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Abstract. A new picture of Quantum Mechanics based on the theory of groupoids
is presented. This picture provides the mathematical background for Schwinger’s
algebra of selective measurements and helps to understand its scope and even-
tual applications. Category theory, in particular the notion of 2-groupoids as
well as their representations, is used in the description of the new picture. Some
basic results are presented and the relation with the standard Dirac-Schrödinger
and Born-Jordan-Heisenberg pictures are succinctly discussed.
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1. Introduction

1.1. Schwinger’s algebraic formulation of Quantum Mechanics. In an at-
tempt to establish a “mathematical language that constitutes a symbolic expression
of the properties of microscopic measurements” J. Schwinger proposed a family of
algebraic relations between a set of symbols representing fundamental measure-
ment processes [1, Chap. 1]. Such symbols can’t consist of the classical represen-
tation of physical quantities by numbers and they should be represented instead
in terms of abstract symbols whose composition properties are postulated on the
ground of physical experiences. A similar approach was always present in Dirac’s
thinking on Quantum Mechanics as it was specifically stated in his lectures at
Yeshiva when he dealt with q-numbers [2]. One of the main observations of this
paper is the realisation that Schwinger algebra of symbolic measurements can be
thought of as the algebra of a certain groupoid associated with the system.

In Schwinger’s algebraic depiction of a quantum mechanical system (see [1,
Chap. 1]1), the state of a quantum system is established by performing on it
a complete selective measurement. A general class of symbols is introduced af-
terwards, those denoting compound selective measurements that change a given
state in another one. Finally a transformation law among generalised selective
measurements was postulated in order to introduce a notion of covariance in the
theory.

In this paper the kinematical background for Schwinger’s picture of Quantum
Mechanics will be established using abstract categorical notions, leaving the dis-
cussion of dynamics to be discussed in a forthcoming work [3]. We will depart from
an abstract setting where the primary notions will be ‘events’, outcomes of mea-
surements (or more generally, experiments); ‘transitions’, that will mean physically
allowed changes in the outcomes of measurements; and ‘transformations’, relations
among transitions as described from different experimental settings or transforma-
tions of transitions from a dynamical viewpoint. These notions are respectively
the abstractions corresponding to Schwinger’s selective measurements, compound
measurements and transformation functions.

We will argue that the mathematical structure behind Schwinger’s algebraic
relations encompassed by the notions listed before: events, transitions and trans-
formations, is that of a 2-groupoid, where events are its 0-cells, transitions con-
stitute the 1-cells of the 2-groupoid (and define a groupoid structure themselves)
and transformations provide the 2-cells of the structure. It will be shown that
such abstract notion can be used to offer an alternative picture for the description
of quantum systems that, under some conditions, is equivalent to the standard
pictures of Quantum Mechanics.

1Throughout this paper we will be referring to the original edition of Schwinger’s book whose
notation we keep using as it is closer to the spirit of this work.



GROUPOIDS AND QUANTUM MECHANICS 3

1.2. On the many pictures of Quantum Mechanics. As it is well known,
modern quantum mechanics was first formulated by Heisenberg as matrix me-
chanics immediately after Schrödinger formulated his wave mechanics. Both pic-
tures got a better mathematical description by Dirac [4] and Jordan [5], [6] with
the introduction of the theory of Hilbert spaces and the corresponding theory
of transformations, a sound mathematical formulation that was provided by von
Neumann [7].

In all of these pictures the principle of analogy with classical mechanics, as
formulated by Dirac, played a fundamental role. The canonical commutation re-
lations (CCR) were thought of to correspond or to be analogous to the Poisson
Brackets on phase space. Very soon, within the rigorous formulation of von Neu-
mann, domain problems were identified showing that at least one of position and
momentum observables should be represented by an unbounded operator [8]. Weyl
introduced an “exponentiated form” of the commutation relations in terms of uni-
tary operators, i.e., a projective unitary representation of a symplectic Abelian
vector group, interpreted also as a phase-space with a Poisson Bracket [9]. A
C∗-algebra, a generalization of the algebraic structure emerging from Heisenberg
picture, would be obtained as the group-algebra of the Weyl operators, opening
the road to the highly algebraic C∗ description of quantum systems.

Thinking of relativistic quantum mechanics, Dirac proposed the introduction of
a Lagrangian formulation for quantum dynamics. In his own words: “...the La-
grangian method can easily be expressed relativistically on the account of the action
function being a relativistic invariant; while the Hamiltonian method is essentially
non-relativistic in form, since it marks out a particular time variable as the canon-
ical conjugate of the Hamiltonian function.” This suggestion was taken up by both
Feynman and Schwinger, however developing it in different directions. Feynman’s
approach culminated into the path-integral formalism, where the principle of anal-
ogy is still present. Schwinger however took a different road by introducing the
measurement-algebra approach. Here the analogy with classical kinematics is much
less evident, indeed it was written for quantum systems with a finite number of
states. In any case, for both approaches, the seed may be found in Dirac’s paper
The Lagrangian in Quantum Mechanics [10].

While for the various pictures associated with the names of Heisenberg, Dirac,
Jordan, Weyl the intervening algebraic mathematical structures are clearly iden-
tified, it is not the case for the mathematical structure underlying Schwinger’s
approach. In this paper we would like to unveil and identify this structure while
postponing a thorough analysis of its implications, most notably for field theories,
to a forthcoming paper.

