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Abstract

Let G ∼= Z/m1Z×. . .×Z/mrZ be a finite abelian group withm1 | . . . | mr = exp(G).
The Kemperman Structure Theorem characterizes all subsets A, B ⊆ G satisfying
|A+B| < |A|+|B| and has been extended to cover the case when |A+B| ≤ |A|+|B|.
Utilizing these results, we provide a precise structural description of all finite subsets
A ⊆ G with |nA| ≤ (|A|+1)n−3 when n ≥ 3 (also when G is infinite), in which case
many of the pathological possibilities from the case n = 2 vanish, particularly for
large n ≥ exp(G)−1. The structural description is combined with other arguments
to generalize a subsequence sum result of Olson asserting that a sequence S of
terms from G having length |S| ≥ 2|G| − 1 must either have every element of G
representable as a sum of |G|-terms from S or else have all but |G/H| − 2 of its
terms lying in a common H-coset for some H ≤ G. We show that the much weaker
hypothesis |S| ≥ |G|+exp(G) suffices to obtain a nearly identical conclusion, where
for the case H is trivial we must allow all but |G/H| − 1 terms of S to be from
the same H-coset. The bound on |S| is improved for several classes of groups G,
yielding optimal lower bounds for |S|.

Keywords: zero-sum, sumset, subsequence sum, subsum, Partition Theorem,
Kneser’s Theorem, Kemperman Structure Theorem, n-fold sumset, iterated
sumset, Olson, complete sequence, Erdős-Ginzburg-Ziv Theorem



1 Extended Abstract

Let G ∼= Z/m1Z× . . .×Z/mrZ be a finite abelian group with m1 | . . . | mr =
exp(G). Given subsets A, B ⊆ G, we define their sumset

A+B = {a+ b : a ∈ A, b ∈ B}.

Let S be a sequence of terms from G, let n ≥ 0 be an integer, and let X ⊆ G
be a subset. Then

• |S| denotes the length of S,

• h(S) denotes the maximum multiplicity of a term in S, and

• Σn(S) denotes all elements g ∈ G which can be expressed as the sum of an
n-term subsequence of S.

A classical result in Combinatorial Number Theory, helping spawn the
study of zero-sum sequences, is the Erdős-Ginzburg-Ziv Theorem [1] [3] [8].

Theorem 1.1 (Erdős-Ginzburg-Ziv Theorem) Let G be a finite abelian
group and let S be a sequence of terms from G of length |S| ≥ 2|G| − 1. Then
0 ∈ Σ|G|(S).

When G = Z/nZ is cyclic, a sequence consisting of entirely of 0’s and 1’s
has a |G|-term zero-sum if and only if there is a |G|-term subsequence which
is monochromatic (consisting entirely of 0’s or entirely of 1’s). In this way, the
Erdős-Ginzburg-Ziv Theorem can be viewed as an algebraic generalization of
the Pigeonhole Principle. Naturally, a sequence S having only one distinct
term can be arbitrarily long and yet Σ|G|(S) = {0}, so it is not possible
to replace 0 with an arbitrary group element g ∈ G. More generally, if all
terms from S come from a coset α + H of a proper subgroup H ≤ G, then
Σ|G|(S) = H, and so only elements from H can be represented as subsequence
sums. Nonetheless, an old result of Olson [9], generalizing the case for cyclic
groups of prime order completed by Mann [7], shows this to be the only
restriction to extending the Erdős-Ginzburg-Ziv Theorem from sequences with
sum 0 to those with arbitrary sum g ∈ G.

Theorem 1.2 [9] Let G be a finite abelian group and let S be a sequence of
terms from G of length |S| ≥ 2|G| − 1. Suppose, for every H < G and α ∈ G,
there are at least |G/H| − 1 terms of S lying outside the coset α +H. Then
Σ|G|(S) = G.
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The bound 2|G|−1 was later improved to |G|+D(G)−1 by Gao [2], where
D(G) ≤ |G| is the Davenport constant, which is the minimal integer ℓ such that
any sequence of terms from G with length ℓmust contain a nontrivial zero-sum
subsequence. This was further improved to |G| + d∗(G) [5], where d∗(G) ≤
D(G) − 1 is the basic lower bound for the Davenport constant: d∗(G) =∑r

i=1(mi− 1). Neither of these bounds is tight in general, only being tight for
a limited class of particular groups G.

