Graph Operations Preserving W_{2}-Property

Vadim E. Levit ${ }^{1}$
Department of Computer Science, Ariel University, Israel
Eugen Mandrescu ${ }^{2}$
Department of Computer Science, Holon Institute of Technology, Israel

Abstract

A graph is well-covered if all its maximal independent sets are of the same size (Plummer, 1970). A graph G belongs to class \mathbf{W}_{n} if every n pairwise disjoint independent sets in G are included in n pairwise disjoint maximum independent sets (Staples, 1975). Clearly, \mathbf{W}_{1} is the family of all well-covered graphs. Staples showed a number of ways to build graphs in \mathbf{W}_{n}, using graphs from \mathbf{W}_{n} or \mathbf{W}_{n+1}. In this paper, we construct some more infinite subfamilies of the class $\mathbf{W}_{\mathbf{2}}$ by means of corona, join, and rooted product of graphs.

Keywords: independent set, well-covered graph, class \mathbf{W}_{2}, shedding vertex, corona of graphs, graph join, rooted product of graphs.

1 Introduction

Throughout this paper, G is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V(G) \neq \emptyset$ and edge set $E(G)$.

[^0]The neighborhood $N(v)$ of $v \in V(G)$ is the set $\{w: w \in V(G)$ and $v w \in$ $E(G)\}$, while $N[v]=N(v) \cup\{v\}$. The neighborhood $N(A)$ of a set $A \subseteq V(G)$ is $\{v \in V(G): N(v) \cap A \neq \emptyset\}$, and $N[A]=N(A) \cup A$. We may also use $N_{G}(v), N_{G}[v], N_{G}(A)$ and $N_{G}[A]$, when referring to neighborhoods in a graph G. We let C_{n}, K_{n}, P_{n} denote respectively, the cycle on $n \geq 3$ vertices, the complete graph on $n \geq 1$ vertices, the path on $n \geq 1$ vertices.

A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent, and by $\operatorname{Ind}(G)$ we mean the family of all the independent sets of G. An independent set of maximum size is a maximum independent set of G, and $\alpha(G)=\max \{|S|: S \in \operatorname{Ind}(G)\}$. Let $\Omega(G)=\{S \in \operatorname{Ind}(G):|S|=\alpha(G)\}$.

A graph is well-covered if all its maximal independent sets are of the same cardinality [6]. A graph G belongs to the class $\mathbf{W}_{n}, n \geq 1$, if every n pairwise disjoint independent sets in G are included in n pairwise disjoint maximum independent sets [7]. Clearly, $\mathbf{W}_{1} \supseteq \mathbf{W}_{2} \supseteq \mathbf{W}_{3} \supseteq \cdots$, where \mathbf{W}_{1} is the family of all well-covered graphs.

Theorem 1.1 [3,4] Let G be a graph without isolated vertices. Then G is in the class \mathbf{W}_{2} if and only if for every non-maximum independent set A in G and $v \notin A$, there exists some $S \in \Omega(G)$ such that $A \subset S$ and $v \notin S$.

A vertex v is shedding $(v \in \operatorname{Shed}(G))$ if for every $S \in \operatorname{Ind}(G-N[v])$, there is some $u \in N(v)$ such that $S \cup\{u\} \in \operatorname{Ind}(G)$ [10]. Clearly, no isolated vertex may be a shedding vertex, and no $G \in \mathbf{W}_{2}$ may have isolated vertices.

Theorem $1.2[3,4]$ Let G be a well-covered graph without isolated vertices. Then G belongs to the class $\mathbf{W}_{\mathbf{2}}$ if and only if Shed $(G)=V(G)$.

Several ways to build graphs belonging to \mathbf{W}_{n} are presented in [5,7,8].
In this paper, we describe how to create some more infinite subfamilies of $\mathbf{W}_{\mathbf{2}}$, by means of corona, join, and rooted product.

