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Abstract

A graph is well-covered if all its maximal independent sets are of the same size
(Plummer, 1970). A graph G belongs to class Wn if every n pairwise disjoint
independent sets in G are included in n pairwise disjoint maximum independent
sets (Staples, 1975). Clearly, W1 is the family of all well-covered graphs. Staples
showed a number of ways to build graphs in Wn, using graphs from Wn or Wn+1.
In this paper, we construct some more infinite subfamilies of the class W2 by means
of corona, join, and rooted product of graphs.
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1 Introduction

Throughout this paper, G is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V (G) 6= ∅ and edge set E(G).
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The neighborhood N(v) of v ∈ V (G) is the set {w : w ∈ V (G) and vw ∈
E (G)}, while N [v] = N(v)∪{v}. The neighborhood N(A) of a set A ⊆ V (G)
is {v ∈ V (G) : N(v) ∩ A 6= ∅}, and N [A] = N(A) ∪ A. We may also use
NG(v), NG [v] , NG(A) and NG [A], when referring to neighborhoods in a graph
G. We let Cn, Kn, Pn denote respectively, the cycle on n ≥ 3 vertices, the
complete graph on n ≥ 1 vertices, the path on n ≥ 1 vertices.

A set S ⊆ V (G) is independent if no two vertices from S are adjacent,
and by Ind(G) we mean the family of all the independent sets of G. An
independent set of maximum size is a maximum independent set of G, and
α(G) = max{|S| : S ∈ Ind(G)}. Let Ω(G) = {S ∈ Ind(G) : |S| = α (G)}.

A graph is well-covered if all its maximal independent sets are of the same
cardinality [6]. A graph G belongs to the class Wn, n ≥ 1, if every n pairwise
disjoint independent sets in G are included in n pairwise disjoint maximum
independent sets [7]. Clearly, W1 ⊇W2 ⊇W3 ⊇ · · · , where W1 is the family
of all well-covered graphs.

Theorem 1.1 [3,4] Let G be a graph without isolated vertices. Then G is in
the class W2 if and only if for every non-maximum independent set A in G
and v /∈ A, there exists some S ∈ Ω(G) such that A ⊂ S and v /∈ S.

A vertex v is shedding (v ∈ Shed (G)) if for every S ∈ Ind(G − N [v]),
there is some u ∈ N (v) such that S ∪ {u} ∈ Ind(G) [10]. Clearly, no isolated
vertex may be a shedding vertex, and no G ∈W2 may have isolated vertices.

Theorem 1.2 [3,4] Let G be a well-covered graph without isolated vertices.
Then G belongs to the class W2 if and only if Shed (G) = V (G).

Several ways to build graphs belonging to Wn are presented in [5,7,8].

In this paper, we describe how to create some more infinite subfamilies of
W2, by means of corona, join, and rooted product.

2 Results

Let H = {Hv : v ∈ V (G)}. The corona G ◦ H is the disjoint union of G and
Hv, v ∈ V (G), with additional edges joining each vertex v ∈ V (G) to all the
vertices of Hv. If Hv = H for every v ∈ V (G), then we write G ◦H [1].

Proposition 2.1 [9] The corona G ◦ H of G and H = {Hv : v ∈ V (G)} is
well-covered if and only if each Hv ∈ H is a complete graph.

For example, all the graphs in Figure 1 are of the form G ◦H, but only G1

is not well-covered, while G3 ∈W2.
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Fig. 1. G1 = P2 ◦ {K1, 2K1}, G2 = P2 ◦ {K1,K2}, G3 = P2 ◦ {K2,K3}.

Proposition 2.2 Let L = G ◦ H, where H = {Hv : v ∈ V (G)} and G is
an arbitrary graph. Then L belongs to W2 if and only if each Hv ∈ H is a
complete graph of order at least two, for every non-isolated vertex v, while for
each isolated vertex u, its corresponding Hu may be any complete graph.

Proof. Suppose that L ∈ W2. Then L is well-covered, and therefore, each
Hv ∈ H is a complete graph on at least one vertex, by Proposition 2.1. Let us
assume that for some non-isolated vertex a ∈ V (G) its corresponding graph
Ha = K1 = ({b}, ∅). Let c ∈ NG(a) and B be a non-maximum independent
set in L containing c. Since α(L) = |V (G)|, it follows that every maximum
independent set S of L that includes B must contain the vertex b as well. In
other words, L could not be in W2, according to Theorem 1.1. Therefore,
each Hv ∈ H must be a complete graph on at least two vertices.

