Virtually Fibering Random Right-Angled Coxeter Groups - Extended Abstract

Gonzalo Fiz Pontiveros
BGSMath/UPC
Barcelona, Spain

Roman Glebov
Hebrew University of Jerusalem
Jerusalem, Israel
Ilan Karpas
Hebrew University of Jerusalem
Jerusalem, Israel

1 Introduction

A group K virtually algebraically fibers if there is a finite index subgroup K^{\prime} admitting a surjective homomorphism $K^{\prime} \rightarrow \mathbb{Z}$ with finitely generated kernel. This notion arises from topology: a 3-manifold M is virtually a surface bundle over a circle precisely when the fundamental group of M virtually algebraically fibers (see the result of Stallings [10]). A Right-Angled Coxeter group (RACG) K is a group given by a presentation of the form

$$
\left\langle x_{1}, x_{2}, \ldots x_{n} \mid x_{i}^{2},\left[x_{i}, x_{j}\right]^{\sigma_{i j}}: 1 \leq i<j \leq n\right\rangle
$$

where $\sigma_{i j} \in\{0,1\}$ for each $1 \leq i<j \leq n$. One can encode this information with a graph Γ_{K} whose vertices are the generators x_{1}, \ldots, x_{n} and $x_{i} \sim x_{j}$ if
and only if $\sigma_{i j}=1$. Conversely given a graph G on n vertices, we will denote the corresponding RACG by $K(G)$.

Random Coxeter groups have been of heightened recent interest, see for instance Charney and Farber [4], Davis and Kahle [5], and Behrstock, FalgasRavry, Hagen, and Susse [1].

Recently, Jankiewicz, Norin, and Wise [8] developed a framework to show virtual fibering of a RACG using Betsvina-Brady Morse theory [3] and ultimately translated the virtual fibering problem for K into a combinatorial game on the graph Γ_{K}. The method was successful on many special cases and also allowed them to construct examples where Betsvina-Brady cannot be applied to find a virtual algbraic fibering.

A natural question to consider is whether this approach is successful for a 'generic' RACG, i.e., given a probability measure μ_{n} on the set of RACG's of rank at most n, is it true that a.a.s. as $n \rightarrow \infty$, a group sampled from μ_{n} virtually algebraically fibers. This question is also considered in [8], specifically they consider sampling Γ_{K} from the Erdős-Renyi random graph model $\mathcal{G}(n, p)$ and they prove the following result:

Theorem 1.1 (Jankiewicz-Norin-Wise) Assume that

$$
\frac{(2 \log n)^{\frac{1}{2}}+\omega(n)}{n^{\frac{1}{2}}} \leq p<1-\omega\left(n^{-2}\right)
$$

and let G be sampled from $\mathcal{G}(n, p)$. Then, asymptotically almost surely, the associated Right-Angled Coxeter group $K(G)$ virtually algebraically fibers.

In this paper we extend this result to the smallest possible range of p, in fact we prove a hitting time type result. Namely we show that as soon as Γ_{K} has minimum degree 2 then a.a.s. K virtually algebraically fibers.

Theorem 1.2 Let $G_{0}, G_{1}, \ldots, G_{\binom{n}{2}}$ denote the random graph graph process on n vertices where $G_{i+1}=G_{i} \cup\left\{e_{i}\right\}$ and e_{i} is picked uniformly at random from the non-edges of G_{i}. Let $T=\min _{t}\left\{t: \delta\left(G_{t}\right)=2\right\}$, then a.a.s. the random graph process is such that $K\left(G_{m}\right)$ virtually algebraically fibers if and only if $T \leq m<\binom{n}{2}$. In particular for any p satisfying

$$
\frac{\log n+\log \log n+\omega(n)}{n} \leq p<1-\omega\left(n^{-2}\right)
$$

and $G \mathcal{G}(n, p)$, the random Right-Angled Coxeter group $K(G)$ virtually algebraically fibers a.a.s.

Fig. 1. A couple of toy examples.

2 The combinatorial game

In this section we follow the definitions in [8] to present the combinatorial game introduced in [8] used to construct virtual algebraic fiberings of Right-Angled Coxeter groups.

Definition 2.1 Let $G=(V, E)$ be a graph. We say that a subset $S \subset V$ is a legal state if both S and $V \backslash S$ are non-empty connected subsets of V, i.e., the corresponding induced graphs are connected and non-empty.

Definition 2.2 For each $v \in V$, a move at v is a set $M_{v} \subseteq V$ satisfying the following:

- $v \in M_{v}$.
- $N(v) \cap M_{v}=\emptyset$.

Let $\mathcal{M}=\left\{M_{v}: v \in V\right\}$ denote a set of moves.
We will identify subsets of V as elements of \mathbb{Z}_{2}^{V} in the obvious way. Thus each state and each move correspond to elements of \mathbb{Z}_{2}^{V} and we will think of moves acting on states via group multiplication (or addition in this case).

Definition 2.3 For a graph G, a state $S \subseteq V(G)$, and a set of moves $\mathcal{M}=$ $\left\{M_{v}: v \in V\right\}$, the triple (G, S, \mathcal{M}) is a legal system if for any element $g \in\langle\mathcal{M}\rangle, g(S)$ is a legal state of G.
Theorem $2.4([8])$ Let (G, S, \mathcal{M}) be a legal system, then the $R A C G K(G)$ must virtually algebraically fiber.

