Iterated Sumsets and Olson's Generalization of the Erdős-Ginzburg-Ziv Theorem

David J. Grynkiewicz¹

Department of Mathematical Sciences University of Memphis Memphis, TN 38152, USA

Abstract

Let $G \cong \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_r\mathbb{Z}$ be a finite abelian group with $m_1 \mid \ldots \mid m_r = \exp(G)$. The Kemperman Structure Theorem characterizes all subsets $A, B \subseteq G$ satisfying |A+B| < |A|+|B| and has been extended to cover the case when $|A+B| \leq |A|+|B|$. Utilizing these results, we provide a precise structural description of all finite subsets $A \subseteq G$ with $|nA| \leq (|A|+1)n-3$ when $n \geq 3$ (also when G is infinite), in which case many of the pathological possibilities from the case n = 2 vanish, particularly for large $n \geq \exp(G) - 1$. The structural description is combined with other arguments to generalize a subsequence sum result of Olson asserting that a sequence S of terms from G having length $|S| \geq 2|G| - 1$ must either have every element of Grepresentable as a sum of |G|-terms from S or else have all but |G/H| - 2 of its terms lying in a common H-coset for some $H \leq G$. We show that the much weaker hypothesis $|S| \geq |G| + \exp(G)$ suffices to obtain a nearly identical conclusion, where for the case H is trivial we must allow all but |G/H| - 1 terms of S to be from the same H-coset. The bound on |S| is improved for several classes of groups G, yielding optimal lower bounds for |S|.

Keywords: zero-sum, sumset, subsequence sum, subsum, Partition Theorem, Kneser's Theorem, Kemperman Structure Theorem, *n*-fold sumset, iterated sumset, Olson, complete sequence, Erdős-Ginzburg-Ziv Theorem

1 Extended Abstract

Let $G \cong \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_r\mathbb{Z}$ be a finite abelian group with $m_1 \mid \ldots \mid m_r = \exp(G)$. Given subsets $A, B \subseteq G$, we define their sumset

$$A + B = \{a + b : a \in A, b \in B\}.$$

Let S be a sequence of terms from G, let $n \ge 0$ be an integer, and let $X \subseteq G$ be a subset. Then

- |S| denotes the length of S,
- h(S) denotes the maximum multiplicity of a term in S, and
- $\Sigma_n(S)$ denotes all elements $g \in G$ which can be expressed as the sum of an *n*-term subsequence of S.

A classical result in Combinatorial Number Theory, helping spawn the study of zero-sum sequences, is the Erdős-Ginzburg-Ziv Theorem [1] [3] [8].

Theorem 1.1 (Erdős-Ginzburg-Ziv Theorem) Let G be a finite abelian group and let S be a sequence of terms from G of length $|S| \ge 2|G| - 1$. Then $0 \in \Sigma_{|G|}(S)$.

When $G = \mathbb{Z}/n\mathbb{Z}$ is cyclic, a sequence consisting of entirely of 0's and 1's has a |G|-term zero-sum if and only if there is a |G|-term subsequence which is monochromatic (consisting entirely of 0's or entirely of 1's). In this way, the Erdős-Ginzburg-Ziv Theorem can be viewed as an algebraic generalization of the Pigeonhole Principle. Naturally, a sequence S having only one distinct term can be arbitrarily long and yet $\Sigma_{|G|}(S) = \{0\}$, so it is not possible to replace 0 with an arbitrary group element $g \in G$. More generally, if all terms from S come from a coset $\alpha + H$ of a proper subgroup $H \leq G$, then $\Sigma_{|G|}(S) = H$, and so only elements from H can be represented as subsequence sums. Nonetheless, an old result of Olson [9], generalizing the case for cyclic groups of prime order completed by Mann [7], shows this to be the only restriction to extending the Erdős-Ginzburg-Ziv Theorem from sequences with sum 0 to those with arbitrary sum $g \in G$.

Theorem 1.2 [9] Let G be a finite abelian group and let S be a sequence of terms from G of length $|S| \ge 2|G| - 1$. Suppose, for every H < G and $\alpha \in G$, there are at least |G/H| - 1 terms of S lying outside the coset $\alpha + H$. Then $\Sigma_{|G|}(S) = G$.

¹ Email: diambri@hotmail.com

The bound 2|G|-1 was later improved to $|G| + \mathsf{D}(G) - 1$ by Gao [2], where $\mathsf{D}(G) \leq |G|$ is the Davenport constant, which is the minimal integer ℓ such that any sequence of terms from G with length ℓ must contain a nontrivial zero-sum subsequence. This was further improved to $|G| + \mathsf{d}^*(G)$ [5], where $\mathsf{d}^*(G) \leq \mathsf{D}(G) - 1$ is the basic lower bound for the Davenport constant: $\mathsf{d}^*(G) = \sum_{i=1}^{r} (m_i - 1)$. Neither of these bounds is tight in general, only being tight for a limited class of particular groups G.