1.3. Groupoids in Physics. Groupoids are playing a more relevant role in the
description of the structure of physical theories. For instance the use of groupoids
is very convenient to describe systems with internal and external structures (see
for instance [11] and references therein). It should be remarked that a groupoid
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structure can be identified also in the considerations made by Dirac in the pre-
viously quoted paper. Indeed, the composition law of the generating functions
representing transformations allows to define a groupoid structure for the latter.
Another instance of groupoid is provided by Ritz-Rydberg combination principle of
frequencies in spectral lines, as already observed by Connes [12], where groupoids
are connected with the structure of certain measurements, in this case frequencies
of the emission spectrum by atoms:

“The set of frequencies emitted by an atom does not form a group, and it is
false that the sum of two frequencies of the spectrum is again one. What exper-
iments dictate is the Ritz–Rydberg combination principle which permits indexing
the spectral lines by the set ∆ of all pairs (i, j) of elements of a set I of indices.
The frequencies ν(ij) and ν(kl) only combine when j = k to yield ν(il) = ν(ij) + ν(jl)

(...). Due to the Ritz–Rydberg combination principle, one is not dealing with a
group of frequencies but rather with a groupoid ∆ = {(i, j); i, j ∈ I} having the
composition rule (i, j)(j, k) = (i, k). The convolution algebra still has a meaning
when one passes from a group to a groupoid, and the convolution algebra of the
groupoid ∆ is none other that the algebra of matrices since the convolution product
may be written (ab)(i,k) =

∑
n a(i,n)b(n,k) which is identical with the product rule of

matrices.”

It is quite convenient to think of groupoids as codifying processes in the sense
that the composition law determines the different ways that one can go from one
base element (or objects of the groupoid) to another one2. Actually, the best way
to think about a groupoid is in terms of categories or, put in a different way, a
category is a broad generalization of the notion of a group(oid).

The process of abstracting properties of physical systems obtained by their ob-
servation, like the properties of measurements on microscopic systems pondered
by Schwinger, is extremely useful by itself, however as it was pointed out by J.
Baez, the mathematical language based on set theory is extremely restrictive and
limited for many purposes. Physics dealing with processes and relations both at
the classical and quantum level, is particularly bad suited to be described by set
theory (see for instance [14]).

On the contrary, category theory is exactly about that, the emphasis is not in
the description of the elements of sets, but on the relations between objects, i.e.,
‘morphisms’. Thus ‘elements’ in set theory correspond to ‘objects’ of a category
(thus ‘elements’ can be ‘sets’ themselves without incurring in contradictions!) and
‘equations between elements’ correspond to ‘isomorphisms between objects’. ‘Sets’
correspond in this categorification of set theory to ‘categories’ and maps between
sets to ‘functors’ between categories. In particular a representations of a given
category is a functor from this category in the category whose objects and mor-
phisms we want to use to ‘represent’ our category, linear spaces and linear maps

2For a friendly introduction to groupoids we refer the reader to [13].
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for instance in the case of linear representations. Finally ‘equations between func-
tions’ will correspond to ‘natural transformations’ between functors. Considering
functors themselves as objects and natural transformations as morphisms led to
the notion of higher categories, in particular of 2-categories and the corresponding
notions of 2-groups and 2-groupoids. These abstract notions are gaining more and
more interest in the description of physical phenomena (see for instance recent
applications to describe topological matter [15],[16]). Surprisingly enough we will
argue that this highly abstract notions, in particular the notion of 2-groupoid is
just what is needed to provide the formal mathematical background to the kine-
matics of Schwinger’s algebra of selective measurements.

The structure of this paper would be as follows. First the basic notions of
categories and groupoids will be described in a succinct way. Then, it would be
sketched how the descripton of physical systems based on them would lead in a
natural way to the notion of a 2-groupoid and finally, in the finite case, it will
be shown how Schwinger’s algebra of selective measurements is an instance of it.
In the meantime a sketch of a theory of representations will be developed and
some fair connections with the standard descriptions of Quantum Mechanics will
be outlined.

2. Groupoids and categories

2.1. Categories. Using the language of Category Theory a groupoid is a category
all of whose morphisms are invertible. Let us recall that a category C consists of a
family of objects x, y, ... denoted collectively as Ob(C), and a family of morphisms
(or arrows) α : x → y, β : u → v,... denoted collectively as Mor(C). Given two
objects x, y the family of morphisms from x to y is denoted as Mor(x, y). The
category C is equipped with a composition law that assigns to any pair of mor-
phisms α : x → y and β : y → z a morphism α ◦ β : x → z3. The composition
law is associative, that is, (α ◦ β) ◦ γ = α ◦ (β ◦ γ) whenever α, β and γ can be
composed. Finally it is assumed that there exists a family of morphisms 1x such
that α ◦ 1y = α and 1x ◦ α = α for any α : x→ y.

Sometimes it would be convenient to denote the category C as: Mor(C) ⇒
Ob(C) where the double arrows denote the assignments to each morphism α : x→
y of the ‘source’ object x and the ‘target’ object y respectively. In this sense we
will denote x = s(α) and y = t(α) (it will be also denoted sometimes y = α(x)).
Notice that the morphism α can be composed with the morphism β iff t(α) = s(β).

