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Abstract

In this paper, we prove that the number of 4-contractible edges (edges that after
contraction do not change the connectivity of the initial graph) of a 4-connected
graph G is at least (1/28)

∑
x∈V≥5(G) degG(x), where V≥5(G) denotes the set of those

vertices of G which have degree greater than or equal to 5.
This is the refinement of the result proved by Ando et al. [On the number of

4-contractible edges in 4-connected graphs, J. Combin. Theory Ser. B 99 (2009)
97–109].
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1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor
multiple edges. For terminology and notation not defined in this paper, we
refer the reader to [4].

Let G = (V (G), E(G)) be a graph. For x ∈ V (G), NG(x) denotes the
neighborhood of x and degG(x) denotes the degree of x; thus degG(x) =
|NG(x)|. For e ∈ E(G), we let V (e) denote the set of endvertices of e. The
complete graph of order n is denoted by Kn. The complete bipartite graph
K1,n with partite sets of cardinalities 1 and n is called a star. For a graph H,
let nH denote the graph with n components, each isomorphic to H. For an
integer i ≥ 0, we let Vi(G) denote the set of vertices x of G with degG(x) = i
and we let V≥i(G) = ∪j≥iVj(G). A subset S of V (G) is called a cutset if
G− S is disconnected. For an integer k ≥ 1, we say that G is k-connected if
|V (G)| ≥ k + 1 and G has no (k − 1)-cutset.

Let G be a 4-connected graph. For e ∈ E(G), we let G/e denote the graph
obtained from G by contracting e into one vertex (and replacing each resulting
pair of double edges by a simple edge). We say that e is 4-contractible or 4-
noncontractible according as G/e is 4-connected or not. A 4-noncontractible
edge e = ab is said to be trivially 4-noncontractible if there exists a vertex z of
degree 4 such that za, zb ∈ E(G). We let Ec(G) , En(G) and Etn(G) denote
the set of 4-contractible edges, the set of 4-noncontractible edges and the set
of trivially 4-noncontractible edges, respectively.

The following characterization of 4-connected graphs with Ec(G) = ∅ was
obtained by Fontet and independently by Martinov.

Theorem A (Fontet [7]; Martinov [10]) Let G be a 4-connected graph of
order n with Ec(G) = ∅. Then one of the following holds :

(1) G is the square of the cycle of order n; i.e., we can write V (G) =
{v1, v2, . . . , vn} so that E(G) = {vivj | i− j ∈ {±1,±2} (mod n)}; or

(2) there exists a 3-regular graph H such that G is the line graph of H.

In view of Theorem A, it is natural to expect that one can estimate |Ec(G)|
in terms of degrees of vertices of G, and also in terms of the number of edges
of G not contained in a triangle. Along this line, the following results have
been obtained.

Theorem B (Ando, Egawa, Kawarabayashi and Kriesell [3]) If G is
a 4-connected graph, then |Ec(G)| ≥ (1/68)

∑
u∈V (G)(degG(u)− 4).



Theorem C (Ando and Egawa [1]) If G is a 4-connected graph, then
|Ec(G)| ≥ |V≥5(G)|.

Further we let Ẽ(G) denote the set of those edges of G which are not con-
tained in a triangle. Let Ṽ denote the set of those vertices of G which are
incident with an edge in Ẽ(G)∩En(G), and let Ĝ denote the subgraph of G in-
duced by the edge set Ẽ(G)∩En(G); that is to say, Ṽ = ∪e∈Ẽ(G)∩En(G)V (e) and

Ĝ = (Ṽ , Ẽ(G)∩En(G)). Finally we let Y ∗ denote the graph of order 6 defined
by V (Y ∗) = {w, z} ∪ {vi | 1 ≤ i ≤ 4}, E(Y ∗) = {wz, v1w, v2w, v3z, v4z}.
Theorem D (Ando and Egawa [2]) Let G be a 4-connected graph, and
suppose that |Ẽ(G)| ≥ 15. Then |Ec(G)| ≥ (|Ẽ(G)|+ 8)/4.

In Theorems C and D, the lower bound on |Ec(G)| is best possible. How-
ever, the bound 15 on |Ẽ(G)| in the assumption of Theorem D is not best
possible. In fact, the following theorem concerning the refinements of Theo-
rem D has already been proved.

Theorem E (Egawa et al. [5,6]; Kotani et al. [9]; Nakamura [11])
Let G be a 4-connected graph, and suppose that 1 ≤ |Ẽ(G)| ≤ 14. Then
|Ec(G)| ≥ (|Ẽ(G)| + 4)/4. Further we have |Ec(G)| ≥ (|Ẽ(G)| + 8)/4 unless
one of the following holds :

(1) |Ẽ(G)| = 1 and Ĝ = K2;

(2) |Ẽ(G)| = 2 and Ĝ = ∅;
(3) |Ẽ(G)| = 3 and Ĝ = K2;

(4) |Ẽ(G)| = 4 and Ĝ = 2K2;

(5) |Ẽ(G)| = 5 and Ĝ = 2K2 or K1,2;

(6) |Ẽ(G)| = 6 and Ĝ = 3K2; or

(7) |Ẽ(G)| = 9 and Ĝ = Y ∗.

In Theorem B, the coefficient 1/68 seems far from best possible. The
purpose of this paper is to prove the following theorem which is the refinement
of Theorem B.

Theorem 1 If G is a 4-connected graph, then

|Ec(G)| ≥ 1

28

∑
u∈V≥5(G)

degG(u).