We observe that the hypothesis that S have at least |G/H| - 1 terms lying outside any coset $\alpha + H$ reduces, in the case H is trivial, to the statement that the maximum multiplicity of S is at most $h(S) \leq |S| - |G| + 1$. By strengthening this hypothesis by one, so instead assuming $h(S) \leq |S| - |G|$, we are able to obtain optimal values for how long |S| must be to represent all elements of G.

Theorem 1.3 Let G be a finite abelian group, let $n \ge 1$, and let S be a sequence of terms from G with |S| = |G| + n and $h(S) \le |S| - |G|$. Suppose, for every H < G and $\alpha \in G$, there are at least |G/H| - 1 terms of S lying outside the coset $\alpha + H$. Then $\sum_{|G|}(S) = G$ whenever

- 1. $n \ge \exp(G)$, or
- 2. $n \ge \exp(G) 1$ and $G \cong H \oplus C_{\exp(G)}$ with |H| or $\exp(G)$ prime, or
- 3. $n \geq \frac{|G|}{p} 1$ and G is cyclic, where p is the smallest prime divisor of |G|, or
- 4. $n \ge 1$ and either $\exp(G) \le 3$, or |G| < 12, or $\exp(G) = 4$ with |G| = 16.

The Kemperman Structure Theorem characterizes all subsets $A, B \subseteq G$ satisfying |A + B| < |A| + |B| [6] [3] and has been extended to cover the case when $|A+B| \leq |A|+|B|$ [4]. It is one of the few results giving a precise inverse result for sumsets in an *arbitrary* abelian group. As a main step for proving Theorem 1.3, we provide a precise structural description of all finite subsets $A \subseteq G$ with $|nA| \leq (|A|+1)n-3$ when $n \geq 3$ (also when G is infinite), where

$$nA = \underbrace{A + \ldots + A}_{n}$$

denotes the n-fold iterated sumset.

For the descriptions below, we say X is *H*-periodic if H + X = X, where $H \leq G$. This means X is a union of *H*-cosets. A set X is aperiodic if it is not *H*-periodic for any nontrivial subgroup $H \leq G$. Equivalently, the stabilizer group

$$\mathsf{H}(X) = \{g \in G : g + X = X\} \le G$$

is trivial. We say that $X = X_1 \cup X_0$ is an *H*-coset decomposition if X_1 and X_0 are each subsets of distinct *H*-cosets. We say $X = X_0 \cup \ldots \cup X_r$ is an *H*-coset progression decomposition if each A_i is contained in an *H*-coset with the sequence of *H*-cosets A_0, A_1, \ldots, A_r forming an arithmetic progression modulo *H*. We say that $X = X_1 \cup X_0$ is an *H*-quasi-periodic decomposition if X_1 is *H*-periodic and X_0 is a non-empty subset of an *H*-coset.

In the case |A| = 3, there are numerous additional possibilities, with the structure given according to the following result.

Theorem 1.4 Let G be an abelian group, let $A \subseteq G$ be a subset with $\langle A-A \rangle = G$ and |A| = 3, and let $n \ge 3$ be an integer. Suppose

$$|nA| < \min\{|G|, (|A|+1)n - 3\} = \min\{|G|, 4n - 3\}.$$

Then nA is aperiodic and one of the following holds.

- (i) There is an arithmetic progression $P \subseteq G$ such that $A \subseteq P$ and $3 \leq |P| \leq 4$, in which case |nA| = 2n + 1, |nA| = 3n or |nA| = 3n - 1 = |G| - 1.
- (ii) There is an H-coset decomposition $A = A_1 \cup A_0$ with $\langle A_1 A_1 \rangle = H \leq G$ a subgroup such that $2 \leq |H| \leq 3$, in which case |nA| = 2n + 1, |nA| = 3nor |nA| = 3n - 1 = |G| - 1.
- (iii) There is an H-coset decomposition $A = A_1 \cup A_0$ with $\langle A_0 A_0 \rangle = H \leq G$ a subgroup such that either |H| = 4 and |nA| = 4n - 5 = |G| - 1, or else |H| = |G/H| = 5 and |nA| = 4n - 4 = |G| - 1 = 24.
- (iv) $G \cong C_2 \oplus C_{\exp(G)}$ with $4 | \exp(G)$ and there is an H-coset decomposition $A = \{x, z\} \cup \{y\}$ with $\langle x - z \rangle = H$ such that |G/H| = 2, 2(y + z) = 4xand |nA| = 4n - 5 = |G| - 1.
- (v) There is an arithmetic progression $P \subseteq G$ with $A \subseteq P$ such that either |P| = 5 and |nA| = 4n 5 = |G| 1 or |nA| = 4n 4 = |G| 1, or else |P| = 6, |G| = 21 and |nA| = 4n 4 = |G| 1 = 20.
- (vi) G is cyclic, $8 \nmid |G|$, |nA| = 4n 5 = |G| 1 and $A = \{0, 1, \frac{m}{2} 1\}$ up to affine transformation.

