
Finding multiplies solutions for non-linear
integer programming

José Manuel Jiménez Cobano 2

Instituto de Matemática
Universidad de Sevilla

José Maŕıa Ucha Enŕıquez 1,3

Departamento de Matemática Aplicada I
Universidad de Sevilla

Abstract

We explain how to compute all the solutions of a nonlinear integer problem using
the algebraic test-sets associated to some linear subproblem. These test-sets are
obtained using Gröbner bases. We compare our method with previous approaches .

Keywords: Integer non-lineal optimization, multiplies solutions, test-sets,
Groebner basis

1 Second author is partially funded by MTM2016-75024-P, P12-FQM-2696, MTM2016-
74983-C2-1-R and FQM-333.
2 Email: josjimcob@alum.us.es
3 Email: ucha@us.es



1 Introduction

In many real-life combinatorial optimization problems is of great interest for
the decision-maker to have not only one solution, but the set of all optimal
solutions (see [10] or [7], for example). The information provided by this set
can give some additional information about the solutions, and sometimes is
a first step for multi-objective optimization. On the other hand, sometimes
these problems requires non-linear constraints to be modeled properly.

A method for problems of the form

min cxt

s.t. Axt ≤ bt

x ∈ Ω

x ∈ Nn

(P )

where A ∈ Zm×n, c ∈ Zn, b ∈ Zm and the region Ω is defined by linear and
nonlinear constraints was proposed in [9]. This method makes use of the
test-sets associated to the linear subproblem

min cxt

s.t. Axt ≤ bt

x ∈ Nn

(PL)

A set T ⊂ Zn is a test-set associated to (PL) if T ⊂ ker(A), and for any
non optimal x feasible for PL there exists a t ∈ T such that x − t is feasible
and c(x−t) < c(x). As a consequence, starting from a optimal point x̂ of (PL)
you can recover the set of all the feasible points, adding elements of the test-
set until you eventually complete all the feasible region. In this way you can
obtain the optimal points of (P ) walking back from the linear optimal point
until you reach the region Ω. Technical details can be found in [9]. There
are several ways of computing test-sets, and one of the most efficient is using
Gröbner bases (see for example [3]) with the software 4ti2 (see [5]).

In [1] and [6] the method of [9] is applied to real-life size problems with very
competitive results. In this work: 1) we explain how to modify the walk-back
method to obtain all the optimal points and 2) we compare its performance
with the natural generalization of the algorithm presented in [10] using the
computational system COUENNE (see [2]).



2 An algebraic algorithm to find all optimal points.

The main idea of our method is quite simple: starting from optimal point of
the linear problem (PL), we add test-set vectors until we find the points inside
the non-linear region Ω. We save all points that has the best cost into Ω. The
pseudocode is the following one:

INPUT: c, A, b; Ω; optimal point β of PL; T associated test-set of PL.

Opt := ∅;
Leaves := {β + t|∀t ∈ T} ∩ Nn

costOpt = ∞

IF β ∈ Ω
THEN Opt := {β};

costOpt := cβt

WHILE (Leaves ̸= ∅) DO
FOR h ∈ Leaves DO

IF c(h) < costOpt
Leaves = (Leaves \ {h}) ∪ ({h+ t|∀t ∈ T} ∩ Nn)
IF h ∈ Ω
THEN Opt = {h};

costOpt = cht;
Leaves = (Leaves \ {h}) ∪ ({h+ t|∀t ∈ T} ∩ Nn)

♯ the list of old candidates is deleted
♯ and updated with a new candidate

ELSE IF c(h) > costOpt
THEN Leaves = Leaves \ {h}
♯ these branches are discarded

ELSE IF c(h) = costOpt
THEN Leaves = (Leave \ {h}) ∪ ({h+ t|∀t ∈ T} ∩ Nn)

IF h ∈ Ω
THEN Opt = Opt ∪ {h};
♯ a new candidate to be an optimal point has been obtained

END WHILE

OUTPUT: Opt the set of all optimal points with cost costeOpt



3 Computational experiments: reliability of series-parallel
systems

Reliability problems are considered an important measure in the design of
engineering processes, in which a series of systems is similar to a chain in which
all the components must operate, since the failure of one of these components
will suppose the failure of the complete system.

