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Facultad de Ciencias Sociales, Universidad de Castilla-La Mancha
Avda. Real Fbrica de Seda, s/n. 45600 Talavera de la Reina, Toledo, Spain

e-mail: alvaro.martinezperez@uclm.es

Let G be a graph with the usual shortest-path metric. A graph is δ-hyperbolic if
for every geodesic triangle T , any side of T is contained in a δ-neighborhood of the
union of the other two sides. A graph is chordal if every induced cycle has at most
three edges. A vertex separator set in a graph is a set of vertices that disconnects
two vertices.

Being hyperbolic is an important property in metric spaces and being chordal
is also a deeply studied property on graphs. In [3], the authors prove that chordal
graphs are hyperbolic giving an upper bound for the hyperbolicity constant. In [8],
Wu and Zhang extend this result for a generalized version of chordality. They prove
that k-chordal graphs are hyperbolic where a graph is k-chordal if every induced
cycle has at most k edges. In [1], the authors define the more general properties of
being (k,m)-edge-chordal and (k, k2 )-path-chordal and prove that every (k,m)-edge-

chordal graph is hyperbolic and that every hyperbolic graph is (k, k2 )-path-chordal.
In [6], we continue this work and define being ε-densely (k,m)-path-chordal and
ε-densely k-path-chordal relating these properties with hyperbolicity and giving a
characterization of being hyperbolic in terms of chordality.

G. A. Dirac proved in [4] that a graph is chordal if and only every minimal vertex
separator is complete. See also [5, 7] and [2] and the references therein.

In this work we study the relation between vertex separator sets, the generalized
chordality properties mentioned above and the hyperbolicity of the graph. We also
give a characterization of being quasi-isometric to a tree in terms of chordality and
prove that this condition also characterizes being hyperbolic, when restricted to
triangles, and having stable geodesics, when restricted to bigons.
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