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1 Introduction

A group K virtually algebraically fibers if there is a finite index subgroup K ′

admitting a surjective homomorphism K ′ → Z with finitely generated kernel.
This notion arises from topology: a 3-manifold M is virtually a surface bundle
over a circle precisely when the fundamental group ofM virtually algebraically
fibers (see the result of Stallings [10]). A Right-Angled Coxeter group (RACG)
K is a group given by a presentation of the form

〈

x1, x2, . . . xn | x2

i , [xi, xj]
σij : 1 ≤ i < j ≤ n

〉

where σij ∈ {0, 1} for each 1 ≤ i < j ≤ n. One can encode this information
with a graph ΓK whose vertices are the generators x1, . . . , xn and xi ∼ xj if



and only if σij = 1. Conversely given a graph G on n vertices, we will denote
the corresponding RACG by K(G).

Random Coxeter groups have been of heightened recent interest, see for
instance Charney and Farber [4], Davis and Kahle [5], and Behrstock, Falgas-
Ravry, Hagen, and Susse [1].

Recently, Jankiewicz, Norin, and Wise [8] developed a framework to show
virtual fibering of a RACG using Betsvina-Brady Morse theory [3] and ul-
timately translated the virtual fibering problem for K into a combinatorial
game on the graph ΓK . The method was successful on many special cases
and also allowed them to construct examples where Betsvina-Brady cannot
be applied to find a virtual algbraic fibering.

A natural question to consider is whether this approach is successful for
a ‘generic’ RACG, i.e., given a probability measure µn on the set of RACG’s
of rank at most n, is it true that a.a.s. as n → ∞, a group sampled from µn

virtually algebraically fibers. This question is also considered in [8], specifically
they consider sampling ΓK from the Erdős-Renyi random graph model G(n, p)
and they prove the following result:

Theorem 1.1 (Jankiewicz-Norin-Wise) Assume that

(2 logn)
1

2 + ω(n)

n
1

2

≤ p < 1− ω(n−2),

and let G be sampled from G(n, p). Then, asymptotically almost surely, the

associated Right-Angled Coxeter group K(G) virtually algebraically fibers.

In this paper we extend this result to the smallest possible range of p, in
fact we prove a hitting time type result. Namely we show that as soon as ΓK

has minimum degree 2 then a.a.s. K virtually algebraically fibers.

Theorem 1.2 Let G0, G1, . . . , G(n
2
) denote the random graph graph process

on n vertices where Gi+1 = Gi ∪ {ei} and ei is picked uniformly at random

from the non-edges of Gi. Let T = mint {t : δ(Gt) = 2}, then a.a.s. the

random graph process is such that K(Gm) virtually algebraically fibers if and

only if T ≤ m <
(

n

2

)

. In particular for any p satisfying

log n+ log log n+ ω(n)

n
≤ p < 1− ω(n−2)

and G G(n, p), the random Right-Angled Coxeter group K(G) virtually alge-

braically fibers a.a.s.



Fig. 1. A couple of toy examples.
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2 The combinatorial game

In this section we follow the definitions in [8] to present the combinatorial game
introduced in [8] used to construct virtual algebraic fiberings of Right-Angled
Coxeter groups.

Definition 2.1 Let G = (V,E) be a graph. We say that a subset S ⊂ V is a
legal state if both S and V \ S are non-empty connected subsets of V , i.e., the
corresponding induced graphs are connected and non-empty.

Definition 2.2 For each v ∈ V , a move at v is a set Mv ⊆ V satisfying the
following:

• v ∈ Mv.

• N(v) ∩Mv = ∅.

Let M = {Mv : v ∈ V } denote a set of moves.

We will identify subsets of V as elements of ZV
2 in the obvious way. Thus

each state and each move correspond to elements of ZV
2 and we will think of

moves acting on states via group multiplication (or addition in this case).

Definition 2.3 For a graph G, a state S ⊆ V (G), and a set of moves M =
{Mv : v ∈ V }, the triple (G, S,M) is a legal system if for any element
g ∈ 〈M〉, g(S) is a legal state of G.

Theorem 2.4 ([8]) Let (G, S,M) be a legal system, then the RACG K(G)
must virtually algebraically fiber.

To elucidate the notion of a legal system, let us look at some toy examples
(see Figure 2) and ask whether each of these graphs contains a legal system.

Example 2.5 Let G = (V,E) be a graph with three vertices V = {v, u1, u2}
and two edges E = {{v, u1}, {v, u2}}. We show that G has a legal system.
Our initial legal state will be S = {u1}. For our set of moves we choose



Mv = {v} (note that this is the only possible choice for the move at v),
Mu1

= Mu2
= {u1, u2}. Then the group generated by the moves of the graph,

written as a collection of sets, is 〈M〉 = {{v}, {u1, u2}, {v, u1, u2}, ∅}. Hence,
for any element g ∈ 〈M〉, g(S) is either a set of the form {ui} or {v, ui}, for
i = 1, 2, and in any case a legal state. Thus, (G, S,M) is a legal system.

The graph in Example 2.5 is unique in the sense that it is the only graph
with a vertex of degree 1 on at least 3 vertices which contains a legal system.

Next, we look at an example of a graph without a legal system. We proceed
by exhaustion.

Example 2.6 Let G be the bowtie graph on 4 vertices . Assume by con-
tradiction that (G, S,M) is a legal system. Since v is connected to all other
vertices in the graph, we must have Mv = {v}. For the same reason, v cannot
belong to any other move apart from Mv. Hence, we can assume without loss
of generality that v /∈ S. Since S is a connected subset of V , we can again
assume without loss of generality that S = {u1} or S = {u1, u2}.

In the latter case, Mwi
= {u1, u2, wi} for i = 1, 2, because by the definition

of a move, it must be the case that {wi} ⊆ Mwi
⊆ {wi, u1, u2}, and if u1

or u2 would not belong to Mwi
, then Mwi

S would not be a legal state. But
then the set {w1, w2} ∈ 〈M〉, and {w1, w2}S = {w1, w2, u1, u2} is not a legal
state. In the former case, from similar consideration, it must be the case that
Mwi

= {wi, u1} for i = 1, 2, but then again {w1, w2} ∈ 〈M〉, and {w1, w2}S =
{w1, w2, u1} is not a legal state.

3 Quick note on method.

The first ingredient of the proof is to pick the colour classes of vertices as the
moves and to choose the starting set S uniformly at random (independently of
the graph). This observation allows us already get close to the threshold but
not all the way: for instance an obvious obstruction is that at the target density
there will be bounded vertices of degree at most C with some probability
bounded away from 0 and thus with some probability bounded away from 0
these will be isolated in S.

The second ingredient then is to show that one can modify the original
random selection of S and the moves to accommodate for the obstructions.

Finally, in order to prove a hitting time result, we show that any graph
that deterministically satisfies certain pseudorandom properties must accept a
legal system. The task then is to show that at the hitting time T , GT satisfies
said pseudorandom properties with high probability.
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