We observe that the hypothesis that S have at least |G/H|−1 terms lying
outside any coset α + H reduces, in the case H is trivial, to the statement
that the maximum multiplicity of S is at most h(S) ≤ |S| − |G| + 1. By
strengthening this hypothesis by one, so instead assuming h(S) ≤ |S| − |G|,
we are able to obtain optimal values for how long |S| must be to represent all
elements of G.

Theorem 1.3 Let G be a finite abelian group, let n ≥ 1, and let S be a
sequence of terms from G with |S| = |G| + n and h(S) ≤ |S| − |G|. Suppose,
for every H < G and α ∈ G, there are at least |G/H| − 1 terms of S lying
outside the coset α +H. Then Σ|G|(S) = G whenever

1. n ≥ exp(G), or

2. n ≥ exp(G)− 1 and G ∼= H ⊕ Cexp(G) with |H| or exp(G) prime, or

3. n ≥ |G|
p
− 1 and G is cyclic, where p is the smallest prime divisor of |G|, or

4. n ≥ 1 and either exp(G) ≤ 3, or |G| < 12, or exp(G) = 4 with |G| = 16.

The Kemperman Structure Theorem characterizes all subsets A, B ⊆ G
satisfying |A+B| < |A|+ |B| [6] [3] and has been extended to cover the case
when |A+B| ≤ |A|+|B| [4]. It is one of the few results giving a precise inverse
result for sumsets in an arbitrary abelian group. As a main step for proving
Theorem 1.3, we provide a precise structural description of all finite subsets
A ⊆ G with |nA| ≤ (|A|+1)n−3 when n ≥ 3 (also when G is infinite), where

nA = A+ . . .+ A︸ ︷︷ ︸
n

denotes the n-fold iterated sumset.

For the descriptions below, we say X is H-periodic if H +X = X, where
H ≤ G. This means X is a union of H-cosets. A set X is aperiodic if it is not
H-periodic for any nontrivial subgroup H ≤ G. Equivalently, the stabilizer
group

H(X) = {g ∈ G : g +X = X} ≤ G



is trivial. We say that X = X1 ∪ X0 is an H-coset decomposition if X1 and
X0 are each subsets of distinct H-cosets. We say X = X0 ∪ . . . ∪Xr is an H-
coset progression decomposition if each Ai is contained in an H-coset with the
sequence of H-cosets A0, A1, . . . , Ar forming an arithmetic progression modulo
H. We say that X = X1 ∪ X0 is an H-quasi-periodic decomposition if X1 is
H-periodic and X0 is a non-empty subset of an H-coset.

In the case |A| = 3, there are numerous additional possibilities, with the
structure given according to the following result.

Theorem 1.4 Let G be an abelian group, let A ⊆ G be a subset with ⟨A−A⟩ =
G and |A| = 3, and let n ≥ 3 be an integer. Suppose

|nA| < min{|G|, (|A|+ 1)n− 3} = min{|G|, 4n− 3}.

Then nA is aperiodic and one of the following holds.

(i) There is an arithmetic progression P ⊆ G such that A ⊆ P and 3 ≤ |P | ≤ 4,
in which case |nA| = 2n+ 1, |nA| = 3n or |nA| = 3n− 1 = |G| − 1.

(ii) There is an H-coset decomposition A = A1 ∪ A0 with ⟨A1 − A1⟩ = H ≤ G
a subgroup such that 2 ≤ |H| ≤ 3, in which case |nA| = 2n + 1, |nA| = 3n
or |nA| = 3n− 1 = |G| − 1.

(iii) There is an H-coset decomposition A = A1 ∪ A0 with ⟨A0 − A0⟩ = H ≤ G
a subgroup such that either |H| = 4 and |nA| = 4n − 5 = |G| − 1, or else
|H| = |G/H| = 5 and |nA| = 4n− 4 = |G| − 1 = 24.

(iv) G ∼= C2 ⊕ Cexp(G) with 4 | exp(G) and there is an H-coset decomposition
A = {x, z} ∪ {y} with ⟨x − z⟩ = H such that |G/H| = 2, 2(y + z) = 4x
and |nA| = 4n− 5 = |G| − 1.