A mathematical model to minimize the cost of the system is

min
n∑

i=0

k∑
j=1

cijxij

s.t. R(x) ≥ R0

k∑
j=1

xij ≥ 1, ∀i = 1, . . . , n

0 ≤ xij ≤ uij, ∀i = 1, . . . , n, j = 1, . . . , k

xij ∈ Z+

(1)

with R(x) =
n∏

i=1

(
1−

k∏
j=1

(1− rij)
xij

)
. Where:

• n: number of subsystems

• ki: number of different kinds of components in subsystem i.

• rij: reliability of component j in the subsystem i.

• cij: cost of component j in the subsystem i.

• lij, uij: upper and lower dimensions of the numbers of components j in the
subsystem i. We can suppose that lij = 0.

• R0: Minimum reliability required return for the whole system.

• xij: numbers of components j in the subsystem i.

In our experiments, we have considered that all subsystem have equal
numbers of components, that is, ki = k, ∀i.
• rij ∈ (0.9, 0.99),∀i = 1, . . . , n, j = 1, . . . , k

• cij ∈ {1, 2, . . . , 10}, ∀i = 1, . . . , n, j = 1, . . . , k

• R0 = 0.9

• uij = 4, ∀i = 1, . . . , n, j = 1, . . . , k

• n ∈ {3, 4}



• k ∈ {2, 3}
We have run about 120 examples to test our algorithm coded in Python in

a computer with an Intel Core i5, 3.5 Ghz, 8 Gb of RAM, under Ubuntu. The
General Cut row stands for the natural generalization of the method proposed
in [10], we have been used COUENNE ([2]) for the example which have been
sent to neos-server.org.

Number of examples % examples

Test-set 84 70 %

General cut 36 30 %

Table 1
Reliability examples n = 3, 4, k = 2, 3 with all solutions.

We can observe that:

Number of examples % examples

Test-set 42 97,67 %

General cut 1 2,33 %

Table 2
Reliability examples n = 3, 4, k = 2, 3 with multiplies solutions.

Number of examples % examples

Test-set 42 54,55 %

General cut 35 45,45 %

Table 3
Reliability examples n = 3, 4, k = 2, 3 an unique solution.

3 Systems 4 Systems

2 components 3 components 2 components 3 components

Test-set 0,07 0,19 0,37 0,51

General cut 0,43 1,23 0,84 1,50

Table 4
Average CPU times Reliability examples n = 3, 4, k = 2, 3.



• The Test-Set method and the General Cut are both exact

• The General Cut is worse in CPU time than the test-set method.

References

[1] Castro, F. J.; Gago, J.; Hartillo, I.; Puerto, J.; Ucha, J. M. An algebraic
approach to integer portfolio problems. European J. Oper. Res. 210 (2011),
no. 3, 647–659.

[2] Belotti, Pietro. COUENNE: a user’s manual. Document available at
https://www.coin-or.org/Couenne/. https://www.coin-or.org/Couenne/

[3] Cox, David A.; Little, John; O’Shea, Donal. Using algebraic geometry. Second
edition. Graduate Texts in Mathematics, 185. Springer, New York, 2005.

[4] Djerdjour M, Rekab K. A branch and bound algorithm for designing reliable
systems at a minimum cost. Appl. Math. and Computation 118 (2001), 247–59.

[5] 4ti2 team. 4ti2 – A software package for algebraic, geometric and combinatorial
problems on linear spaces. Available at www.4ti2.de, 2013.

[6] Gago, J.; Hartillo, I.; Puerto, J.; Ucha, J. M. Exact cost minimization of a series-
parallel reliable system with multiple component choices using an algebraic
method. Comput. Oper. Res. 40 (2013), no. 11, 2752–2759.

[7] Leão, Aline A. S.; Cherri, Luiz H.; Arenales, Marcos N. Determining the K-best
solutions of knapsack problems. Comput. Oper. Res. 49 (2014), 71–82.

[8] Ruan N, Sun XL. An exact algorithm for cost minimization in series reliability
systems with multiple component choices. Appl. Math. and Computation 181
(2006), 732–41.

[9] Tayur, Sridhar R.; Thomas, Rekha R.; Natraj, N. R. An algebraic geometry
algorithm for scheduling in presence of setups and correlated demands. Math.
Programming 69 (1995), no. 3, Ser. A, 369–401.

[10] Tsai, Jung-Fa; Lin, Ming-Hua; Hu, Yi-Chung Finding multiple solutions to
general integer linear programs. European J. Oper. Res. 184 (2008), no. 2, 802–
809.

[11] Han-Lin Li, Tsai, Jung-Fa. A distributed computation algorithm for solving
portfolio problems with integer variables. European J. Oper. Res. 186 (2008),
no. 2, 882–891.