To elucidate the notion of a legal system, let us look at some toy examples (see Figure 2) and ask whether each of these graphs contains a legal system.

Example 2.5 Let $G=(V, E)$ be a graph with three vertices $V=\left\{v, u_{1}, u_{2}\right\}$ and two edges $E=\left\{\left\{v, u_{1}\right\},\left\{v, u_{2}\right\}\right\}$. We show that G has a legal system. Our initial legal state will be $S=\left\{u_{1}\right\}$. For our set of moves we choose
$M_{v}=\{v\}$ (note that this is the only possible choice for the move at v), $M_{u_{1}}=M_{u_{2}}=\left\{u_{1}, u_{2}\right\}$. Then the group generated by the moves of the graph, written as a collection of sets, is $\langle\mathcal{M}\rangle=\left\{\{v\},\left\{u_{1}, u_{2}\right\},\left\{v, u_{1}, u_{2}\right\}, \emptyset\right\}$. Hence, for any element $g \in\langle\mathcal{M}\rangle, g(S)$ is either a set of the form $\left\{u_{i}\right\}$ or $\left\{v, u_{i}\right\}$, for $i=1,2$, and in any case a legal state. Thus, (G, S, \mathcal{M}) is a legal system.

The graph in Example 2.5 is unique in the sense that it is the only graph with a vertex of degree 1 on at least 3 vertices which contains a legal system.

Next, we look at an example of a graph without a legal system. We proceed by exhaustion.

Example 2.6 Let G be the bowtie graph on 4 vertices . Assume by contradiction that (G, S, \mathcal{M}) is a legal system. Since v is connected to all other vertices in the graph, we must have $M_{v}=\{v\}$. For the same reason, v cannot belong to any other move apart from M_{v}. Hence, we can assume without loss of generality that $v \notin S$. Since S is a connected subset of V, we can again assume without loss of generality that $S=\left\{u_{1}\right\}$ or $S=\left\{u_{1}, u_{2}\right\}$.

In the latter case, $M_{w_{i}}=\left\{u_{1}, u_{2}, w_{i}\right\}$ for $i=1,2$, because by the definition of a move, it must be the case that $\left\{w_{i}\right\} \subseteq M_{w_{i}} \subseteq\left\{w_{i}, u_{1}, u_{2}\right\}$, and if u_{1} or u_{2} would not belong to $M_{w_{i}}$, then $M_{w_{i}} S$ would not be a legal state. But then the set $\left\{w_{1}, w_{2}\right\} \in\langle\mathcal{M}\rangle$, and $\left\{w_{1}, w_{2}\right\} S=\left\{w_{1}, w_{2}, u_{1}, u_{2}\right\}$ is not a legal state. In the former case, from similar consideration, it must be the case that $M_{w_{i}}=\left\{w_{i}, u_{1}\right\}$ for $i=1,2$, but then again $\left\{w_{1}, w_{2}\right\} \in\langle\mathcal{M}\rangle$, and $\left\{w_{1}, w_{2}\right\} S=$ $\left\{w_{1}, w_{2}, u_{1}\right\}$ is not a legal state.

3 Quick note on method.

The first ingredient of the proof is to pick the colour classes of vertices as the moves and to choose the starting set S uniformly at random (independently of the graph). This observation allows us already get close to the threshold but not all the way: for instance an obvious obstruction is that at the target density there will be bounded vertices of degree at most C with some probability bounded away from 0 and thus with some probability bounded away from 0 these will be isolated in S.

The second ingredient then is to show that one can modify the original random selection of S and the moves to accommodate for the obstructions.

Finally, in order to prove a hitting time result, we show that any graph that deterministically satisfies certain pseudorandom properties must accept a legal system. The task then is to show that at the hitting time T, G_{T} satisfies said pseudorandom properties with high probability.

References

[1] Behrstock, J., V. Falgas-Ravry, M. F. Hagen and T. Susse, Global structural properties of random graphs, arXiv preprint arXiv:1505.01913 (2015).
[2] Ben-Shimon, Krivelevich and Sudakov, On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs.
[3] Bestvina, M. and N. Brady, Morse theory and finiteness properties of groups, Inventiones Mathematicae (1997), pp. 445-470.
[4] Charney, R. and M. Farber, Random groups arising as graph products, Algebraic \& Geometric Topology 12 (2012), pp. 979-995.
[5] Davis, M. W. and M. Kahle, Random graph products of finite groups are rational duality groups, Journal of Topology (2014).
[6] Glebov, R., On Hamilton cycles and other spanning structures, Ph.D. Thesis (2014).
[7] J., M., Equitable coloring, Amer. Math. Monthly 80 (1973), pp. 920-922.
[8] Jankiewicz, K., S. Norin and D. T. Wise, Virtually fibering Right-Angled coxeter groups (2017).
[9] Krivelevich, M. and B. Patkós, Equitable coloring of random graphs, Random Structures Algorithms 35 (2009), pp. 83-99.
[10] Stallings, J., On fibering certain 3-manifolds, Proc. 1961 Georgia conference on the Topology of (1961), pp. 95-100.