A morphism α : x→ y is said to be invertible if there exists β : y → x such that
α ◦ β = 1x and β ◦ α = 1y. Such morphism will be called the inverse of α and
will be denoted as α−1. An invertible morphism will be called an isomorphism.

3Sometimes it is convenient to use a ‘contravariant’ notation, that is to denote the composition
of the morphisms α : x → y and β : y → z as β ◦ α mimicking the notation for the composition
of functions, but we will not do this in this paper.
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Notice that for any given category C the subcategory of invertible morphisms is a
groupoid, called the groupoid of the category.

It will be assumed in what follows that all categories considered are small, that
is, their objects and family of objects as well as the family of all morphisms are sets,
and morphisms are maps among sets. Then the previous notation for objects and
morphisms coincide with the corresponding set-theoretical notions. However it is
important to bear in mind that many interesting examples, potentially relevant in
the considerations on the foundations of Quantum Mechanics, involve categories
which are not small. Consider for instance the category Vect of all vector spaces
whose objects are complex linear spaces and morphisms are linear maps between
them. Such category is larger than the category Sets (whose objects are sets and
morphisms are maps among sets) because given a set S we may construct the
complex linear space V (S) freely generated by S, however the family of all sets is
not a set, hence the family of all linear spaces is not a set.

2.2. Groupoids. Even if the notion of groupoid is categorical, along this paper
groupoids will be considered to be sets (even finite sets in Schwinger’s conceptual-
isation). Thus, in this section abstract groupoids G will be briefly discussed from
a set-theoretical perspective, that is, we will consider groupoids G whose objects
are given by sets Ω and whose morphisms are elements γ of the set G.

Two maps s (‘source’) and t (‘target’) will be defined from G onto Ω, such that
there is a binary operation ◦ (called multiplication) which is defined for pairs γ
and µ of elements in G whenever t(γ) = s(µ) (then γ and µ will be said to be
composable) and the resulting element will be denoted µ◦γ (notice the backwards
notation for composition consistent with the notation used for the composition of
maps). We will keep using the diagrammatic notation γ : x → y if s(γ) = x and
t(γ) = y as in the abstract categorial setting even if γ is not a map between sets.

Moreover for a given groupoid G, the maps {s, t, ◦} must satisfy the following
axioms:

a) s(µ ◦ γ) = s(γ), t(µ ◦ γ) = t(µ) for all composable γ and µ.
b) There exists 1s(γ), and 1t(γ) elements in G which are left and right unities

for γ respectively, i.e., 1t(γ) ◦ γ = γ, γ ◦ 1s(γ) = γ, for all γ ∈ G.
c) The multiplication ◦ is associative: if (γ ◦ µ) ◦ ν is defined, then γ ◦ (µ ◦ ν)

exists and (γ ◦ µ) ◦ ν = γ ◦ (µ ◦ ν).
e) Any γ has a two–sided inverse γ−1, with γ ◦γ−1 = 1t(γ) and γ−1 ◦γ = 1s(γ).

The map inv : γ → γ−1 is an involution, that is (γ−1)
−1

= γ.

There is a natural equivalence relation defined in the space Ω of objects of a
groupoid: x ∼ y iff there exists γ ∈ G such that γ : x→ y. Any such equivalence
class Ox is called an orbit of G and Ω is the union of all these orbits.

The set Gx = {γ ∈ G | s(γ) = t(γ) = x} is a group, called the isotropy group of
x ∈ Ω. Notice that the isotropy groups Gx, Gy, of objects x, y in the same orbit
are isomorphic (even though not canonically).
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Two extreme cases regarding the space of objects of a groupoid occur when Ω
is the whole groupoid G, or Ω consists of just one point. In the first instance
s(γ) = t(γ) = γ for all γ and any γ can be composed only with itself yielding
γ ◦ γ = γ. The orbits are single elements γ and the isotropy group of any γ is
trivial, containing only 1γ.

In the latter situation, Ω = {x}, so that G is a group, there is only one orbit
{x}, and the isotropy group of x is G.

Finally, a groupoid G is called principal if the map

(1) (s, t) : G→ Ω× Ω , γ 7→ (s (γ) , t (γ))

is one-to-one (we will also say that G is the groupoid of pairs of the set Ω, see the
discussion below, Sect. 2.3), and it is called transitive (or connected) if the map
(s, t) is onto.

We remark that, as a set, any groupoid is the disjoint union of groupoids G =
∪iGi corresponding to the partition of Ω = ∪iOi into orbits Oi. Each Gi has only
one orbit and elements in Gi cannot be composed with elements in Gk, k 6= i.

2.3. Two simple examples: groupoid of pairs and the action groupoid.
Two simple, but significative, examples of groupoids will be discussed here: the
groupoid of pairs of a set and the action groupoid corresponding to the action of
a group on a given space. Of course, as it was indicated before, any group G is a
groupoid, actually any groupoid with just one object is a group and the isotropy
group of such element is the groupoid itslef. However other extreme situation
happens to be great importance, that is, a groupoid such that the isotropy group
Gx is trivial for all objects. This correspond to the groupoid of pairs of a set.

