The exact value of 3-color off-diagonal generalized Schur numbers S(2, 2, k)

L. Boza, M. P. Revuelta, M. I. Sanz Departamento de Matemática Aplicada I Universidad de Sevilla

Abstract

For integers $a \leq b$, we shall denote [a, b] the integer interval consisting of all $t \in \mathbb{N}_+ = \{1, 2, \dots\}$ such that $a \leq t \leq b$. A function

$$\Delta: [1, N] \longrightarrow \{d_1, \dots, d_r\},\$$

where $d_1, \ldots, d_r \in \mathbb{N}_+$ represent different colors, is a r-coloring of the

Given a r-coloring Δ and the equation $E_k: x_1 + \cdots + x_k = x_{k+1}$ in k+1 variables, then we say that a solution $x_1, \ldots, x_k, x_{k+1}$ to the equation E_k is monochromatic if and only if $\Delta(x_1) = \Delta(x_2) = \cdots =$ $\Delta(x_{k+1}).$

For integers r and k_i , with $r \geq 2$ and $k_i \geq 2$ for $i = 1, \ldots, r$, the rcolor off-diagonal generalized Schur number denoted by $S(k_1, k_2, \ldots, k_r)$ is defined as the least integer M such that any r-coloring of the integer interval [1, M] must admit a j-colored solution to equation $E_{k_j}: x_1+x_2+\ldots+x_{k_j}=x_{k_{j+1}}$ for some j with $1\leq j\leq r$. In this work, we determine the exact value of S(2,2,k) with $k\geq 2$.

Keywords: Schur numbers; sum-free sets; off-diagonal Schur numbers.

MSC 2010: 05C55; 05D10; 05-04; 05A17.