The coefficient 1/28 in Theorem 1 still seems not to be best possible.
However we construct examples showing that the coefficient of Theorem 1 is



at most 1/13.

The organization of this paper is as follow. In Section 2, we introduce
a known result proved in [8] and introduce some lemmas for the proof of
Theorem 1. Finally we prove Theorem 1 in Section 3.

2 Preliminaries

Throughout the rest of this paper, we let G be a 4-connected graph. Let L
be the set of edges e such that both endvertices of e have degree 4, and let
F = En(G)−Etn(G)−L. Also let Ṽ (G) denote the set of those vertices of G
which are incident with an edge in F , and let G̃ denote the spanning subgraph
of G with edge set F ; that is to say, Ṽ (G) = ∪e∈FV (e) and G̃ = (V (G), F ).
Set

L ={(S,A) | S is a 4-cutset, A is the union of the vertex set of

some components of G− S, ∅ 6= A 6= V (G)− S}.

Now take (S1, A1), . . . , (Sk, Ak) ∈ L so that for each e ∈ F , there exists
Si such that V (e) ⊆ Si. We choose (S1, A1), . . . , (Sk, Ak) so that k is min-
imum and so that (|A1|, · · · , |Ak|) is lexicographically minimum, subject to
the condition that k is minimum. Set S = {S1, . . . , Sk}.

For two distinct 4-cutset S, T ∈ S, we say that S crosses T if S intersects
with every component of G − T . Furthermore, we call S is cross free if any
two members of S do not cross. The following lemma plays an important role
in the proof of Theorem 1.

Lemma 2.1 (Kotani and Nakamura [8]) Suppose that |V (G)| ≥ 9 and
some two members of S cross. Then there exists a 4-connected graph G′ such
that |V (G′)| = |V (G)| − 2 and

|Ec(G)| − |Ec(G
′)| ≥ max

 1,
1

10

 ∑
x∈V≥5(G)

degG(x)−
∑

x∈V≥5(G′)

degG′(x)

 .

We introduce two lemmas for the proof of Theorem 1. In order to introduce
the first result, we set R = {(u, a) |ua ∈ E(G) − F, u ∈ V≥5(G)} and Q =
{(x, y) |xy ∈ Ec(G)}. Then the following lemma holds.

Lemma 2.2 Suppose that S is cross free. Then |R| ≤ 4|Q|.
We also set J = {(u, a) |ua ∈ F, u ∈ V≥5(G)}. Now we introduce the

second result which will be used in the proof of Theorem 1.



Lemma 2.3 Suppose that S is cross free. Then |J | ≤ 10|Q|.

3 Proof of Theorem 1

In this section, we prove Theorem 1. If G is 4-regular, then
∑

x∈V≥5(G) degG(x) =

0, and hence the desired inequality holds immediately. Thus we may assume
that G is not 4-regular, thus |V≥5(G)| ≥ 1. By way of contradiction, we
suppose that |Ec(G)| < (1/28)

∑
x∈V≥5(G) degG(x), thus

∑
x∈V≥5(G) degG(x) >

28|Ec(G)|. We may assume that we have chosen G such that |V (G)| is as
small as possible. Then the following claim holds.

Claim 3.1 |V (G)| ≥ 9.

Proof. Suppose that |V (G)| ≤ 8. Set b(G) := |E(G)| − 2|V (G)|. Then
b(G) = (1/2)

∑
x∈V≥5(G) degG(x) − 2|V≥5(G)| > 14|Ec(G)| − 2|V≥5(G)|. Since

G is a 4-connected graph such that G is not 4-regular, we have 6 ≤ |V (G)| ≤ 8,
and hence b(G) = |E(G)|−2|V (G)| ≤ max{(15−12), (21−14), (28−16)} = 12.
By Theorem C, b(G) > 14|Ec(G)| − 2|V≥5(G)| ≥ 14|V≥5(G)| − 2|V≥5(G)| =
12|V≥5(G)| ≥ 12, which contradicts b(G) ≤ 12. 2

Let S be as in Section 2. By making use of Claim 3.1, we prove the
following claim.

Claim 3.2 S is cross free.

Proof. Suppose that some two members of S cross. By Lemma 2.1 and Claim
3.1, there exists a 4-connected graph G′ such that |V (G′)| = |V (G)| − 2 and
|Ec(G)|−|Ec(G

′)| ≥ max{1, (1/10)(
∑

x∈V≥5(G) degG(x)−
∑

x∈V≥5(G′)
degG′(x))}.

Since |V (G′)| < |V (G)|, we have |Ec(G
′)| ≥ (1/28)

∑
x∈V≥5(G′)

degG′(x). Thus

1 ≤ |Ec(G)| − |Ec(G
′)| < 1

28

 ∑
x∈V≥5(G)

degG(x)−
∑

x∈V≥5(G′)

degG′(x)


<

1

10

 ∑
x∈V≥5(G)

degG(x)−
∑

x∈V≥5(G′)

degG′(x)

 ,

which is a contradiction. 2

We are now in a position to complete the proof of Theorem 1. Note that
|R|+ |J | = |{(x, y) |xy ∈ E(G), x ∈ V≥5(G)}| =

∑
x∈V≥5(G) degG(x). It follows



from Lemmas 2.2, 2.3 and Claim 3.2 that∑
x∈V≥5(G)

degG(x) = |R|+ |J | ≤ 4|Q|+ 10|Q| = 14|Q| = 28|Ec(G)|,

which contradicts the assumption that |Ec(G)| < (1/28)
∑

x∈V≥5(G) degG(x).

This completes the proof of Theorem 1. 2
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