2.3.1. The groupoid of pairs of a set. The groupoid Γ(Ω) of pairs of an arbitrary
set Ω is the groupoid whose objects are the elements x of the set Ω and whose
morphisms are pairs (x, y) ∈ Ω × Ω, that is, a groupoid element γ is just a pair
(x, y); y will be the source of γ and x its target, i.e., any such groupoid element
could be writen as γ : y → x. The composition will follow the standard usage:
(x, y) ◦ (y, z) = (x, z). The unit morphisms are given by 1x = (x, x) and the
inverse of the morphisms γ = (x, y) is γ−1 = (y, x). Notice that the isotropy group
of any x ∈ Ω is the trivial group Gx = {1x}. The groupoid of pairs of a finite set Ω
of n elements can be drawn as the complete graph of n vertices (see Fig. 1) where
links represent both morphisms (i, j) and (j, i).

The groupoid of pairs Γ(Ω) is connected as any element y can be joined to any
other x by the morphism (x, y).

2.3.2. The action groupoid. The action groupoid conveys globally the intuitive
notion of a groupoid as acting ‘locally’ on a set. Thus, let Φ: G×Ω→ Ω denote an
action of the group G on the set Ω, that is, Φ(e, x) = x, Φ(g,Φ(g′, x)) = Φ(gg′, x)
for all x ∈ Ω and g, g′ ∈ G. As customary we will denote by g · x (or just gx) the
action Φ(g, x) of the element g on x. We will denote by G(Ω) the groupoid whose
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a) K10 diagram b) K20 diagram c) K40 diagram

Figure 1. Diagrams of the groups of pairs of n elements corre-
sponding to the complete graphs Kn with n = 10, 20, 40.

morphisms are pairs (g, x) ∈ G×M , the source map given by s(g, x) = x and the
target map, t(g, x) = gx. The composition law is given by (g′, x′)◦ (g, x) = (g′g, x)
provided that t(g, x) = gx = x′ = s(g′, x′). The unit morphisms are given by
1x = (e, x) and the inverse of the morphism γ = (g, x) is given by γ−1 = (g−1, gx).

It is clear that the orbit Ox of the element x ∈ Ω is the set of elements y which
are targets of morphisms with source at x, that is y = gx, g ∈ G, that is, the
standard notion of orbit of an element under the action or the group G.

The groupoid G(Ω) is connected iff the action of the group is transitive and the
isotropy group of any element x is the set of morphisms γ ∈ s−1(x) = t−1(x) =
{g ∈ G | x = gx} which agrees with the standard notion of isotropy group.

2.4. The groupoid algebra and representations of finite groupoids. We
illustrate the previous ideas by considering finite groupoids and their representa-
tions. Thus we will consider a finite groupoid G of order N = |G|. Thus:

(2) G = {γk | k = 1 . . . , N} .

Necessarily the space of objects Ω will be finite too with n elements Ω = {xa | a =
1, . . . , n}, n = |Ω|.

The groupoid algebra C[G] of the finite groupoid G is the associative algebra
generated by the elements of the groupoid with the corresponding natural compo-
sition law, that is, if a =

∑
k akγk and b =

∑
l blγl, ak, bl ∈ C, are two finite formal

linear combination of elements in G (hereafter any summation label j, k,... ranges
from 1 to N), we define its product as:

a · b =
∑
k,l

ak bl δ(γk, γl) γk ◦ γl ,

with the indicator function δ(γk, γl) defined to be 1 if γk, γl can be composed and
zero otherwise. The product defined in this way is clearly associative because the



GROUPOIDS AND QUANTUM MECHANICS 9

composition law ◦ is associative. The groupoid algebra C[G] has a unit given by
1 =

∑
a 1xa .

Notice that the canonical basis of the groupoid algebra provided by the elements
γk of the groupoid allow to identified the groupoid algebra C[G] with the algebra
of complex valued functions F (G) = {f : G → C} on the groupoid with the
convolution product:

(3) (f1 ∗ f2) (γi) =
∑

γj◦γk=γi

f1(γj)f2(γk) ,

with f1, f2 : G→ C any two such functions. The identification is provided by the
correspondence C[G] → F(G) defined by a 7→ fa, with the function fa defined
by fa(γk) = ak. The converse map being defined as f 7→ af =

∑
k f(k)γk. Notice

that clearly:
fa ∗ fb = fa·b ,

and
af · ag = af∗g .

The functions δγj , defined as

(4) δγj(γk) =

{
1 if γj = γk
0 if γj 6= γk

,

determine a basis of the groupoid algebra. Thus for any f ∈ F (G), we may write:

(5) f =
∑
k

f (γk) δγk .

Moreover:

(6)
(
δγj ∗ f

)
(γi) =

∑
γj◦γk=γi

f(γk).

In particular δγj ∗ δγh is 1 if γj and γk are composable and 0 elsewhere; so

(7) δγj ∗ δγh = δγj◦γk = δ(γj, γk) .