Conversely, if each Hv ∈ H is a complete graph on at least two vertices,
then L is well-covered, by Proposition 2.1. Let A be a non-maximum inde-
pendent set in L, and some vertex b /∈ A. Since L is well-covered, there is
some maximum independent set S1 in L such that A ⊂ S1. If b ∈ S1, let
a ∈ NL(b)− V (G). Hence, S2 = S1 ∪ {a} − {b} ∈ Ω(L) and A ⊂ S2. In other
words, there is a maximum independent set in L, namely S ∈ {S1, S2}, such
that A ⊂ S and b /∈ S. Therefore, by Theorem 1.1, we get that L ∈W2. If v
is isolated in G, then even Hv = K1 ensures L ∈W2. 2

Corollary 2.3 If E(G) 6= ∅, then G ◦Kp ∈W2 if and only if p ≥ 2.

If G1, G2, ..., Gp are pairwise vertex disjoint graphs, then their join is the
graph G =

∑
1≤i≤pGi with V (G) =

⋃
1≤i≤pV (Gi) and E(G) =

⋃
1≤i≤pE(Gi)∪

{xy : x ∈ V (Gi), y ∈ V (Gj), 1 ≤ i < j ≤ p}.

Proposition 2.4 [9] The graph G1 +G2 + · · ·+Gp is well-covered if and only
if each Gk is well-covered and α (Gi) = α (Gj) for every i, j ∈ {1, 2, ..., p}.

Lemma 2.5 Shed (G1 +G2) = Shed (G1) ∪ Shed (G2).

Proposition 2.6 The graph G = G1 + G2 + · · · + Gp belongs to W2 if and
only if each Gk ∈W2 and α (Gi) = α (Gj) for every i, j ∈ {1, 2, ..., p}.

Proof. Suppose that G ∈W2. Let A be a non-maximum independent set in
some Gk and v ∈ V (Gk) − A. By Theorem 1.1, there exists some S ∈ Ω(G)



such that A ⊂ S and v /∈ S. Since each vertex of A is joined by an edge
to every vertex of Gi, i 6= k, we get that S ∈ Ind(Gk). Since S ∈ Ω(G), we
conclude that S ∈ Ω(Gk). Therefore, every Gk must be in W2, in accordance
with Theorem 1.1. By Proposition 2.4, we infer that, necessarily, each Gk

must be well-covered, and α (Gi) = α (Gj) for every 1 ≤ i < j ≤ p.

Let us prove the converse. Since α (Gi) = α (Gj) for every i, j ∈ {1, 2, ..., p},
and each Gk, 1 ≤ k ≤ p, is well-covered, Proposition 2.4 implies that G is
well-covered as well. According to Lemma 2.5 and Theorem 1.2 we obtain
Shed (G) =

⋃
1≤i≤pShed (Gi) =

⋃
1≤i≤pV (Gi) = V (G) . In conclusion, Theo-

rem 1.2 tells us that G ∈W2, since G is well-covered and Shed (G) = V (G).2

Corollary 2.7 [8] If G1, G2 ∈W2 and α (G1) = α (G2), then G1 +G2 ∈W2.

The rooted product of G and H on the vertex v is the graph obtained by
identifying each vertex of G with the vertex v of a copy of H [2].

Lemma 2.8 Let G be a connected graph of order n ≥ 2, H be a graph with
|V (H)| ≥ 2, and v ∈ V (H). Then (i) if v is not in all maximum independent
sets of H, then α (G(H; v)) = n · α (H); (ii) if v belongs to every maximum
independent set of H, then α (G(H; v)) = n · (α (H)− 1) + α (G) .

Proof. (i) Assume A ∈ Ω(H) with v /∈ A, and S ∈ Ω(G(H; v)). First,
n·α (H) = n·|A| ≤ α (G(H; v)), because the union of n times A is independent
in G(H; v). Since S is of maximum size, it follows that, for every copy of H,
S ∩ V (H) is non-empty and independent. Consequently, we obtain

n · α (H) ≤ α (G(H; v)) ≤ n ·max |S ∩ V (H)| ≤ n · α (H) .

(ii) Let A ∈ Ω(G(H; v)). Then V (G) ∩ A is independent in G and

|A| = |V (G) ∩ A| · α (H) + (n− |V (G) ∩ A|) · (α (H)− 1)

= n · (α (H)− 1) + |V (G) ∩ A|

On the other hand, one can enlarge a maximum independent set S of G
to an independent set U in G(H; v), whose cardinality is

|U | = |S| · α (H) + (n− |S|) · (α (H)− 1)

= n · (α (H)− 1) + |S| = n · (α (H)− 1) + α (G) .