(v) There is an arithmetic progression P ⊆ G with A ⊆ P such that either
|P | = 5 and |nA| = 4n − 5 = |G| − 1 or |nA| = 4n − 4 = |G| − 1, or else
|P | = 6, |G| = 21 and |nA| = 4n− 4 = |G| − 1 = 20.

(vi) G is cyclic, 8 - |G|, |nA| = 4n − 5 = |G| − 1 and A = {0, 1, m
2
− 1} up to

affine transformation.

The general description is then the following.

Theorem 1.5 Let G be a nontrivial abelian group, let A ⊆ G be a finite
subset with ⟨A−A⟩ = G, and let n ≥ 3 be an integer. Suppose nA is aperiodic
and

|nA| < (|A|+ 1)n− 3.

If |A| = 3, then A is given by one of the possibilities listed in Theorem 1.4.
Otherwise, one of the following must hold.



(i) There is an arithmetic progression P ⊆ G such that A ⊆ P and |P | ≤
|A|+ 1, in which case |nA| = (|A| − 1)n+ 1, |nA| = |A|n, |nA| = |A|n+ 1
or |nA| = |A|n− 1 = |G| − 1.

(ii) There exist subgroups K1, K2, K ≤ G, with K1
∼= K2

∼= Z/2Z and K =
K1 ⊕ K2, and K-coset progression decomposition A = A1 ∪ . . . ∪ Ar such
that A1 is a K1-coset, Ar is a K2-coset, and all other Ai are K-cosets, in
which case |nA| = |A|n or |nA| = |A|n− 1 = |G| − 1.

(iii) There is an H-coset progression decomposition A = A0 ∪ A1 ∪ . . . ∪ Ar

with H < G a finite, nontrivial, proper subgroup, r ≥ 1 and
∑r

i=1 |Ai| =
r|H|− ϵ with ϵ ∈ {0, 1}. Moreover, nA0 is an aperiodic subset with |nA0| <
min{|K|, (|A0|+ 1− ϵ)n− 3} or |A0| = 1, where K = ⟨A0 −A0⟩ ≤ H, and
one of the following also holds.

(a) nA = (nA \ nA0)∪ nA0 is an H-quasi-periodic decomposition and |nA| −
|A|n = |nA0| − |A0|n+ ϵn.

(b) |H| = 2, |A0| = |Ar| = 1 and r ≥ 2, in which case |nA| = |A|n or
|nA| = |A|n− 1 = |G| − 1.

(c) |A0| = 1 and |A1| = |H| − 1, in which case |nA| = |A|n or |nA| =
|A|n− 1 = |G| − 1.

While the above structural description is quite involved, it simplifies greatly
by imposing some mild restrictions. For instance, when |A| > |G|/n, we obtain
the following as a corollary.

Corollary 1.6 Let G be a finite abelian group, let A ⊆ G be a nonempty
subset with ⟨A−A⟩ = G, let n ≥ 1 be an integer, let K = H(nA) and suppose
n|A| > |G|.
1. If n ≥ exp(G), then nA = G.

2. If n = exp(G)− 1 and nA ̸= G, then exp(G) is composite, G = H0 ⊕H1 ⊕
. . .⊕Hr with K < H0 proper, r ≥ 1 and Hi = ⟨xi⟩ ∼= Cexp(G) for all i ∈ [1, r]
(thus G is non-cyclic),

z + A+K =
r∪

j=0

(K +

j−1∑
i=0

Hi +
r∑

i=j+1

xi) for some z ∈ G,

|A|n ≤ |G|− |H0|+(exp(G)−1)|K| ≤ p exp(G)r+exp(G)−p−1
p exp(G)r

|G|, where p is the

smallest prime divisor of exp(H0), and |nA| = |G| − |H0|+ |K|.
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[1] P. Erdős, A. Ginzburg, A. Ziv, Theorem in Additive Number Theory, Bull. Res.
Council Israel 10F (1961), 41–43.

[2] W. Gao, Addition theorems for finite abelian groups, J. Number Theory 53
(1995), no.2, 241-246.

[3] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics
30, Springer (2013), Switzerland.

[4] D. J. Grynkiewicz, A Step Beyond Kemperman’s Structure Theorem,
Mathematika 55 (2009), 67–114.

[5] D. J. Grynkiewicz, E. Marchan and O. Ordaz, Representation of finite abelian
group elements by subsequence sums, J. Théor. Nombres Bordeaux 21 (2009),
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