The groupoid algebra C[G] carries also an involution operator ∗ defined as
a∗ =

∑
k ākγ

−1
k for any a =

∑
k akγk, or, in terms of the isomorphic algebra of

functions:
f ∗ =

∑
k

f(γ−1
k )δγk ,

for any f =
∑

k f(γk)δγk .
A linear representation of a groupoid G is a functor ρ : G → Vect, that is,

the functor ρ assigns to any object x ∈ Ω a linear space ρ(x) = Vx, and to any
morphism γ : x → y, a linear map ρ(γ) : Vx → Vy such that ρ(1x) = idVx and
ρ(γ ◦ γ′) = ρ(γ)ρ(γ′) for any x ∈ Ω and any composable pair γ, γ′. Thus the
notion of linear representation of groupoids extends in a natural way the theory
of linear representations of groups.
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Notice that given a finite groupoid G there is a natural identification between
linear representations ρ of the groupoid and C[G]-modules. The correspondence
is established as follows. Let ρ be a representation of G, then we define the linear
space V =

⊕
a Vxa and the map R : C[G]→ End(V ) as R(a)(v) =

∑
k akρ(γk)(v),

with ρ(γk)(v) = ρ(γk)(va) if γk : xa → xb and v = ⊕ava. The map R is clearly a
homomorphism of algebras, hence we may consider the linear space V as a (left-)
C[G]-module.

The converse of this correspondence is obtained by defining the subspaces Va of
the C[G]-module V by means of the projectors Pa = R(1xa), that is Va = Pa(V ).
Then ρ(xa) = Va and ρ(γk)(va) = R(γk)(va) if γk : xa → xb.

Any finite groupoid G possesses two canonical representations: the fundamental
and the regular representations. We will describe briefly both of them in what
follows.

2.4.1. The fundamental representation of a finite groupoid. Given the finite groupoid
G with object space Ω, we define the Hilbert space HΩ as the complex linear space
generated by the elements x ∈ Ω with inner product:

〈φ, ψ〉 =
n∑
a=1

φ̄aψa ,

with φ =
∑

a φa|xa〉, φa ∈ C, and where we have indicated by |x〉 the vector
associated with the element x ∈ Ω. Notice that with this definition 〈y, x〉 = δxy
and the set of vectors |xa〉 form an orthonormal basis of HΩ. Again, using the
previous notation HΩ =

⊕n
a=1 C|xa〉.

The fundamental representation of G assigns to any object x ∈ Ω the lin-
ear space π(x) = C|x〉 and to any groupoid element γ : x → y, the linear map
π(γ) : π(x)→ π(y), given by π(γ)|x〉 = |y〉.

Because of the one-to-one correspondence between linear representations of
groupoids and modules, we may define the fundamental representation by the
map π : C[G]→ End(HΩ), that provides such module structure, given by:

π(a)φ =
∑
k,b

akφb π(γk)|xb〉 .

Introducing the indicator symbol δ(γk, xb) defined as 1 if s(γk) = xb and zero
otherwise, we can write the previous equation as:

π(a)φ =
∑
k,b

akφb δ(γk, xb) |t(γk)〉 .

Notice that the fundamental representation is a ∗-representation, that is, π(f ∗) =
π(f)† where π(f)† denotes the adjoint operator with respect to the inner product
structure in HΩ (notice that 〈y, π(γ)x〉 = 〈π(γ−1)y, x〉 if γ : x→ y).
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The fundamental representation allows us to introduce a natural norm on the
groupoid algebra as:

(8) ||f || = ||π(f)|| , f ∈ C[G] .

where the norm in the r.h.s. of Eq. (8) is the operator norm. Then it is trivial
to check that ||f ∗f || = ||f ||2, which means that the groupoid algebra C[G] is a
C∗-algebra. The construction of a C∗- groupoid algebra can be done in general by
selecting a family of left-Haar measures on G (see for instance [17] for details).

2.4.2. The regular representation of a groupoid. A representation R : F(G) →
End(F(G)) of the groupoid algebra C[G] (identified with F(G)) on its space of
functions, is obtained immediately by using the formula:

(9) R(f) =
∑
k

f (γk)Dγk .

where

(10) Dγ(·) = δγ ∗ · ,
because from Eq. (7), we get:

(11) DγjDγk =

{
Dγj◦γk if γj ◦ γk exists,

0 if γj ◦ γk does not exist.

Notice that, consistently, we get:

R(f1)R(f2) =
∑
j,k

f1(γj)f2(γk)Dγj◦γk =
∑
i,j,k

γj◦γk=γi

f1(γj)f2(γk)Dγi(12)

=
∑
i

(f1 ∗ f2) (γi)Dγi = R(f1 ∗ f2).

In other terms, the product of operators corresponds to the convolution product
of the associated functions. The representation R will be called the (left) regular
representation of the groupoid algebra (there is a similar definition of the groupoid
algebra acting as a right-module on the space of functions).

Notice that because the groupoid is finite we may identify the space of functions
on it with the space of square integrable functions with respect to the natural inner
product defined by the standard basis δγ. In that case it is easy to check again
that the regular representation is a ∗-representation.

3. 2-groupoids and quantum systems

3.1. The inner groupoid structure: events and transitions. The formu-
lation presented in what follows is inspired by Schwinger’s construction of the
“algebra of measurements” [18] where the starting point of the description of a
quantum system is the selection of a family A of compatible observables, e.g., the
z-projection of the spin for a two-level system. The outcome of a measurement of
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such observables will be called in what follows ‘events’4, and we will denote them
as a, a′, a′′, . . .,etc.

We will not try to make precise at this stage the meaning of ‘measurement’ or
the nature of the outcomes as we will consider them primary notions determined
solely by the experimental setting used to study our system, neither we will require
any particular algebraic structure for the family of observables used in such setting.
For instance the outcomes a, b,... could be just collections of real numbers. We
will be just concerned with the structural relations among the various notions that
are introduced. A concrete realisation of them will be offered in the next section
by adapting Schwinger’s framework to the language developed here.

