Cyclic Automorphism Groups of Graphs and Edge-Colored Graphs *

Mariusz Grech ${ }^{1}$ and Andrzej Kisielewicz ${ }^{2}$
Institute of Mathematics
University of Wroctaw
Wroctaw, Poland

Abstract

In this paper we describe the automorphism groups of graphs and edge-colored graphs that are cyclic as permutation groups. In addition, we show that every such group is the automorphism group of a complete graph whose edges are colored with 3 colors, and we characterize those groups that are automorphism groups of simple graphs.

Keywords: graph, colored graph, automorphism group, cyclic group.

The König's problem asks: which abstract groups are isomorphic to the automorphism groups of graphs. It has a simple and easy solution (due to Frucht): every group is abstractly isomorphic to the automorphism group of a suitable graph.

The concrete version of König's problem asks: which permutation groups are the automorphism groups of graphs. This version is very hard. So far it has been solved only for some special classes of the permutation groups.

[^0]The so called Graphical Regular Representation problem may be viewed as the concrete König's problem for regular permutation groups. The final result by Godsil [4], obtained in 1979 on the basis of a number of earlier results, provides a full characterization of regular permutation groups that can be represented as the automorphism groups of graphs. In [2], L. Babai has applied the result of Godsil to obtain a similar characterization in the case of directed graphs.

In studying the concrete version of König's problem it turns out that the corresponding results for edge-colored graphs have usually simpler and more natural formulation than their counterparts for simple graphs ([6,7]). This has been noted already in H. Wielandt in [10], where the permutation groups that are automorphism groups of colored graphs and digraphs were called 2^{*}-closed and 2 -closed, respectively. Our results strongly confirm this observation.

1 Introductory results

We study cyclic permutation groups, i.e. the groups generated by a single permutation. In [8,9], S. P. Mohanty, M. R. Sridharan, and S. K. Shukla, have considered cyclic permutation groups whose order is a prime or a power of a prime. They gave some partial results. However, in many points the results were wrong or had incorrect proofs. This special case was finally settled by Grech [5], who proved the following.

Theorem 1.1 [5] Let A be a cyclic permutation group of order p^{n}, for a prime $p>2$. Then:

- If A has only one nontrivial orbit, then A is not the automorphism group of an edge-colored graph with any number of colors;
- If A has exactly two nontrivial orbits, and at least one of them has cardinality $p=3$ or $p=5$, then A is the automorphism group of an edge-colored graph with three colors;
- Otherwise, A is the automorphism group of a simple graph.

Theorem 1.2 [5] Let A be a cyclic permutation group of order 2^{n}. Then:
(i) If A has exactly one orbit of cardinality greater than 2, then A is not the automorphism group of an edge-colored graph with any number of colors;
(ii) If A has exactly two nontrivial orbits, one of cardinality 4, and the other of cardinality at least 4, then A is the automorphism group of an edgecolored graph with three colors;
(iii) Otherwise, A is the automorphism group of a simple graph.

As one can see, even in this particular case the problem is non-trivial. Our aim is to extend this result to the cyclic permutation groups of arbitrary order.

2 Preliminaries

We assume that the reader has the basic knowledge in the areas of graphs and permutation groups. Our terminology is standard and follows [1,11].

A k-colored graph (or more precisely k-edge-colored graph) is a pair $G=$ (V, E), where V is the set of vertices, and E is an edge-color function from the set $P_{2}(V)$ of two elements subsets of V into the set of colors $\{0, \ldots, k-1\}$. In other words, G is a complete simple graph with each edge colored by one of k colors. For brevity we write $E(v, w)$ for $E(\{v, w\})$. If $E(v, w)=i$ for some $v, w \in V$ and $i \in\{0, \ldots, k-1\}$, then we say that the vertices v and w are i-neighbors. The i-degree of v is the number of i-neighbors of v. Note that 2 -colored graphs can be considered as simple graphs.

