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Abstract

In this paper we describe the automorphism groups of graphs and edge-colored
graphs that are cyclic as permutation groups. In addition, we show that every such
group is the automorphism group of a complete graph whose edges are colored with
3 colors, and we characterize those groups that are automorphism groups of simple
graphs.
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The König’s problem asks: which abstract groups are isomorphic to the
automorphism groups of graphs. It has a simple and easy solution (due to
Frucht): every group is abstractly isomorphic to the automorphism group of
a suitable graph.

The concrete version of König’s problem asks: which permutation groups
are the automorphism groups of graphs. This version is very hard. So far it
has been solved only for some special classes of the permutation groups.
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The so called Graphical Regular Representation problem may be viewed
as the concrete König’s problem for regular permutation groups. The final
result by Godsil [4], obtained in 1979 on the basis of a number of earlier
results, provides a full characterization of regular permutation groups that
can be represented as the automorphism groups of graphs. In [2], L. Babai
has applied the result of Godsil to obtain a similar characterization in the case
of directed graphs.

In studying the concrete version of König’s problem it turns out that the
corresponding results for edge-colored graphs have usually simpler and more
natural formulation than their counterparts for simple graphs ([6,7]). This has
been noted already in H. Wielandt in [10], where the permutation groups that
are automorphism groups of colored graphs and digraphs were called 2∗-closed
and 2-closed, respectively. Our results strongly confirm this observation.

1 Introductory results

We study cyclic permutation groups, i.e. the groups generated by a single
permutation. In [8,9], S. P. Mohanty, M. R. Sridharan, and S. K. Shukla, have
considered cyclic permutation groups whose order is a prime or a power of a
prime. They gave some partial results. However, in many points the results
were wrong or had incorrect proofs. This special case was finally settled by
Grech [5], who proved the following.

Theorem 1.1 [5] Let A be a cyclic permutation group of order pn, for a prime
p > 2. Then:

• If A has only one nontrivial orbit, then A is not the automorphism group
of an edge-colored graph with any number of colors;

• If A has exactly two nontrivial orbits, and at least one of them has cardina-
lity p = 3 or p = 5, then A is the automorphism group of an edge-colored
graph with three colors;

• Otherwise, A is the automorphism group of a simple graph.

Theorem 1.2 [5] Let A be a cyclic permutation group of order 2n. Then:

(i) If A has exactly one orbit of cardinality greater than 2, then A is not the
automorphism group of an edge-colored graph with any number of colors;

(ii) If A has exactly two nontrivial orbits, one of cardinality 4, and the other
of cardinality at least 4, then A is the automorphism group of an edge-
colored graph with three colors;



(iii) Otherwise, A is the automorphism group of a simple graph.

As one can see, even in this particular case the problem is non-trivial. Our
aim is to extend this result to the cyclic permutation groups of arbitrary order.

2 Preliminaries

We assume that the reader has the basic knowledge in the areas of graphs and
permutation groups. Our terminology is standard and follows [1,11].

A k-colored graph (or more precisely k-edge-colored graph) is a pair G =
(V,E), where V is the set of vertices, and E is an edge-color function from the
set P2(V ) of two elements subsets of V into the set of colors {0, . . . , k−1}. In
other words, G is a complete simple graph with each edge colored by one of
k colors. For brevity we write E(v, w) for E({v, w}). If E(v, w) = i for some
v, w ∈ V and i ∈ {0, . . . , k − 1}, then we say that the vertices v and w are
i-neighbors. The i-degree of v is the number of i-neighbors of v. Note that
2-colored graphs can be considered as simple graphs.

An automorphism of a k-colored graph G is a permutation σ of the set V
preserving the edge function, that is, satisfying E(v, w) = E(σ(v), σ(w)), for
all v, w ∈ V . The group of automorphisms of G will be denoted by Aut(G),
and considered as a permutation group acting on the set of the vertices V . By
GR(k) we denote the class of automorphism groups of k-colored graphs. By
GR we denote the union of all classes GR(k) (which is the class of 2∗-closed
groups in terms of [10]). Then, GR(2) is the class of automorphism groups of
simple graphs.

Permutation groups are treated here up to permutation isomorphism. By
Cn we denote the regular action of the cyclic group Zn. By Dn we mean the
group of symmetries of the regular n-gon. It is clear that Cn is a subgroup of
Dn (of index two for n > 2). Every element of Dn \ Cn has order two and is
called a reflection.

The permutation groups considered here are generated by a single permu-
tation σ, which we write A = ⟨σ⟩. If γ1 . . . γn is a decomposition of σ into
disjoint cycles, then A has n orbits O1, . . . , On, and A restricted to the orbit
Oi is the cyclic permutation group.

Let A = (A, V ), B = (B,W ) be permutation groups acting on disjoint sets
V and W . We recall that the direct sum A⊕B of A and B is the permutation
group consisting of all pairs (σ, τ), σ ∈ A, τ ∈ B, acting on V ∪ B by the
formula (σ, τ)(x) = σ(x) for x ∈ V , and (σ, τ)(x) = τ(x) for x ∈ W .



3 Main result

Our first result characterizes generally the cyclic automorphism groups of edge-
colored graphs.

Theorem 3.1 Let A = ⟨σ⟩ be a permutation group generated by a permuta-
tion σ. Then, A belongs to GR if and only if for every orbit O of σ such that
|O| > 2, there exists another orbit O′ of A such that gcd(|O|, |O′|) > 2.

The proof of this theorem is by induction on the number of orbits of the
permutation group A. Here, to get a flavor of the proofs, we present the first
step of the induction.