We postulate that for a given physical system there are transitions among the
outcomes of measurements, that is, if after performing a measurement of A whose
outcome has been a, we will perform another measurement whose outcome would
have been a′, we will say that there has been a ‘transition’ from the event a to the
event a′.

Such transitions are determined completely by the intrinsic dynamic of the sys-
tem and by the interaction of the experimental setting with it. That is, we may
consider experimental devices that, when acting on the system, cause it to change
in such a way that a new measurement of A will give a different outcome. Consis-
tently with the notation introduced for groupoids, we will denote such transitions
using a diagrammatic notation as α : a → a′ and we will say that the event a is
the source of the transition α and the event a′ is its target. We will also say that
the transition α transforms the event a into the event a′.

The allowed physical transitions must satisfy a small number of natural require-
ments or axioms. The first one is that transitions can be composed, that is, if
α : a → a′, and β : a′ → a′′ denote two allowed transitions, there is a transition
β ◦ α : a → a′′. Notice that not all transitions can be composed, we may only
compose compatible transitions, that is transitions α, β such that β transforms
the target event a′ of α5. This composition law must be associative, that is, if α,
β are transitions as before, and γ : a′′ → a′′′, then

(γ ◦ β) ◦ α = γ ◦ (β ◦ α) .

Moreover we will assume that there are trivial transitions, that is transitions
1a : a→ a such that 1a′ ◦ α = α and α ◦ 1a = α for any transition α : a→ a′. The
physical meaning of transitions 1a is that of manipulations of the system which do
not change the outcome of a measurement of A.

4Not to be confused with space-time events or with Sorkin’s notion of events as subsets of the
space of histories of a system [19]. Schwinger used the term ‘states’ for such outcomes but we
rather use a different terminology not to create confusion with the proper notion of states of the
system as positive normalized functionals on the algebra of observables of the theory, see [3].

5In [3] it will be discussed the meaning of Schwinger’s compound measurements, that is the
meaning of composing ‘incompatible’ transitions, for the purposes of this paper though, we will
restrict ourselves to consider the composition of compatible transitions.
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Finally, we will assume a (local) reversibility property of physical systems, that
is, transitions are invertible: given any transition α : a → a′, there is another one
α′ : a′ → a such that α ◦ α′ = 1a′ and α′ ◦ α = 1a. We will denote such transition
as α−1 and it clearly must be unique6.

From the previous axioms it is clear that the collection of transitions α and
events a form a groupoid as explained in Sect. 2.2. Such groupoid will be denoted
by GA, its objects are the events a provided by measurements of a family of
compatible observables A, and its morphisms are the allowed physical transitions
among events. We will denote by GA(a, a′) the family of transitions α : a → a′

between the events a and a′.
We will denote by Ω the collection of events and by s, t the standard source

and target maps. Notice that we are not assuming that the groupoid GA has any
particular additional structure, that is, for instance it could be connected or not,
it could possess an Abelian isotropy group or the isotropy group could be trivial
(see later on, and Sect. 2.3 for a few concrete instances).

We will associate to the system a Hilbert space HA. Such Hilbert space HA

is the support of the fundamental representation of the groupoid GA. In Sect.
2.4.1 the case of finite groupoids was discussed. There the Hilbert space was
finite-dimensional and given explicitly as: HA =

⊕
a∈Ω C|a〉. In a more general

situation we will assume that the space of events Ω is a standard Borel space with
measure µ. In that case HA is the direct integral of the field of Hilbert spaces
C|a〉:

HA =

∫ ⊕
Ω

C |a〉 dµ(a) ∼= L2(Ω, µ) .

For instance in the particularcase when Ω is discrete countable, such measure will
be the standard counting measure and HA

∼= L2(Z) = l2. Notice that if the space
of objects is countable the unit elements 1a are represented in the fundamental rep-
resentation as the orthogonal projectors Pa on the subspaces C|a〉. Such projectors
provide a resolution of the identity for the Hilbert space HA.

The Hilbert space H will allow us to relate the picture provided by the groupoid
GA with the standard Dirac-Schrödinger picture and, in the particular instance
of a discrete, finite space of events considered by Schwinger, it becomes a finite
dimensional space, corresponding to a finite-level quantum system.

All the previous arguments can be repeated when considering another system
of observables B to describe the transitions of the system. The system B may be
incompatible with A, however they may have common events, that is events that
are outcomes of both A and B. Thus in addition to the transitions α : a →A a′

among outcomes of the family A, or β : b→B b
′ corresponding to outcomes of the

family B, new transitions could be added to the previous ones, those of the form

6Notice that the reversibility condition could be lifted to include open systems in this picture.
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γ = α ◦ β : a→A a
′ = b→B b

′ where a′ = b is a common outcome for both A and
B.

We may form the groupoid G consisting of the direct product of all groupoids
GA over the total space of events S. Each groupoid GA is a subgroupoid of
the groupoid G. The construction of G depends on the possibility of giving a
description of a physical systems in terms of two or more maximal families of
compatible observables. This instance naturally carries with it the possibility of
relating different descriptions, and this, in turns, will lead us to the construction of
another layer on our abstract groupoid structure. Specifically, we will build another
groupoid Γ over G obtaining thus what is known as a 2-groupoid. If the groupoid
G describing the system is connected or transitive, we will say that there are no
superselection rules. The connected components of the groupoid will determine
the different sectors of the theory. In what follows we will restrict ourselves to
consider a connected component of the total groupoid.