The general description is then the following.

Theorem 1.5 Let G be a nontrivial abelian group, let $A \subseteq G$ be a finite subset with $\langle A - A \rangle = G$, and let $n \geq 3$ be an integer. Suppose nA is aperiodic and

$$|nA| < (|A|+1)n - 3.$$

If |A| = 3, then A is given by one of the possibilities listed in Theorem 1.4. Otherwise, one of the following must hold.

- (i) There is an arithmetic progression $P \subseteq G$ such that $A \subseteq P$ and $|P| \leq |A|+1$, in which case |nA| = (|A|-1)n+1, |nA| = |A|n, |nA| = |A|n+1or |nA| = |A|n-1 = |G|-1.
- (ii) There exist subgroups $K_1, K_2, K \leq G$, with $K_1 \cong K_2 \cong \mathbb{Z}/2\mathbb{Z}$ and $K = K_1 \oplus K_2$, and K-coset progression decomposition $A = A_1 \cup \ldots \cup A_r$ such that A_1 is a K_1 -coset, A_r is a K_2 -coset, and all other A_i are K-cosets, in which case |nA| = |A|n or |nA| = |A|n 1 = |G| 1.
- (iii) There is an H-coset progression decomposition $A = A_0 \cup A_1 \cup \ldots \cup A_r$ with H < G a finite, nontrivial, proper subgroup, $r \ge 1$ and $\sum_{i=1}^r |A_i| = r|H| - \epsilon$ with $\epsilon \in \{0, 1\}$. Moreover, nA_0 is an aperiodic subset with $|nA_0| < \min\{|K|, (|A_0| + 1 - \epsilon)n - 3\}$ or $|A_0| = 1$, where $K = \langle A_0 - A_0 \rangle \le H$, and one of the following also holds.
 - (a) $nA = (nA \setminus nA_0) \cup nA_0$ is an *H*-quasi-periodic decomposition and $|nA| |A|n = |nA_0| |A_0|n + \epsilon n$.
 - (b) |H| = 2, $|A_0| = |A_r| = 1$ and $r \ge 2$, in which case |nA| = |A|n or |nA| = |A|n 1 = |G| 1.
 - (c) $|A_0| = 1$ and $|A_1| = |H| 1$, in which case |nA| = |A|n or |nA| = |A|n 1 = |G| 1.

While the above structural description is quite involved, it simplifies greatly by imposing some mild restrictions. For instance, when |A| > |G|/n, we obtain the following as a corollary.

Corollary 1.6 Let G be a finite abelian group, let $A \subseteq G$ be a nonempty subset with $\langle A - A \rangle = G$, let $n \ge 1$ be an integer, let K = H(nA) and suppose n|A| > |G|.

- 1. If $n \ge \exp(G)$, then nA = G.
- 2. If $n = \exp(G) 1$ and $nA \neq G$, then $\exp(G)$ is composite, $G = H_0 \oplus H_1 \oplus \ldots \oplus H_r$ with $K < H_0$ proper, $r \geq 1$ and $H_i = \langle x_i \rangle \cong C_{\exp(G)}$ for all $i \in [1, r]$ (thus G is non-cyclic),

$$z + A + K = \bigcup_{j=0}^{r} \left(K + \sum_{i=0}^{j-1} H_i + \sum_{i=j+1}^{r} x_i \right) \text{ for some } z \in G,$$

 $\begin{aligned} |A|n &\leq |G| - |H_0| + (\exp(G) - 1)|K| \leq \frac{p \exp(G)^r + \exp(G) - p - 1}{p \exp(G)^r} |G|, \text{ where } p \text{ is the smallest prime divisor of } \exp(H_0), \text{ and } |nA| = |G| - |H_0| + |K|. \end{aligned}$

References

- P. Erdős, A. Ginzburg, A. Ziv, Theorem in Additive Number Theory, Bull. Res. Council Israel 10F (1961), 41–43.
- [2] W. Gao, Addition theorems for finite abelian groups, J. Number Theory 53 (1995), no.2, 241-246.
- [3] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30, Springer (2013), Switzerland.
- [4] D. J. Grynkiewicz, A Step Beyond Kemperman's Structure Theorem, Mathematika 55 (2009), 67–114.
- [5] D. J. Grynkiewicz, E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, J. Théor. Nombres Bordeaux 21 (2009), no. 3, 559–587.
- [6] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63-88.
- [7] H. B. Mann, Two addition theorems, J. Combinatorial Theory 3 (1967), 233-235.
- [8] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer (1996), Harrisonburg, VA.
- [9] J. E. Olson, An addition theorem for finite abelian groups, J. Number Theory 9 (1977), no. 1, 63-70.