Iterated Sumsets and Olson's Generalization of the Erdős-Ginzburg-Ziv Theorem

David J. Grynkiewicz ${ }^{1}$
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, USA

Abstract

Let $G \cong \mathbb{Z} / m_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / m_{r} \mathbb{Z}$ be a finite abelian group with $m_{1}|\ldots| m_{r}=\exp (G)$. The Kemperman Structure Theorem characterizes all subsets $A, B \subseteq G$ satisfying $|A+B|<|A|+|B|$ and has been extended to cover the case when $|A+B| \leq|A|+|B|$. Utilizing these results, we provide a precise structural description of all finite subsets $A \subseteq G$ with $|n A| \leq(|A|+1) n-3$ when $n \geq 3$ (also when G is infinite), in which case many of the pathological possibilities from the case $n=2$ vanish, particularly for large $n \geq \exp (G)-1$. The structural description is combined with other arguments to generalize a subsequence sum result of Olson asserting that a sequence S of terms from G having length $|S| \geq 2|G|-1$ must either have every element of G representable as a sum of $|G|$-terms from S or else have all but $|G / H|-2$ of its terms lying in a common H-coset for some $H \leq G$. We show that the much weaker hypothesis $|S| \geq|G|+\exp (G)$ suffices to obtain a nearly identical conclusion, where for the case H is trivial we must allow all but $|G / H|-1$ terms of S to be from the same H-coset. The bound on $|S|$ is improved for several classes of groups G, yielding optimal lower bounds for $|S|$.

Keywords: zero-sum, sumset, subsequence sum, subsum, Partition Theorem, Kneser's Theorem, Kemperman Structure Theorem, n-fold sumset, iterated sumset, Olson, complete sequence, Erdős-Ginzburg-Ziv Theorem

1 Extended Abstract

Let $G \cong \mathbb{Z} / m_{1} \mathbb{Z} \times \ldots \times \mathbb{Z} / m_{r} \mathbb{Z}$ be a finite abelian group with $m_{1}|\ldots| m_{r}=$ $\exp (G)$. Given subsets $A, B \subseteq G$, we define their sumset

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

Let S be a sequence of terms from G, let $n \geq 0$ be an integer, and let $X \subseteq G$ be a subset. Then

- $|S|$ denotes the length of S,
- $\mathrm{h}(S)$ denotes the maximum multiplicity of a term in S, and
- $\Sigma_{n}(S)$ denotes all elements $g \in G$ which can be expressed as the sum of an n-term subsequence of S.
A classical result in Combinatorial Number Theory, helping spawn the study of zero-sum sequences, is the Erdős-Ginzburg-Ziv Theorem [1] [3] [8].

Theorem 1.1 (Erdős-Ginzburg-Ziv Theorem) Let G be a finite abelian group and let S be a sequence of terms from G of length $|S| \geq 2|G|-1$. Then $0 \in \Sigma_{|G|}(S)$.

When $G=\mathbb{Z} / n \mathbb{Z}$ is cyclic, a sequence consisting of entirely of 0 's and 1's has a $|G|$-term zero-sum if and only if there is a $|G|$-term subsequence which is monochromatic (consisting entirely of 0's or entirely of 1's). In this way, the Erdős-Ginzburg-Ziv Theorem can be viewed as an algebraic generalization of the Pigeonhole Principle. Naturally, a sequence S having only one distinct term can be arbitrarily long and yet $\Sigma_{|G|}(S)=\{0\}$, so it is not possible to replace 0 with an arbitrary group element $g \in G$. More generally, if all terms from S come from a coset $\alpha+H$ of a proper subgroup $H \leq G$, then $\Sigma_{|G|}(S)=H$, and so only elements from H can be represented as subsequence sums. Nonetheless, an old result of Olson [9], generalizing the case for cyclic groups of prime order completed by Mann [7], shows this to be the only restriction to extending the Erdős-Ginzburg-Ziv Theorem from sequences with sum 0 to those with arbitrary sum $g \in G$.

Theorem 1.2 [9] Let G be a finite abelian group and let S be a sequence of terms from G of length $|S| \geq 2|G|-1$. Suppose, for every $H<G$ and $\alpha \in G$, there are at least $|G / H|-1$ terms of S lying outside the coset $\alpha+H$. Then $\Sigma_{|G|}(S)=G$.

[^0]The bound $2|G|-1$ was later improved to $|G|+\mathrm{D}(G)-1$ by Gao [2], where $\mathrm{D}(G) \leq|G|$ is the Davenport constant, which is the minimal integer ℓ such that any sequence of terms from G with length ℓ must contain a nontrivial zero-sum subsequence. This was further improved to $|G|+\mathrm{d}^{*}(G)$ [5], where $\mathrm{d}^{*}(G) \leq$ $\mathrm{D}(G)-1$ is the basic lower bound for the Davenport constant: $\mathrm{d}^{*}(G)=$ $\sum_{i=1}^{r}\left(m_{i}-1\right)$. Neither of these bounds is tight in general, only being tight for a limited class of particular groups G.