3.2. Two examples: the qubit and the groupoid of tangles.

3.2.1. The qubit. Let us start the discussion of some simple examples by consid-
ering what is arguably the simplest non-trivial groupoid structure. We call it the
singleton and is given by the diagram below, see Fig. 2:

+ −

α

α−1

Figure 2. The extended singleton.

This diagram will correspond to a physical system described by a family of
observables A producing just two outputs, denoted respectively by + and −, and
with just one transition α : + → − among them. Notice that the groupoid GA

associated with this diagram has 4 elements {1+, 1−, α, α
−1} and the space of events

is just ΩA = {+,−}. The corresponding (non-commutative) groupoid algebra is a
complex vector space of dimension 4 generated by e1 = 1+, e2 = 1−, e3 = α and
e4 = α−1 with structure constants given by the relations:

e2
1 = e1 , e2

2 = e2 , e1e2 = e2e1 = 0 , e3e4 = e1 ,

e4e3 = e2 , e3e3 = e4e4 = 0 , e1e3 = e3 , e3e1 = 0 ,

e4e1 = e4 , e1e4 = 0 , e3e2 = e3 , e2e3 = 0 .

The fundamental representation of the groupoid algebra is supported on the
2-dimensional complex space H = C2 with canonical basis |+〉, |−〉. The groupoid
elements are represented by operators acting on the canonical basis as:

A+|+〉 = π(1+)|+〉 = |+〉 , A+|−〉 = π(1+)|−〉 = 0 ,
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etc., that is, for instance, the operator A+ has associated matrix:

A+ =

[
1 0
0 0

]
.

Similarly we get:

A− = π(1−) =

[
0 0
0 1

]
, Aα = π(α) =

[
0 0
1 0

]
, Aα−1 = π(α−1) =

[
0 1
0 0

]
,

Thus the groupoid algebra can be naturally identified with the algebra of 2 × 2
complex matrices M2(C) and the fundamental representation is just provided by
the matrix-vector product of matrices and 2-component column vectors of C2. The
dynamical aspects of this system will be described extensively in [3].

Before discussing the next example it is interesting to observe that if we con-
sider the system without the transition α, that is, now the groupoid will consists
solely of the elements {1+, 1−}, its corresponding groupoid algebra will be the just
the 2-dimensional Abelian algebra defined by the relations: e2

1 = e1, e2
2 = e2 and

e1e2 = e2e1 = 0, that is, the classical bit. According to the physical interpretation
of transitions given at the beginning of this section, by disregarding the transi-
tions α and α′ we are implicitely assuming that there is no experimental device
that, when acting on the singleton, cause it to change in such a way that a new
measurement will yeld a different outcome. Putted differently, we are assuming
that experimental devices do not influence the system, which is an assumption of
genuinely classical flavour.

3.2.2. The homotopy groupoid. An interesting family of groupoids have its origin
in topology. Consider a closed (compact without boundary) connected smooth
manifold X and the groupoid G(X) of unparametrised oriented piecewise smooth
maps γ : [0, 1] → X, that will be called oriented histories on X. In other words,
a morphism [γ] in G(X) is an equivalence class of piecewise smooth maps up to
reparametrizations by positive changes of parameter dt/ds > 0. The source and
target maps s, t : G(X) ⇒ X are defined as s([γ]) = γ(a) and t([γ]) = γ(b). In
what follows we will just denote by γ the equivalence class [γ]. The unit morphisms
are defined by the curves 1x(t) = x for all t ∈ [0, 1]. The composition law is given
by the standard composition of paths, that is γ1 ◦ γ2(t) = γ1(2t), t ∈ [0, 1/2) and
γ1 ◦ γ2(t) = γ2(2t− 1), t ∈ [1/2, 1].

The groupoid of oriented histories G(X) happens to be too large for the purposes
of Topology and is drastically reduced by introducing an equivalence relation on
it. A transformation ϕ : γ ⇒ γ′ between two oriented histories is provided by
ambient isotopies, that is a map ϕ : [0, 1] ×M → X such that ϕ(0, γ(t)) = γ(t),
ϕ(1, γ(t)) = γ′(t), ϕ(s, t) is smooth in the variable s and piecewise smooth on the
variable t, and ϕ(s, ·) is a diffeomorphism for every s ∈ [0, 1].

The notion of transformation will be used in a generalised abstract setting in the
following. In the context of the present example it suffices to use it to introduce
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an equivalence relation in the groupoid of oriented histories, whose quotient space
is a groupoid over X, that we may call the homotopy or Poincaré groupoid, whose
isotropy group at x ∈ X are isomorphic to Poincaré’s homotopy group π1(X, x)
(notice that the Poincaré groupoid is connected iff the space X is connected).