2 Results

Let $\mathcal{H}=\left\{H_{v}: v \in V(G)\right\}$. The corona $G \circ \mathcal{H}$ is the disjoint union of G and $H_{v}, v \in V(G)$, with additional edges joining each vertex $v \in V(G)$ to all the vertices of H_{v}. If $H_{v}=H$ for every $v \in V(G)$, then we write $G \circ H$ [1].
Proposition 2.1 [9] The corona $G \circ \mathcal{H}$ of G and $\mathcal{H}=\left\{H_{v}: v \in V(G)\right\}$ is well-covered if and only if each $H_{v} \in \mathcal{H}$ is a complete graph.

For example, all the graphs in Figure 1 are of the form $G \circ \mathcal{H}$, but only G_{1} is not well-covered, while $G_{3} \in \mathbf{W}_{2}$.

Fig. 1. $G_{1}=P_{2} \circ\left\{K_{1}, 2 K_{1}\right\}, G_{2}=P_{2} \circ\left\{K_{1}, K_{2}\right\}, G_{3}=P_{2} \circ\left\{K_{2}, K_{3}\right\}$.
Proposition 2.2 Let $L=G \circ \mathcal{H}$, where $\mathcal{H}=\left\{H_{v}: v \in V(G)\right\}$ and G is an arbitrary graph. Then L belongs to \mathbf{W}_{2} if and only if each $H_{v} \in \mathcal{H}$ is a complete graph of order at least two, for every non-isolated vertex v, while for each isolated vertex u, its corresponding H_{u} may be any complete graph.

Proof. Suppose that $L \in \mathbf{W}_{2}$. Then L is well-covered, and therefore, each $H_{v} \in \mathcal{H}$ is a complete graph on at least one vertex, by Proposition 2.1. Let us assume that for some non-isolated vertex $a \in V(G)$ its corresponding graph $H_{a}=K_{1}=(\{b\}, \emptyset)$. Let $c \in N_{G}(a)$ and B be a non-maximum independent set in L containing c. Since $\alpha(L)=|V(G)|$, it follows that every maximum independent set S of L that includes B must contain the vertex b as well. In other words, L could not be in \mathbf{W}_{2}, according to Theorem 1.1. Therefore, each $H_{v} \in \mathcal{H}$ must be a complete graph on at least two vertices.

Conversely, if each $H_{v} \in \mathcal{H}$ is a complete graph on at least two vertices, then L is well-covered, by Proposition 2.1. Let A be a non-maximum independent set in L, and some vertex $b \notin A$. Since L is well-covered, there is some maximum independent set S_{1} in L such that $A \subset S_{1}$. If $b \in S_{1}$, let $a \in N_{L}(b)-V(G)$. Hence, $S_{2}=S_{1} \cup\{a\}-\{b\} \in \Omega(L)$ and $A \subset S_{2}$. In other words, there is a maximum independent set in L, namely $S \in\left\{S_{1}, S_{2}\right\}$, such that $A \subset S$ and $b \notin S$. Therefore, by Theorem 1.1, we get that $L \in \mathbf{W}_{2}$. If v is isolated in G, then even $H_{v}=K_{1}$ ensures $L \in \mathbf{W}_{2}$.
Corollary 2.3 If $E(G) \neq \emptyset$, then $G \circ K_{p} \in \mathbf{W}_{2}$ if and only if $p \geq 2$.
If $G_{1}, G_{2}, \ldots, G_{p}$ are pairwise vertex disjoint graphs, then their join is the graph $G=\sum_{1 \leq i \leq p} G_{i}$ with $V(G)=\bigcup_{1 \leq i \leq p} V\left(G_{i}\right)$ and $E(G)=\bigcup_{1 \leq i \leq p} E\left(G_{i}\right) \cup$ $\left\{x y: x \in V\left(G_{i}\right), y \in V\left(G_{j}\right), 1 \leq i<j \leq p\right\}$.
Proposition 2.4 [9] The graph $G_{1}+G_{2}+\cdots+G_{p}$ is well-covered if and only if each G_{k} is well-covered and $\alpha\left(G_{i}\right)=\alpha\left(G_{j}\right)$ for every $i, j \in\{1,2, \ldots, p\}$.
Lemma 2.5 Shed $\left(G_{1}+G_{2}\right)=\operatorname{Shed}\left(G_{1}\right) \cup \operatorname{Shed}\left(G_{2}\right)$.
Proposition 2.6 The graph $G=G_{1}+G_{2}+\cdots+G_{p}$ belongs to \mathbf{W}_{2} if and only if each $G_{k} \in \mathbf{W}_{2}$ and $\alpha\left(G_{i}\right)=\alpha\left(G_{j}\right)$ for every $i, j \in\{1,2, \ldots, p\}$.

