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1 Introduction

A group K wirtually algebraically fibers if there is a finite index subgroup K’
admitting a surjective homomorphism K’ — Z with finitely generated kernel.
This notion arises from topology: a 3-manifold M is virtually a surface bundle
over a circle precisely when the fundamental group of M virtually algebraically
fibers (see the result of Stallings [10]). A Right-Angled Coxeter group (RACG)
K is a group given by a presentation of the form

(1,29, .. @y | 2}, [25,2)79 11 <i<j<n)

where o;; € {0,1} for each 1 <1 < j < n. One can encode this information
with a graph I'x whose vertices are the generators z1,...,2, and z; ~ x; if



and only if 0;; = 1. Conversely given a graph G' on n vertices, we will denote
the corresponding RACG by K(G).

Random Coxeter groups have been of heightened recent interest, see for
instance Charney and Farber [4], Davis and Kahle [5], and Behrstock, Falgas-
Ravry, Hagen, and Susse [1].

Recently, Jankiewicz, Norin, and Wise [8] developed a framework to show
virtual fibering of a RACG using Betsvina-Brady Morse theory [3] and ul-
timately translated the virtual fibering problem for K into a combinatorial
game on the graph ['yx. The method was successful on many special cases
and also allowed them to construct examples where Betsvina-Brady cannot
be applied to find a virtual algbraic fibering.

A natural question to consider is whether this approach is successful for
a ‘generic’ RACG, i.e., given a probability measure p,, on the set of RACG’s
of rank at most n, is it true that a.a.s. as n — oo, a group sampled from u,
virtually algebraically fibers. This question is also considered in [8], specifically
they consider sampling ' from the Erdds-Renyi random graph model G(n, p)
and they prove the following result:

Theorem 1.1 (Jankiewicz-Norin-Wise) Assume that

(2logn)? + w(n)

n

S p< - W(TL_2),

D=

and let G be sampled from G(n,p). Then, asymptotically almost surely, the
associated Right-Angled Cozeter group K(G) virtually algebraically fibers.

In this paper we extend this result to the smallest possible range of p, in
fact we prove a hitting time type result. Namely we show that as soon as 'k
has minimum degree 2 then a.a.s. K virtually algebraically fibers.

Theorem 1.2 Let Gy, G, .. .,G<n) denote the random graph graph process

on n vertices where G;1 = G; U j{ei} and e; 1s picked uniformly at random
from the non-edges of G;. Let T' = min; {t : 0(G;) = 2}, then a.a.s. the
random graph process is such that K(G,,) virtually algebraically fibers if and
only if T <m < (g) In particular for any p satisfying

logn + loglogn + w(n)
n

and G G(n,p), the random Right-Angled Cozeter group K(G) virtually alge-
braically fibers a.a.s.

<p<l—wn?




Fig. 1. A couple of toy examples.

2 The combinatorial game

In this section we follow the definitions in [8] to present the combinatorial game
introduced in [8] used to construct virtual algebraic fiberings of Right-Angled
Coxeter groups.

Definition 2.1 Let G = (V, E) be a graph. We say that a subset S C V is a
legal state if both S and V'\ S are non-empty connected subsets of V', i.e., the
corresponding induced graphs are connected and non-empty.

Definition 2.2 For each v € V| a move at v is a set M, C V satisfying the
following:

e v e M,.

 N(v)Nn M, =190.

Let M = {M, :v € V} denote a set of moves.

We will identify subsets of V' as elements of ZY in the obvious way. Thus
each state and each move correspond to elements of ZY and we will think of
moves acting on states via group multiplication (or addition in this case).

Definition 2.3 For a graph G, a state S C V(G), and a set of moves M =
{M, : v € V}, the triple (G,S, M) is a legal system if for any element
g € (M), g(95) is a legal state of G.

Theorem 2.4 ([8]) Let (G, S, M) be a legal system, then the RACG K(G)
must virtually algebraically fiber.

To elucidate the notion of a legal system, let us look at some toy examples
(see Figure 2) and ask whether each of these graphs contains a legal system.

Example 2.5 Let G = (V, E) be a graph with three vertices V' = {v, uy, us}
and two edges E = {{v,u1},{v,us}}. We show that G has a legal system.
Our initial legal state will be S = {u;}. For our set of moves we choose



M, = {v} (note that this is the only possible choice for the move at v),
M,, = M,, = {u1,us}. Then the group generated by the moves of the graph,
written as a collection of sets, is (M) = {{v}, {u1, u2}, {v, us, us}, 0}. Hence,
for any element g € (M), ¢g(S) is either a set of the form {u;} or {v,u;}, for
i =1,2, and in any case a legal state. Thus, (G, S, M) is a legal system.

The graph in Example 2.5 is unique in the sense that it is the only graph
with a vertex of degree 1 on at least 3 vertices which contains a legal system.

Next, we look at an example of a graph without a legal system. We proceed
by exhaustion.

Example 2.6 Let G be the bowtie graph on 4 vertices . Assume by con-
tradiction that (G, S, M) is a legal system. Since v is connected to all other
vertices in the graph, we must have M, = {v}. For the same reason, v cannot
belong to any other move apart from M,. Hence, we can assume without loss
of generality that v ¢ S. Since S is a connected subset of V| we can again
assume without loss of generality that S = {u;} or S = {uy, us}.

In the latter case, M,,, = {uy, us, w;} for i = 1,2, because by the definition
of a move, it must be the case that {w;} C M,, C {w;, ui,us}, and if u,
or uy would not belong to M,,,, then M, S would not be a legal state. But
then the set {wy,wy} € (M), and {wy, ws}S = {wy, we, us, us} is not a legal
state. In the former case, from similar consideration, it must be the case that
M, = {w;,us} for i = 1,2, but then again {wy, ws} € (M), and {wy, w.}S =
{wy,wy,u1} is not a legal state.

3 Quick note on method.

The first ingredient of the proof is to pick the colour classes of vertices as the
moves and to choose the starting set S uniformly at random (independently of
the graph). This observation allows us already get close to the threshold but
not all the way: for instance an obvious obstruction is that at the target density
there will be bounded vertices of degree at most C' with some probability
bounded away from 0 and thus with some probability bounded away from 0
these will be isolated in S.

The second ingredient then is to show that one can modify the original
random selection of S and the moves to accommodate for the obstructions.

Finally, in order to prove a hitting time result, we show that any graph
that deterministically satisfies certain pseudorandom properties must accept a
legal system. The task then is to show that at the hitting time T', G satisfies
said pseudorandom properties with high probability.
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