An automorphism of a k-colored graph G is a permutation σ of the set V preserving the edge function, that is, satisfying $E(v, w)=E(\sigma(v), \sigma(w))$, for all $v, w \in V$. The group of automorphisms of G will be denoted by $\operatorname{Aut}(G)$, and considered as a permutation group acting on the set of the vertices V. By $G R(k)$ we denote the class of automorphism groups of k-colored graphs. By $G R$ we denote the union of all classes $G R(k)$ (which is the class of 2^{*}-closed groups in terms of [10]). Then, $G R(2)$ is the class of automorphism groups of simple graphs.

Permutation groups are treated here up to permutation isomorphism. By C_{n} we denote the regular action of the cyclic group Z_{n}. By D_{n} we mean the group of symmetries of the regular n-gon. It is clear that C_{n} is a subgroup of D_{n} (of index two for $n>2$). Every element of $D_{n} \backslash C_{n}$ has order two and is called a reflection.

The permutation groups considered here are generated by a single permutation σ, which we write $A=\langle\sigma\rangle$. If $\gamma_{1} \ldots \gamma_{n}$ is a decomposition of σ into disjoint cycles, then A has n orbits O_{1}, \ldots, O_{n}, and A restricted to the orbit O_{i} is the cyclic permutation group.

Let $A=(A, V), B=(B, W)$ be permutation groups acting on disjoint sets V and W. We recall that the direct sum $A \oplus B$ of A and B is the permutation group consisting of all pairs $(\sigma, \tau), \sigma \in A, \tau \in B$, acting on $V \cup B$ by the formula $(\sigma, \tau)(x)=\sigma(x)$ for $x \in V$, and $(\sigma, \tau)(x)=\tau(x)$ for $x \in W$.

3 Main result

Our first result characterizes generally the cyclic automorphism groups of edgecolored graphs.

Theorem 3.1 Let $A=\langle\sigma\rangle$ be a permutation group generated by a permutation σ. Then, A belongs to $G R$ if and only if for every orbit O of σ such that $|O|>2$, there exists another orbit O^{\prime} of A such that $\operatorname{gcd}\left(|O|,\left|O^{\prime}\right|\right)>2$.

The proof of this theorem is by induction on the number of orbits of the permutation group A. Here, to get a flavor of the proofs, we present the first step of the induction.

Lemma 3.2 Let the permutation group $A=\langle\sigma\rangle$ as above has two orbits O_{1} and O_{2} such that $\operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{2}\right|\right)>2$. Then, $A \in G R$.
Proof. Let $\operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{2}\right|\right)=d>2$, and $\left|O_{1}\right|=n=d n^{\prime}$ and $\left|O_{2}\right|=m=d m^{\prime}$, where n^{\prime} and m^{\prime} are coprime. We may assume $O_{1}=\left\{v_{0}, \ldots, v_{n-1}\right\}, O_{2}=$ $\left\{w_{0}, \ldots, w_{m-1}\right\}$ and $\sigma\left(v_{i}\right)=v_{i+1}$, and $\sigma\left(w_{i}\right)=w_{i+1}$, where the indices are taken modulo n and modulo m, respectively.

We will define a graph $H=H(n, m)$ such that $\operatorname{Aut}(H)=A$. For $n=m$, this is done in [5, Lemma 3.3]. So, we may assume that $n \neq m$. As the set of vertices we take $V=O_{1} \cup O_{2}$. Then the edge-color function of H is defined as follows.

$$
E(e)=\left\{\begin{array}{l}
1 \text { if } e=\left\{v_{i}, v_{i+1}\right\} \text { for some } i \in\{0, \ldots, n-1\}, \\
1 \text { if } e=\left\{w_{i}, w_{i+1}\right\} \text { for some } i \in\{0, \ldots, m-1\}, \\
1 \text { if } e=\left\{v_{i}, w_{j}\right\} \text { and } i \equiv j \quad(\bmod d) \\
2 \text { if } e=\left\{v_{i}, w_{j}\right\} \text { and } i \equiv j+1 \quad(\bmod d), \\
0 \text { otherwise. }
\end{array}\right.
$$

Thus, the graph H consists of two cycles of color 1 connected by some edges of color 1 or 2 in such a way, that σ (and thus all permutations in A) preserves the colors of the edges. Hence, $A \subseteq A u t(H)$.