Proof. Suppose that $G \in \mathbf{W}_{2}$. Let A be a non-maximum independent set in some G_{k} and $v \in V\left(G_{k}\right)-A$. By Theorem 1.1, there exists some $S \in \Omega(G)$
such that $A \subset S$ and $v \notin S$. Since each vertex of A is joined by an edge to every vertex of $G_{i}, i \neq k$, we get that $S \in \operatorname{Ind}\left(G_{k}\right)$. Since $S \in \Omega(G)$, we conclude that $S \in \Omega\left(G_{k}\right)$. Therefore, every G_{k} must be in W_{2}, in accordance with Theorem 1.1. By Proposition 2.4, we infer that, necessarily, each G_{k} must be well-covered, and $\alpha\left(G_{i}\right)=\alpha\left(G_{j}\right)$ for every $1 \leq i<j \leq p$.

Let us prove the converse. Since $\alpha\left(G_{i}\right)=\alpha\left(G_{j}\right)$ for every $i, j \in\{1,2, \ldots, p\}$, and each $G_{k}, 1 \leq k \leq p$, is well-covered, Proposition 2.4 implies that G is well-covered as well. According to Lemma 2.5 and Theorem 1.2 we obtain Shed $(G)=\bigcup_{1 \leq i \leq p}$ Shed $\left(G_{i}\right)=\bigcup_{1 \leq i \leq p} V\left(G_{i}\right)=V(G)$. In conclusion, Theorem 1.2 tells us that $G \in \mathbf{W}_{2}$, since G is well-covered and $\operatorname{Shed}(G)=V(G)$.
Corollary 2.7 [8] If $G_{1}, G_{2} \in \mathbf{W}_{2}$ and $\alpha\left(G_{1}\right)=\alpha\left(G_{2}\right)$, then $G_{1}+G_{2} \in \mathbf{W}_{2}$.
The rooted product of G and H on the vertex v is the graph obtained by identifying each vertex of G with the vertex v of a copy of H [2].
Lemma 2.8 Let G be a connected graph of order $n \geq 2$, H be a graph with $|V(H)| \geq 2$, and $v \in V(H)$. Then (i) if v is not in all maximum independent sets of H, then $\alpha(G(H ; v))=n \cdot \alpha(H)$; (ii) if v belongs to every maximum independent set of H, then $\alpha(G(H ; v))=n \cdot(\alpha(H)-1)+\alpha(G)$.
Proof. (i) Assume $A \in \Omega(H)$ with $v \notin A$, and $S \in \Omega(G(H ; v))$. First, $n \cdot \alpha(H)=n \cdot|A| \leq \alpha(G(H ; v))$, because the union of n times A is independent in $G(H ; v)$. Since S is of maximum size, it follows that, for every copy of H, $S \cap V(H)$ is non-empty and independent. Consequently, we obtain

$$
n \cdot \alpha(H) \leq \alpha(G(H ; v)) \leq n \cdot \max |S \cap V(H)| \leq n \cdot \alpha(H)
$$

(ii) Let $A \in \Omega(G(H ; v))$. Then $V(G) \cap A$ is independent in G and

$$
\begin{aligned}
|A| & =|V(G) \cap A| \cdot \alpha(H)+(n-|V(G) \cap A|) \cdot(\alpha(H)-1) \\
& =n \cdot(\alpha(H)-1)+|V(G) \cap A|
\end{aligned}
$$