Lemma 3.2 Let the permutation group A = ⟨σ⟩ as above has two orbits O1

and O2 such that gcd(|O1|, |O2|) > 2. Then, A ∈ GR.

Proof. Let gcd(|O1|, |O2|) = d > 2, and |O1| = n = dn′ and |O2| = m = dm′,
where n′ and m′ are coprime. We may assume O1 = {v0, . . . , vn−1}, O2 =
{w0, . . . , wm−1} and σ(vi) = vi+1, and σ(wi) = wi+1, where the indices are
taken modulo n and modulo m, respectively.

We will define a graph H = H(n,m) such that Aut(H) = A. For n = m,
this is done in [5, Lemma 3.3]. So, we may assume that n ̸= m. As the set of
vertices we take V = O1 ∪ O2. Then the edge-color function of H is defined
as follows.

E(e) =



1 if e = {vi, vi+1} for some i ∈ {0, . . . , n− 1},

1 if e = {wi, wi+1} for some i ∈ {0, . . . ,m− 1},

1 if e = {vi, wj} and i ≡ j (mod d),

2 if e = {vi, wj} and i ≡ j + 1 (mod d),

0 otherwise.

Thus, the graph H consists of two cycles of color 1 connected by some
edges of color 1 or 2 in such a way, that σ (and thus all permutations in A)
preserves the colors of the edges. Hence, A ⊆ Aut(H).

Observe that the 1-degree of each vertex in O1 is equal to m′ + 2, while
the 1-degree of each vertex in O2 is equal to n′ + 2. Since n′ ̸= m′, Aut(H)
preserves the sets O1 and O2. Consequently, since the automorphism group
of a simple cycle graph is a dihedral group, Aut(H) ⊆ Dn ⊕Dm.

We will show that no permutation (τ, δ), where τ or δ is a reflection,
preserves colors of H. It will follow that Aut(H) ⊆ Cn ⊕ Cm.



By N1(v), we denote the set of 1-neighbors of the vertex v in the set
O2, and by N2(v), the set of 2-neighbors of the vertex v in the set O2. We
show that permutations that acts as reflections on some of the sets O1 or
O2 are forbidden. We take (τ, δ) ∈ Aut(H)) that fixes v0. Observe that
N2(v0) = N1(v1). Moreover, since n′ > 2, N2(v0) ∩N1(vxy−1) = ∅. Therefore,
(τ, δ) fixes v1. Since a subgraph of H spanned on O1 is a |O1|-cycle, (τ, δ) acts
trivially on O1. Since A ⊆ H, no reflection on O1 is possible. Since the role
of O1 and O2 are symmetric, the same is true for O2.

To complete the proof, we have to show that if (τ, δ) ∈ H fixes v0, then
(τ, δ) acts as σn′l

2 on O2 for some l. We have N1(v0) = {wn′l; l ∈ {0, . . . , z−1}}.
Therefore, (τ, δ)(w0) = wn′l for some l. Since the subgraph of H spanned on
O2 is a |O2|-cycle, we have that (τ, δ) acts as σxl

2 on O2. Again the role of O1

and O2 are symmetric, therefore, the same is true for O1 (a permutation that
fixes w0 acts as σn′l

1 on O1 for some l. Thus, A = Aut(H). 2

In the full proof of Theorem 3.1, in every construction we use only three
colors, therefore we obtain also the following.

Theorem 3.3 Let A be a cyclic permutation group. Then, A ∈ GR(3) if and
only if A ∈ GR.

The two above theorems should be compared with the result for cyclic
automorphism groups of simple graphs.

Theorem 3.4 A ∈ GR(2) if and only if none of the following holds:

• There is an orbit O, with |O| > 2 such that gcd(|O|, |O′|) ≤ 2 for every
other orbit O′.

• There are two orbits O1, O2, with gcd(|O1|, |O2|) ∈ {3, 5} such that gcd(|O1|, |O|) ≤
2, gcd(|O2|, |O|) ≤ 2 for every other orbit O.

• There are two orbits O1, O2, with gcd(|O1|, |O2|) = 4 such that gcd(|O1|, |O|) =
1, gcd(|O2|, |O|) = 1 for every other orbit O.

• There are three orbits O1, O2, O3, with gcd(|O1|, |O2|) ∈ {3, 5}, gcd(|O3|, |O2|) ∈
{3, 5}, gcd(|O1|, |O3|) ≤ 2 such that gcd(|O1|, |O|) ≤ 2, gcd(|O2|, |O|) ≤
2, gcd(|O3|, |O|) ≤ 2 for every other orbit O.

• There are three orbits O1, O2, O3, with gcd(|O1|, |O2|) = 4, gcd(|O3|, |O2|) ∈
{3, 5}, gcd(|O1|, |O3) ∈ {1, 3, 5} such that gcd(|O1|, |O|) = 1, gcd(|O2|, |O|) =
1, gcd(|O3|, |O|) = 1 for every other orbit O.

• There are four orbits O1, O2, O3, O4, with gcd(|Oi|, |Oi+1) ∈ {3, 4, 5}, i ∈
{1, 2, 3} and gcd(|Oi|, |Oj|) = 1, otherwise, such that gcd(|Oi|, |O|) = 1 for
every other orbit O.



• There are four orbits O1, O2, O3, O4, with gcd(|O1|, |O2) = 3, gcd(|O1|, |O3) =
4, gcd(|O1|, |O4) = 5 and gcd(|Oi|, |Oj|) = 1, otherwise, such that gcd(|Oi|, |O|) =
1 for every other orbit O.

The proof requires several lemmas and will be presented in the full version
of the article.
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