_{j} \mid i-j \in\{ \pm 1, \pm 2\}(\bmod n)\right\}$; or
(2) there exists a 3 -regular graph H such that G is the line graph of H.

In view of Theorem A, it is natural to expect that one can estimate $\left|E_{c}(G)\right|$ in terms of degrees of vertices of G, and also in terms of the number of edges of G not contained in a triangle. Along this line, the following results have been obtained.
Theorem B (Ando, Egawa, Kawarabayashi and Kriesell [3]) If G is $a 4$-connected graph, then $\left|E_{c}(G)\right| \geq(1 / 68) \sum_{u \in V(G)}\left(\operatorname{deg}_{G}(u)-4\right)$.

Theorem C (Ando and Egawa [1]) If G is a 4-connected graph, then $\left|E_{c}(G)\right| \geq\left|V_{\geq 5}(G)\right|$.

Further we let $\tilde{E}(G)$ denote the set of those edges of G which are not contained in a triangle. Let \tilde{V} denote the set of those vertices of G which are incident with an edge in $\tilde{E}(G) \cap E_{n}(G)$, and let \hat{G} denote the subgraph of G induced by the edge set $\tilde{E}(G) \cap E_{n}(G)$; that is to say, $\tilde{V}=\cup_{e \in \tilde{E}(G) \cap E_{n}(G)} V(e)$ and $\hat{G}=\left(\tilde{V}, \tilde{E}(G) \cap E_{n}(G)\right)$. Finally we let Y^{*} denote the graph of order 6 defined by $V\left(Y^{*}\right)=\{w, z\} \cup\left\{v_{i} \mid 1 \leq i \leq 4\right\}, \quad E\left(Y^{*}\right)=\left\{w z, v_{1} w, v_{2} w, v_{3} z, v_{4} z\right\}$.
Theorem D (Ando and Egawa [2]) Let G be a 4-connected graph, and suppose that $|\tilde{E}(G)| \geq 15$. Then $\left|E_{c}(G)\right| \geq(|\tilde{E}(G)|+8) / 4$.

In Theorems C and D_{2} the lower bound on $\left|E_{c}(G)\right|$ is best possible. However, the bound 15 on $|\tilde{E}(G)|$ in the assumption of Theorem D is not best possible. In fact, the following theorem concerning the refinements of Theorem D has already been proved.
Theorem E (Egawa et al. [5,6]; Kotani et al. [9]; Nakamura [11]) Let G be a 4-connected graph, and suppose that $1 \leq|\tilde{E}(G)| \leq 14$. Then $\left|E_{c}(G)\right| \geq(|\tilde{E}(G)|+4) / 4$. Further we have $\left|E_{c}(G)\right| \geq(|\tilde{E}(G)|+8) / 4$ unless one of the following holds:
(1) $|\tilde{E}(G)|=1$ and $\hat{G}=K_{2}$;
(2) $|\tilde{E}(G)|=2$ and $\hat{G}=\emptyset$;
(3) $|\tilde{E}(G)|=3$ and $\hat{G}=K_{2}$;
(4) $|\tilde{E}(G)|=4$ and $\hat{G}=2 K_{2}$;
(5) $|\tilde{E}(G)|=5$ and $\hat{G}=2 K_{2}$ or $K_{1,2}$;
(6) $|\tilde{E}(G)|=6$ and $\hat{G}=3 K_{2}$; or
(7) $|\tilde{E}(G)|=9$ and $\hat{G}=Y^{*}$.

In Theorem B, the coefficient $1 / 68$ seems far from best possible. The purpose of this paper is to prove the following theorem which is the refinement of Theorem B.
Theorem 1 If G is a 4-connected graph, then

$$
\left|E_{c}(G)\right| \geq \frac{1}{28} \sum_{u \in V \geq 5(G)} \operatorname{deg}_{G}(u)
$$

The coefficient $1 / 28$ in Theorem 1 still seems not to be best possible. However we construct examples showing that the coefficient of Theorem 1 is
at most $1 / 13$.
The organization of this paper is as follow. In Section 2, we introduce a known result proved in [8] and introduce some lemmas for the proof of Theorem 1. Finally we prove Theorem 1 in Section 3.