On the other hand, one can enlarge a maximum independent set S of G to an independent set U in $G(H ; v)$, whose cardinality is

$$
\begin{aligned}
|U| & =|S| \cdot \alpha(H)+(n-|S|) \cdot(\alpha(H)-1) \\
& =n \cdot(\alpha(H)-1)+|S|=n \cdot(\alpha(H)-1)+\alpha(G) .
\end{aligned}
$$

Since $|V(G) \cap A| \leq \alpha(G)$, we get $\alpha(G(H ; v))=n \cdot(\alpha(H)-1)+\alpha(G)$. \square
By definition, if G is well-covered and $u v \in E(G)$, then u and v belong to different maximum independent sets. Therefore, only isolated vertices, if any,
are contained in all maximum independent sets of a well-covered graph. Thus Lemma 2.8(i) implies the following.

Corollary 2.9 If G is a connected graph of order $n \geq 2$, and $H \neq K_{1}$ is well-covered, then $\alpha(G(H ; v))=n \cdot \alpha(H)$.

The rooted product of two graphs from \mathbf{W}_{2} is not necessarily in \mathbf{W}_{2}.

Fig. 2. $G_{1}=K_{2}\left(C_{4} ; v\right)$ and $G_{2}=K_{2}\left(C_{5} ; v\right)$.
For instance, $K_{2}, C_{5} \in \mathbf{W}_{2}$, but there is no maximum independent set S in $K_{2}\left(C_{5} ; v\right)$ such that $\left\{a_{1}, a_{2}\right\} \subset S$ and $x \notin S$, and hence, by Theorem 1.1, the graph $K_{2}\left(C_{5} ; v\right)$ is not in \mathbf{W}_{2} (see Figure 2). However, $K_{2}\left(C_{5} ; v\right)$ is in \mathbf{W}_{1}, i.e., it is well-covered.

Theorem 2.10 (i) If $H \in \mathbf{W}_{2}$, then the graph $G(H ; v)$ belongs to \mathbf{W}_{1}.
(ii) If $H \in \mathbf{W}_{3}$, then the graph $G(H ; v)$ belongs to \mathbf{W}_{2}.

Proof. If H is a complete graph, then both (i) and (ii) are true, according to Propositions 2.1 and 2.2, respectively, because $G\left(K_{p} ; v\right)=G \circ K_{p}$. Assume that H is not complete, and let $V(G)=\left\{v_{i}: i=1,2, \ldots, n\right\}$. By Corollary 2.9, we have $\alpha(G(H ; v))=n \cdot \alpha(H)$.
(i) Let A be a non-maximum independent set in $G(H ; v)$. We have to show that A is included in some maximum independent set of $G(H ; v)$. Let $S=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$, where each S_{i} is defined as follows:

- S_{i} is a maximum independent set in the copy $H_{v_{i}}$ of H;
- $v_{i} \notin S_{i}$, whenever $A \cap V\left(H_{v_{i}}\right)=\emptyset$; such S_{i} exists, since H is well-covered;
- if $v_{i} \in A \cap V\left(H_{v_{i}}\right)$, then $A \cap V\left(H_{v_{i}}\right) \subseteq S_{i}$; such S_{i} exists, because H is well-covered;
- if $v_{i} \notin A \cap V\left(H_{v_{i}}\right) \neq \emptyset$, then $A \cap V\left(H_{v_{i}}\right) \subseteq S_{i}$ and $v_{i} \notin S_{i}$; in accordance with Theorem 1.1, such S_{i} exists, because H is in \mathbf{W}_{2}. Consequently, $S \in$ $\Omega(G(H ; v))$, since all S_{i} are independent and pairwise disjoint, each one of size $\alpha(H)$, and $A \subset S$. Therefore, $G(H ; v)$ is well-covered.
(ii) Let A be a non-maximum independent set in $G(H ; v)$ and $x \notin A$. We show that A is included in some maximum independent set of $G(H ; v)$ that does not contain the vertex x, and thus, by Theorem 1.1, we obtain that $G(H ; v) \in \mathbf{W}_{2}$. Let $S=S_{1} \cup S_{2} \cup \cdots \cup S_{n}$, where S_{i} is defined as follows:
- S_{i} is a maximum independent set in the copy $H_{v_{i}}$ of H;
- if $A \cap V\left(H_{v_{i}}\right)=\emptyset$ and $x \notin V\left(H_{v_{i}}\right)$, then $v_{i} \notin S_{i}$; such S_{i} exists, because H is well-covered;
- if $v_{i} \notin A \cap V\left(H_{v_{i}}\right) \neq \emptyset$ and $x \notin V\left(H_{v_{i}}\right)$, then $A \cap V\left(H_{v_{i}}\right) \subseteq S_{i}$ and $v_{i} \notin S_{i}$; such S_{i} exists, since H is in \mathbf{W}_{2};
- if $x=v_{i}$, then $A \cap V\left(H_{v_{i}}\right) \subseteq S_{i}$ and $v_{i} \notin S_{i}$; such S_{i} exists, because $H \in \mathbf{W}_{2}$;
- if $x \in V\left(H_{v_{i}}\right)-\left\{v_{i}\right\}$, then $A \cap V\left(H_{v_{i}}\right) \subseteq S_{i}$ and $x, v_{i} \notin S_{i} ; S_{i}$ exists, since $A \cap V\left(H_{v_{i}}\right),\{x\}$ and $\left\{v_{i}\right\}$ are independent and disjoint, and H belongs to \mathbf{W}_{3}. Consequently, $S \in \Omega(G(H ; v))$ (since all S_{i} are independent and pairwise disjoint, each one of size $\alpha(H)), x \notin S$ and $A \subset S$. Hence, $G(H ; v) \in \mathbf{W}_{2}$.

3 Conclusions

Lemma 2.5 claims that the function Shed preserves the join operation, i.e., Shed $\left(G_{1}+G_{2}\right)=\operatorname{Shed}\left(G_{1}\right) \cup \operatorname{Shed}\left(G_{2}\right)$. It motivates the following.
Problem 3.1 Describe graph operations that are preserved by Shed.
It seems promising to extend our findings in the framework of \mathbf{W}_{k} classes for $k \geq 3$. Taking into account Theorem 2.10, we propose the following.

Conjecture 3.2 If $H \in \mathbf{W}_{k}$, then the rooted product $G(H, v) \in \mathbf{W}_{k-1}$.

References

[1] Frucht, R., F. Harary, On the corona of two graphs, Aequat. Math. 4 (1970) 322-324.
[2] Godsil, C. D., B. D. McKay, A new graph product and its spectrum, Bull. Australas. Math. Soc. 18 (1978) 21-28.
[3] Levit, V. E., E. Mandrescu, \mathbf{W}_{2}-graphs and shedding vertices, Electron. Notes Discrete Math. 61 (2017) 797-803.
[4] Levit, V. E., E. Mandrescu, 1-well-covered graphs revisited, European J. Combin. (2018) (in press) available online at: https://doi.org/10.1016/j.ejc.2018.02.021.
[5] Pinter, M. R., \mathbf{W}_{2}-graphs and strongly well-covered graphs: two well-covered graph subclasses, Vanderbilt Univ. Dept. of Math. Ph.D. Thesis, 1991.
[6] Plummer, M. D., Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98.
[7] Staples, J. W., On some subclasses of well-covered graphs, Ph.D. Thesis, 1975, Vanderbilt University.
[8] Staples, J. W., On some subclasses of well-covered graphs, J. of Graph Theory 3 (1979) 197-204.
[9] Topp, J., L. Volkman, On the well-coveredness of products of graphs, Ars Combin. 33 (1992) 199-215.
[10] Woodroofe, R., Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc. 137 (2009) 3235-3246.

[^0]: ${ }^{1}$ Email: levitv@ariel.ac.il
 2 Email: eugen_m@hit.ac.il