Since |V (G) ∩ A| ≤ α (G), we get α (G(H; v)) = n · (α (H)− 1) +α (G).2

By definition, if G is well-covered and uv ∈ E (G), then u and v belong to
different maximum independent sets. Therefore, only isolated vertices, if any,



are contained in all maximum independent sets of a well-covered graph. Thus
Lemma 2.8(i) implies the following.

Corollary 2.9 If G is a connected graph of order n ≥ 2, and H 6= K1 is
well-covered, then α (G(H; v)) = n · α (H).

The rooted product of two graphs from W2 is not necessarily in W2.
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Fig. 2. G1 = K2 (C4; v) and G2 = K2 (C5; v).

For instance, K2, C5 ∈ W2, but there is no maximum independent set S
in K2 (C5; v) such that {a1, a2} ⊂ S and x /∈ S, and hence, by Theorem 1.1,
the graph K2 (C5; v) is not in W2 (see Figure 2). However, K2 (C5; v) is in
W1, i.e., it is well-covered.

Theorem 2.10 (i) If H ∈W2, then the graph G(H; v) belongs to W1.

(ii) If H ∈W3, then the graph G(H; v) belongs to W2.

Proof. If H is a complete graph, then both (i) and (ii) are true, according
to Propositions 2.1 and 2.2, respectively, because G(Kp; v) = G ◦Kp. Assume
that H is not complete, and let V (G) = {vi : i = 1, 2, ..., n}. By Corollary
2.9, we have α (G(H; v)) = n · α (H).

(i) Let A be a non-maximum independent set in G(H; v). We have to
show that A is included in some maximum independent set of G(H; v). Let
S = S1 ∪ S2 ∪ · · · ∪ Sn, where each Si is defined as follows:

• Si is a maximum independent set in the copy Hvi of H;

• vi /∈ Si, whenever A∩V (Hvi) = ∅; such Si exists, since H is well-covered;

• if vi ∈ A ∩ V (Hvi), then A ∩ V (Hvi) ⊆ Si; such Si exists, because H is
well-covered;

• if vi /∈ A∩V (Hvi) 6= ∅, then A∩V (Hvi) ⊆ Si and vi /∈ Si; in accordance
with Theorem 1.1, such Si exists, because H is in W2. Consequently, S ∈
Ω(G(H; v)), since all Si are independent and pairwise disjoint, each one of size
α (H), and A ⊂ S. Therefore, G(H; v) is well-covered.

(ii) Let A be a non-maximum independent set in G(H; v) and x /∈ A.
We show that A is included in some maximum independent set of G(H; v)
that does not contain the vertex x, and thus, by Theorem 1.1, we obtain that
G(H; v) ∈W2. Let S = S1 ∪ S2 ∪ · · · ∪ Sn, where Si is defined as follows:

• Si is a maximum independent set in the copy Hvi of H;



• if A∩ V (Hvi) = ∅ and x /∈ V (Hvi), then vi /∈ Si; such Si exists, because
H is well-covered;

• if vi /∈ A ∩ V (Hvi) 6= ∅ and x /∈ V (Hvi), then A ∩ V (Hvi) ⊆ Si and
vi /∈ Si; such Si exists, since H is in W2;

• if x = vi, then A ∩ V (Hvi) ⊆ Si and vi /∈ Si; such Si exists, because
H ∈W2;

• if x ∈ V (Hvi) − {vi}, then A ∩ V (Hvi) ⊆ Si and x, vi /∈ Si; Si exists,
since A∩V (Hvi) , {x} and {vi} are independent and disjoint, and H belongs to
W3. Consequently, S ∈ Ω(G(H; v)) (since all Si are independent and pairwise
disjoint, each one of size α (H)), x /∈ S and A ⊂ S. Hence, G(H; v) ∈W2. 2

3 Conclusions

Lemma 2.5 claims that the function Shed preserves the join operation, i.e.,
Shed (G1 +G2) = Shed (G1) ∪ Shed (G2). It motivates the following.

Problem 3.1 Describe graph operations that are preserved by Shed.

It seems promising to extend our findings in the framework of Wk classes
for k ≥ 3. Taking into account Theorem 2.10, we propose the following.

Conjecture 3.2 If H ∈Wk, then the rooted product G(H, v) ∈Wk−1.
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