2 Preliminaries

Throughout the rest of this paper, we let G be a 4 -connected graph. Let L be the set of edges e such that both endvertices of e have degree 4, and let $F=E_{n}(G)-E_{t n}(G)-L$. Also let $\tilde{V}(G)$ denote the set of those vertices of G which are incident with an edge in F, and let \tilde{G} denote the spanning subgraph of G with edge set F; that is to say, $\tilde{V}(G)=\cup_{e \in F} V(e)$ and $\tilde{G}=(V(G), F)$. Set

$$
\begin{aligned}
\mathcal{L}= & \{(S, A) \mid S \text { is a 4-cutset, } A \text { is the union of the vertex set of } \\
& \text { some components of } G-S, \emptyset \neq A \neq V(G)-S\} .
\end{aligned}
$$

Now take $\left(S_{1}, A_{1}\right), \ldots,\left(S_{k}, A_{k}\right) \in \mathcal{L}$ so that for each $e \in F$, there exists S_{i} such that $V(e) \subseteq S_{i}$. We choose $\left(S_{1}, A_{1}\right), \ldots,\left(S_{k}, A_{k}\right)$ so that k is minimum and so that $\left(\left|A_{1}\right|, \cdots,\left|A_{k}\right|\right)$ is lexicographically minimum, subject to the condition that k is minimum. Set $\mathcal{S}=\left\{S_{1}, \ldots, S_{k}\right\}$.

For two distinct 4-cutset $S, T \in \mathcal{S}$, we say that S crosses T if S intersects with every component of $G-T$. Furthermore, we call \mathcal{S} is cross free if any two members of \mathcal{S} do not cross. The following lemma plays an important role in the proof of Theorem 1.
Lemma 2.1 (Kotani and Nakamura [8]) Suppose that $|V(G)| \geq 9$ and some two members of \mathcal{S} cross. Then there exists a 4-connected graph G^{\prime} such that $\left|V\left(G^{\prime}\right)\right|=|V(G)|-2$ and

$$
\left|E_{c}(G)\right|-\left|E_{c}\left(G^{\prime}\right)\right| \geq \max \left\{1, \frac{1}{10}\left(\sum_{x \in V \geq 5(G)} \operatorname{deg}_{G}(x)-\sum_{x \in V_{\geq 5}\left(G^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(x)\right)\right\}
$$

We introduce two lemmas for the proof of Theorem 1. In order to introduce the first result, we set $R=\left\{(u, a) \mid u a \in E(G)-F, u \in V_{\geq 5}(G)\right\}$ and $Q=$ $\left\{(x, y) \mid x y \in E_{c}(G)\right\}$. Then the following lemma holds.
Lemma 2.2 Suppose that \mathcal{S} is cross free. Then $|R| \leq 4|Q|$.
We also set $J=\left\{(u, a) \mid u a \in F, u \in V_{\geq 5}(G)\right\}$. Now we introduce the second result which will be used in the proof of Theorem 1.

Lemma 2.3 Suppose that \mathcal{S} is cross free. Then $|J| \leq 10|Q|$.

3 Proof of Theorem 1

In this section, we prove Theorem 1. If G is 4-regular, then $\sum_{x \in V_{\geq 5}(G)} \operatorname{deg}_{G}(x)=$ 0 , and hence the desired inequality holds immediately. Thus we may assume that G is not 4 -regular, thus $\left|V_{\geq 5}(G)\right| \geq 1$. By way of contradiction, we suppose that $\left|E_{c}(G)\right|<(1 / 28) \sum_{x \in V_{\geq 5}(G)} \operatorname{deg}_{G}(x)$, thus $\sum_{x \in V_{\geq 5}(G)} \operatorname{deg}_{G}(x)>$ $28\left|E_{c}(G)\right|$. We may assume that we have chosen G such that $|V(G)|$ is as small as possible. Then the following claim holds.
Claim 3.1 $|V(G)| \geq 9$.
Proof. Suppose that $|V(G)| \leq 8$. Set $b(G):=|E(G)|-2|V(G)|$. Then $b(G)=(1 / 2) \sum_{x \in V_{\geq 5}(G)} \operatorname{deg}_{G}(x)-2\left|V_{\geq 5}(G)\right|>14\left|E_{c}(G)\right|-2\left|V_{\geq 5}(G)\right|$. Since G is a 4-connected graph such that G is not 4-regular, we have $6 \leq|V(G)| \leq 8$, and hence $b(G)=|E(G)|-2|V(G)| \leq \max \{(15-12),(21-14),(28-16)\}=12$. By Theorem C, $b(G)>14\left|E_{c}(G)\right|-2\left|V_{\geq 5}(G)\right| \geq 14\left|V_{\geq 5}(G)\right|-2\left|V_{\geq 5}(G)\right|=$ $12\left|V_{\geq 5}(G)\right| \geq 12$, which contradicts $b(G) \leq 12$.