We observe that the hypothesis that S have at least $|G / H|-1$ terms lying outside any coset $\alpha+H$ reduces, in the case H is trivial, to the statement that the maximum multiplicity of S is at most $\mathrm{h}(S) \leq|S|-|G|+1$. By strengthening this hypothesis by one, so instead assuming $\mathrm{h}(S) \leq|S|-|G|$, we are able to obtain optimal values for how long $|S|$ must be to represent all elements of G.

Theorem 1.3 Let G be a finite abelian group, let $n \geq 1$, and let S be a sequence of terms from G with $|S|=|G|+n$ and $\mathrm{h}(S) \leq|S|-|G|$. Suppose, for every $H<G$ and $\alpha \in G$, there are at least $|G / H|-1$ terms of S lying outside the coset $\alpha+H$. Then $\Sigma_{|G|}(S)=G$ whenever

1. $n \geq \exp (G)$, or
2. $n \geq \exp (G)-1$ and $G \cong H \oplus C_{\exp (G)}$ with $|H|$ or $\exp (G)$ prime, or
3. $n \geq \frac{|G|}{p}-1$ and G is cyclic, where p is the smallest prime divisor of $|G|$, or
4. $n \geq 1$ and either $\exp (G) \leq 3$, or $|G|<12$, or $\exp (G)=4$ with $|G|=16$.

The Kemperman Structure Theorem characterizes all subsets $A, B \subseteq G$ satisfying $|A+B|<|A|+|B|[6][3]$ and has been extended to cover the case when $|A+B| \leq|A|+|B|[4]$. It is one of the few results giving a precise inverse result for sumsets in an arbitrary abelian group. As a main step for proving Theorem 1.3, we provide a precise structural description of all finite subsets $A \subseteq G$ with $|n A| \leq(|A|+1) n-3$ when $n \geq 3$ (also when G is infinite), where

$$
n A=\underbrace{A+\ldots+A}_{n}
$$

denotes the n-fold iterated sumset.
For the descriptions below, we say X is H-periodic if $H+X=X$, where $H \leq G$. This means X is a union of H-cosets. A set X is aperiodic if it is not H-periodic for any nontrivial subgroup $H \leq G$. Equivalently, the stabilizer group

$$
\mathrm{H}(X)=\{g \in G: g+X=X\} \leq G
$$

is trivial. We say that $X=X_{1} \cup X_{0}$ is an H-coset decomposition if X_{1} and X_{0} are each subsets of distinct H-cosets. We say $X=X_{0} \cup \ldots \cup X_{r}$ is an H coset progression decomposition if each A_{i} is contained in an H-coset with the sequence of H-cosets $A_{0}, A_{1}, \ldots, A_{r}$ forming an arithmetic progression modulo H. We say that $X=X_{1} \cup X_{0}$ is an H-quasi-periodic decomposition if X_{1} is H-periodic and X_{0} is a non-empty subset of an H-coset.

In the case $|A|=3$, there are numerous additional possibilities, with the structure given according to the following result.
Theorem 1.4 Let G be an abelian group, let $A \subseteq G$ be a subset with $\langle A-A\rangle=$ G and $|A|=3$, and let $n \geq 3$ be an integer. Suppose

$$
|n A|<\min \{|G|,(|A|+1) n-3\}=\min \{|G|, 4 n-3\} .
$$

Then $n A$ is aperiodic and one of the following holds.
(i) There is an arithmetic progression $P \subseteq G$ such that $A \subseteq P$ and $3 \leq|P| \leq 4$, in which case $|n A|=2 n+1,|n A|=3 n$ or $|n A|=3 n-1=|G|-1$.
(ii) There is an H-coset decomposition $A=A_{1} \cup A_{0}$ with $\left\langle A_{1}-A_{1}\right\rangle=H \leq G$ a subgroup such that $2 \leq|H| \leq 3$, in which case $|n A|=2 n+1,|n A|=3 n$ or $|n A|=3 n-1=|G|-1$.
(iii) There is an H-coset decomposition $A=A_{1} \cup A_{0}$ with $\left\langle A_{0}-A_{0}\right\rangle=H \leq G$ a subgroup such that either $|H|=4$ and $|n A|=4 n-5=|G|-1$, or else $|H|=|G / H|=5$ and $|n A|=4 n-4=|G|-1=24$.
(iv) $G \cong C_{2} \oplus C_{\exp (G)}$ with $4 \mid \exp (G)$ and there is an H-coset decomposition $A=\{x, z\} \cup\{y\}$ with $\langle x-z\rangle=H$ such that $|G / H|=2, \quad 2(y+z)=4 x$ and $|n A|=4 n-5=|G|-1$.
(v) There is an arithmetic progression $P \subseteq G$ with $A \subseteq P$ such that either $|P|=5$ and $|n A|=4 n-5=|G|-1$ or $|n A|=4 n-4=|G|-1$, or else $|P|=6,|G|=21$ and $|n A|=4 n-4=|G|-1=20$.
(vi) G is cyclic, $8 \nmid|G|,|n A|=4 n-5=|G|-1$ and $A=\left\{0,1, \frac{m}{2}-1\right\}$ up to affine transformation.