Observe that the 1-degree of each vertex in O_{1} is equal to $m^{\prime}+2$, while the 1-degree of each vertex in O_{2} is equal to $n^{\prime}+2$. Since $n^{\prime} \neq m^{\prime}$, $\operatorname{Aut}(H)$ preserves the sets O_{1} and O_{2}. Consequently, since the automorphism group of a simple cycle graph is a dihedral group, $\operatorname{Aut}(H) \subseteq D_{n} \oplus D_{m}$.

We will show that no permutation (τ, δ), where τ or δ is a reflection, preserves colors of H. It will follow that $\operatorname{Aut}(H) \subseteq C_{n} \oplus C_{m}$.

By $N_{1}(v)$, we denote the set of 1-neighbors of the vertex v in the set O_{2}, and by $N_{2}(v)$, the set of 2-neighbors of the vertex v in the set O_{2}. We show that permutations that acts as reflections on some of the sets O_{1} or O_{2} are forbidden. We take $\left.(\tau, \delta) \in \operatorname{Aut}(H)\right)$ that fixes v_{0}. Observe that $N_{2}\left(v_{0}\right)=N_{1}\left(v_{1}\right)$. Moreover, since $n^{\prime}>2, N_{2}\left(v_{0}\right) \cap N_{1}\left(v_{x y-1}\right)=\emptyset$. Therefore, (τ, δ) fixes v_{1}. Since a subgraph of H spanned on O_{1} is a $\left|O_{1}\right|$-cycle, (τ, δ) acts trivially on O_{1}. Since $A \subseteq H$, no reflection on O_{1} is possible. Since the role of O_{1} and O_{2} are symmetric, the same is true for O_{2}.

To complete the proof, we have to show that if $(\tau, \delta) \in H$ fixes v_{0}, then (τ, δ) acts as $\sigma_{2}^{n^{\prime} l}$ on O_{2} for some l. We have $N_{1}\left(v_{0}\right)=\left\{w_{n^{\prime} l} ; l \in\{0, \ldots, z-1\}\right\}$. Therefore, $(\tau, \delta)\left(w_{0}\right)=w_{n^{\prime} l}$ for some l. Since the subgraph of H spanned on O_{2} is a $\left|O_{2}\right|$-cycle, we have that (τ, δ) acts as $\sigma_{2}^{x l}$ on O_{2}. Again the role of O_{1} and O_{2} are symmetric, therefore, the same is true for O_{1} (a permutation that fixes w_{0} acts as $\sigma_{1}^{n^{\prime} l}$ on O_{1} for some l. Thus, $A=\operatorname{Aut}(H)$.

In the full proof of Theorem 3.1, in every construction we use only three colors, therefore we obtain also the following.

Theorem 3.3 Let A be a cyclic permutation group. Then, $A \in G R(3)$ if and only if $A \in G R$.

The two above theorems should be compared with the result for cyclic automorphism groups of simple graphs.
Theorem 3.4 $A \in G R(2)$ if and only if none of the following holds:

- There is an orbit O, with $|O|>2$ such that $\operatorname{gcd}\left(|O|,\left|O^{\prime}\right|\right) \leq 2$ for every other orbit O^{\prime}.
- There are two orbits O_{1}, O_{2}, with $\operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{2}\right|\right) \in\{3,5\}$ such that $\operatorname{gcd}\left(\left|O_{1}\right|,|O|\right) \leq$ $2, \operatorname{gcd}\left(\left|O_{2}\right|,|O|\right) \leq 2$ for every other orbit O.
- There are two orbits O_{1}, O_{2}, with $\operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{2}\right|\right)=4$ such that $\operatorname{gcd}\left(\left|O_{1}\right|,|O|\right)=$ $1, \operatorname{gcd}\left(\left|O_{2}\right|,|O|\right)=1$ for every other orbit O.
- There are three orbits O_{1}, O_{2}, O_{3}, with $\operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{2}\right|\right) \in\{3,5\}, \operatorname{gcd}\left(\left|O_{3}\right|,\left|O_{2}\right|\right) \in$ $\{3,5\}, \operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{3}\right|\right) \leq 2$ such that $\operatorname{gcd}\left(\left|O_{1}\right|,|O|\right) \leq 2, \operatorname{gcd}\left(\left|O_{2}\right|,|O|\right) \leq$ $2, \operatorname{gcd}\left(\left|O_{3}\right|,|O|\right) \leq 2$ for every other orbit O.
- There are three orbits O_{1}, O_{2}, O_{3}, with $\operatorname{gcd}\left(\left|O_{1}\right|,\left|O_{2}\right|\right)=4, \operatorname{gcd}\left(\left|O_{3}\right|,\left|O_{2}\right|\right) \in$ $\{3,5\}, \operatorname{gcd}\left(\left|O_{1}\right|, \mid O_{3}\right) \in\{1,3,5\}$ such that $\operatorname{gcd}\left(\left|O_{1}\right|,|O|\right)=1, \operatorname{gcd}\left(\left|O_{2}\right|,|O|\right)=$ $1, \operatorname{gcd}\left(\left|O_{3}\right|,|O|\right)=1$ for every other orbit O.
- There are four orbits $O_{1}, O_{2}, O_{3}, O_{4}$, with $\operatorname{gcd}\left(\left|O_{i}\right|, \mid O_{i+1}\right) \in\{3,4,5\}, i \in$ $\{1,2,3\}$ and $\operatorname{gcd}\left(\left|O_{i}\right|,\left|O_{j}\right|\right)=1$, otherwise, such that $\operatorname{gcd}\left(\left|O_{i}\right|,|O|\right)=1$ for every other orbit O.
- There are four orbits $O_{1}, O_{2}, O_{3}, O_{4}$, with $\operatorname{gcd}\left(\left|O_{1}\right|, \mid O_{2}\right)=3, \operatorname{gcd}\left(\left|O_{1}\right|, \mid O_{3}\right)=$ $4, \operatorname{gcd}\left(\left|O_{1}\right|, \mid O_{4}\right)=5$ and $\operatorname{gcd}\left(\left|O_{i}\right|,\left|O_{j}\right|\right)=1$, otherwise, such that $\operatorname{gcd}\left(\left|O_{i}\right|,|O|\right)=$ 1 for every other orbit O.

The proof requires several lemmas and will be presented in the full version of the article.

References

[1] L. Babai, Automorphism groups, isomorphism, reconstruction, in Handbook of Combinatorics, Elsevier Science B. V. 1995, pp. 1447-1540.
[2] L. Babai, Finite digraphs with given regular automorphism groups, Period. Math. Hungar. 11 n. 4 (1980), 257-270.
[3] C. Y. Chao, On a theorem of Sabidussi, Proc. Amer. Math. Soc., 15 (1964), 291-292.
[4] C. D. Godsil, GRRs for non solvable groups. Algebraic methods in graph theory Colloquia Mathematica Societatis Janos Bolyai (1978) 221-239.
[5] M. Grech, Graphical cyclic permutation groups. Discrete Math. 337 (2014), 25-33
[6] M. Grech, A. Kisielewicz, Direct product of automorphism groups of colored graphs, Discrete Math. 283 (2004), 81-86.
[7] A. Kisielewicz, Supergraphs and graphical complexity of permutation groups, to appear in Arct. Combinatorica.
[8] S. P. Mohanty, M. R. Sridharan, S. K. Shukla, On cyclic permutation groups and graphs, J. Math. Phys. Sci. 12 (1978), no. 5, 409-416,
[9] S. P. Mohanty, M. R. Sridharan, S. K. Shukla, Graphical cyclic permutation groups, Combinatorics and graph theory (Calcutta, 1980), 339 - 346, Lecture Notes in Math., 885, Springer, , Berlin - New York, 1981,
[10] H. Wielandt, Permutation groups through invariant relation and invariant functions, in "Mathematische Werke/Mathematical works, vol. 1, Group theory", Bertram Huppert and Hans Schneider (Eds.), Walter de Gruyter Co., Berlin, 1994, pp. 237-266.
[11] H. P. Yap, Some topics in graph theory, Cambridge Univ. Press 1986.

[^0]: $\bar{\star}$ Supported in part by Polish NCN grant No 2016/21/B/ST1/03079
 ${ }^{1}$ Email: mariusz.grech@math.uni.wroc.pl
 2 Email: andrzej.kisielewicz@math.uni.wroc.pl