Let \mathcal{S} be as in Section 2. By making use of Claim 3.1, we prove the following claim.
Claim 3.2 \mathcal{S} is cross free.
Proof. Suppose that some two members of \mathcal{S} cross. By Lemma 2.1 and Claim 3.1, there exists a 4-connected graph G^{\prime} such that $\left|V\left(G^{\prime}\right)\right|=|V(G)|-2$ and $\left|E_{c}(G)\right|-\left|E_{c}\left(G^{\prime}\right)\right| \geq \max \left\{1,(1 / 10)\left(\sum_{x \in V_{\geq 5}(G)} \operatorname{deg}_{G}(x)-\sum_{x \in V_{\geq 5}\left(G^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(x)\right)\right\}$. Since $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, we have $\left|E_{c}\left(G^{\prime}\right)\right| \geq(1 / 28) \sum_{x \in V_{\geq 5}\left(G^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(x)$. Thus

$$
\begin{aligned}
1 \leq\left|E_{c}(G)\right|-\left|E_{c}\left(G^{\prime}\right)\right| & <\frac{1}{28}\left(\sum_{x \in V \geq 5(G)} \operatorname{deg}_{G}(x)-\sum_{x \in V_{\geq 5}\left(G^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(x)\right) \\
& <\frac{1}{10}\left(\sum_{x \in V \geq 5(G)} \operatorname{deg}_{G}(x)-\sum_{x \in V_{\geq 5}\left(G^{\prime}\right)} \operatorname{deg}_{G^{\prime}}(x)\right),
\end{aligned}
$$

which is a contradiction.
We are now in a position to complete the proof of Theorem 1. Note that $|R|+|J|=\left|\left\{(x, y) \mid x y \in E(G), x \in V_{\geq 5}(G)\right\}\right|=\sum_{x \in V_{\geq 5}(G)} \operatorname{deg}_{G}(x)$. It follows
from Lemmas 2.2, 2.3 and Claim 3.2 that

$$
\sum_{x \in V \geq 5(G)} \operatorname{deg}_{G}(x)=|R|+|J| \leq 4|Q|+10|Q|=14|Q|=28\left|E_{c}(G)\right|
$$

which contradicts the assumption that $\left|E_{c}(G)\right|<(1 / 28) \sum_{x \in Z_{25}(G)} \operatorname{deg}_{G}(x)$. This completes the proof of Theorem 1.

References

[1] K. Ando and Y. Egawa, Contractible edges in a 4-connected graph with vertices of degree greater than four, Graphs Combin. 23 (2007) $99-115$.
[2] K. Ando and Y. Egawa, Edges not contained in triangles and the number of contractible edges in a 4-connected graph, Discrete Math. 308 (2008) 5463 5472.
[3] K. Ando, Y. Egawa, K. Kawarabayashi and M. Kriesell, On the number of 4contractible edges in 4-connected graphs, J. Combin. Theory Ser. B 99 (2009) 97-109.
[4] R. Diestel, "Graph Theory, fourth edition", Graduate Texts in Mathematics, vol.173, Springer, 2010.
[5] Y. Egawa, K. Kotani and S. Nakamura, Lower bound on the number of contractible edges in a 4 -connected graph with edges not contained in triangles (submitted for publication).
[6] Y. Egawa, K. Kotani and S. Nakamura, Structure of edges in a 4-connected graph not contained in triangles and the number of contractible edges (in press).
[7] M. Fontet, Graphes 4-essentials, C. R. Acad. Sci. Paris 287 (1978) $289-290$.
[8] K. Kotani and S. Nakamura, The existence condition of a 4 -connected graph with specified configurations, Far East J. Appl. Math. 98 (2018) 51 - 71.
[9] K. Kotani and S. Nakamura, The number of contractible edges in a 4-connected graph having a small number of edges not contained in triangles, Adv. Appl. Discrete Math 175 (2015) 153-166.
[10] N. Martinov, A recursive characterization of the 4-connected graphs, Discrete Math. 84 (1990), 105 - 108.
[11] S. Nakamura, The number of contractible edges in a 4-connected graph having a contractible edge not contained in triangles, Australas. J. Combin. 68 (2017) 48-61.

[^0]: $\overline{1}$ Email: 1417701@ed.tus.ac.jp
 ${ }^{2}$ Email: kkotani@rs.kagu.tus.ac.jp