The general description is then the following.
Theorem 1.5 Let G be a nontrivial abelian group, let $A \subseteq G$ be a finite subset with $\langle A-A\rangle=G$, and let $n \geq 3$ be an integer. Suppose $n A$ is aperiodic and

$$
|n A|<(|A|+1) n-3
$$

If $|A|=3$, then A is given by one of the possibilities listed in Theorem 1.4. Otherwise, one of the following must hold.
(i) There is an arithmetic progression $P \subseteq G$ such that $A \subseteq P$ and $|P| \leq$ $|A|+1$, in which case $|n A|=(|A|-1) n+1,|n A|=|A| n,|n A|=|A| n+1$ or $|n A|=|A| n-1=|G|-1$.
(ii) There exist subgroups $K_{1}, K_{2}, K \leq G$, with $K_{1} \cong K_{2} \cong \mathbb{Z} / 2 \mathbb{Z}$ and $K=$ $K_{1} \oplus K_{2}$, and K-coset progression decomposition $A=A_{1} \cup \ldots \cup A_{r}$ such that A_{1} is a K_{1}-coset, A_{r} is a K_{2}-coset, and all other A_{i} are K-cosets, in which case $|n A|=|A| n$ or $|n A|=|A| n-1=|G|-1$.
(iii) There is an H-coset progression decomposition $A=A_{0} \cup A_{1} \cup \ldots \cup A_{r}$ with $H<G$ a finite, nontrivial, proper subgroup, $r \geq 1$ and $\sum_{i=1}^{r}\left|A_{i}\right|=$ $r|H|-\epsilon$ with $\epsilon \in\{0,1\}$. Moreover, $n A_{0}$ is an aperiodic subset with $\left|n A_{0}\right|<$ $\min \left\{|K|,\left(\left|A_{0}\right|+1-\epsilon\right) n-3\right\}$ or $\left|A_{0}\right|=1$, where $K=\left\langle A_{0}-A_{0}\right\rangle \leq H$, and one of the following also holds.
(a) $n A=\left(n A \backslash n A_{0}\right) \cup n A_{0}$ is an H-quasi-periodic decomposition and $|n A|-$ $|A| n=\left|n A_{0}\right|-\left|A_{0}\right| n+\epsilon n$.
(b) $|H|=2,\left|A_{0}\right|=\left|A_{r}\right|=1$ and $r \geq 2$, in which case $|n A|=|A| n$ or $|n A|=|A| n-1=|G|-1$.
(c) $\left|A_{0}\right|=1$ and $\left|A_{1}\right|=|H|-1$, in which case $|n A|=|A| n$ or $|n A|=$ $|A| n-1=|G|-1$.

While the above structural description is quite involved, it simplifies greatly by imposing some mild restrictions. For instance, when $|A|>|G| / n$, we obtain the following as a corollary.

Corollary 1.6 Let G be a finite abelian group, let $A \subseteq G$ be a nonempty subset with $\langle A-A\rangle=G$, let $n \geq 1$ be an integer, let $K=\mathrm{H}(n A)$ and suppose $n|A|>|G|$.

1. If $n \geq \exp (G)$, then $n A=G$.
2. If $n=\exp (G)-1$ and $n A \neq G$, then $\exp (G)$ is composite, $G=H_{0} \oplus H_{1} \oplus$ $\ldots \oplus H_{r}$ with $K<H_{0}$ proper, $r \geq 1$ and $H_{i}=\left\langle x_{i}\right\rangle \cong C_{\exp (G)}$ for all $i \in[1, r]$ (thus G is non-cyclic),

$$
z+A+K=\bigcup_{j=0}^{r}\left(K+\sum_{i=0}^{j-1} H_{i}+\sum_{i=j+1}^{r} x_{i}\right) \quad \text { for some } z \in G,
$$

$|A| n \leq|G|-\left|H_{0}\right|+(\exp (G)-1)|K| \leq \frac{p \exp (G)^{r}+\exp (G)-p-1}{p \exp (G)^{r}}|G|$, where p is the smallest prime divisor of $\exp \left(H_{0}\right)$, and $|n A|=|G|-\left|H_{0}\right|+|K|$.

References

[1] P. Erdős, A. Ginzburg, A. Ziv, Theorem in Additive Number Theory, Bull. Res. Council Israel 10F (1961), 41-43.
[2] W. Gao, Addition theorems for finite abelian groups, J. Number Theory 53 (1995), no.2, 241-246.
[3] D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30, Springer (2013), Switzerland.
[4] D. J. Grynkiewicz, A Step Beyond Kemperman's Structure Theorem, Mathematika 55 (2009), 67-114.
[5] D. J. Grynkiewicz, E. Marchan and O. Ordaz, Representation of finite abelian group elements by subsequence sums, J. Théor. Nombres Bordeaux 21 (2009), no. 3, 559-587.
[6] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63-88.
[7] H. B. Mann, Two addition theorems, J. Combinatorial Theory 3 (1967), 233235.
[8] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer (1996), Harrisonburg, VA.
[9] J. E. Olson, An addition theorem for finite abelian groups, J. Number Theory 9 (1977), no. 1, 63-70.

[^0]: 1 Email: diambri@hotmail.com