Both the groupoid algebra and the fundamental representation of the groupoid
of oriented histories G(X) are hard to describe. The groupoid algebra can be
described as the completion with respect to some norm of the algebra of finite
formal linear combinations of oriented histories γ =

∑
cγγ. Choosing an auxiliary

volume form on X, assuming that X is orientable, we may construct a measure
on it and define the Hilbert space H of square integrable functions on X. The
fundamental representation of this algebra will be suported however on the space
of distributions on X, by means of π(γ)(δx) = δy if the oriented history γ takes x
into y and δx is the Dirac’s delta distribution at x.

More interesting is the natural generalization of the groupoid G(X) provided
by the groupoid of braids on X × [0, 1], that is, the quotient with respect to the
same generalized homotopy equivalence relation of the space of n non-intersecting
oriented histories with end points on the boundary ∂(X× [0, 1]) = X×{0, 1}. The
corresponding quotient space Bn(X) with respect to ambien isotopies is again
a groupoid over Xn. The fundamental representation is supported in Hilbert
space L2(X)⊗n and it provides relevant information on the statistics of the system
described by it.

3.3. The 2-groupoid structure: transformations. The dynamical behaviour
of a system is described by a sequence of transitions w = α1α2 · · ·αr that will be
called histories. In a certain limit7 any history would define a one-parameter family
αt of transitions (but we may very well keep working with discrete sequences).

Typically these sequences of transitions are generated by a given observable
promoted to be the infinitesimal generator of a family of automorphisms once the
family of observables has an algebra structure itself. However we will not enter
here in the discussion of this approach (see [3]). What we would like to stress
here is that the explicit expression of such sequence of transitions depends on the
complete measurements used to describe the behaviour of the system and it may
look very different when observed using two different systems of observables A and
B.

The existence of such alternative descriptions imply the existence of families of
‘transformations’ among transitions that would allow to compare the descriptions
of the dynamical behaviour of the system (and the kinematical structure as well)
when using different references of measurements systems. We will also use a dia-
grammatic notation to denote transformations such as ϕ : α ⇒ β, or as in Fig. 3
below.

7Notice that the limit cannot by obtained by properly measuring the outcomes of complete
measurements because of Zeno’s effect (see for instance [21] and references therein).
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α

β

www� ϕ

Figure 3. A transformation ϕ between the transitions α and β.

The transformations ϕmust satisfy some obvious axioms. First, in order to make
sense of the assignment α⇒ β, the transformation ϕ must be compatible with the
source and target maps of the groupoid or, in other words, ϕ must map GA(a, a′)
to GB(b, b′). Moreover, the transformations ϕ : α ⇒ β and ψ : β ⇒ γ could be
composed providing a new transformation ϕ ◦v ψ : α ⇒ γ, from transition α to
γ. This composition law will be called the ‘vertical’ composition law and denoted
accordingly by ◦v (see Fig. 4(a) for a diagrammatic representation of the vertical
composition of transformations). This vertical composition law of transformations
must be associative as there is no a preferred role for the various arrangements of
compositions between the various transformations involved. That is, we postulate:

ϕ ◦v (ψ ◦v ζ) = (ϕ ◦v ψ) ◦v ζ ,

for any three transformations ϕ : α⇒ β, ψ : β ⇒ γ, ζ : γ ⇒ δ.
The transformation ϕ sends the identity transition 1a into the identity transition

1b, and there should be transformations 1α, 1β such that 1α◦vϕ = ϕ and ϕ◦v1β = ϕ.
Moreover it will be assumed that transformations ϕ : α⇒ β are reversible pro-

vided that the physical information determined by using the family of observables
A, that is the groupoid GA, is equivalent to that provided by the groupoid GB,
i.e., by the family of observables B. In other words, the transformations ϕ : α⇒ β
are invertible because there is no a natural precedence among the correspond-
ing measurements systems. Thus, under such assumption, for any transformation
ϕ : α ⇒ β there exists another one ϕ−1 : β ⇒ α such that ϕ ◦v ϕ−1 = 1α and
ϕ−1 ◦v ϕ = 1β.

Moreover, notice that if we have a transformation ϕ : α ⇒ β and another one
ϕ′ : α′ ⇒ β′ such that α and α′ can be composed, then β and β′ will be compos-
able too because of the consistency condition for transformations, that is, given
two transitions α, α′ that can be composed, if the reference description for them
is transformed, then the corresponding description of the transitions β and β′, will
be composable too and their composition must be the composition of the transfor-
mation of the original transitions (see Fig. 4(b) for a diagrammatic description).
In other words, there will be a natural transformation between the transition α◦α′
to the transition β ◦ β′ that will be denoted by ϕ ◦h ϕ′ and called the ‘horizontal’
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composition. Figure 4 provides a diagrammatic representation of both operations
◦v and ◦h.

α

γ

www�ϕ ◦v ψ ∼=

(a) Diagrammatic representation of the vertical composition law ◦v.

α

γ

ww�
β

ww�
ϕ

α ◦ α′

β ◦ β′

www� ϕ ◦h ϕ′ ∼=

(b) Diagrammatic representation of the horizontal composition law ◦h.

α

β

www� ϕ

α′

β′

www�ϕ′

Figure 4. A diagrammatic representation of vertical and horizontal
composition of transformations.

It is clear that the horizontal composition law is associative too, i.e.,

ϕ ◦h (ϕ′ ◦h ϕ′′) = (ϕ ◦h ϕ′) ◦h ϕ′′ ,

for any three transformations ϕ : α ⇒ β, ϕ′ : α′ ⇒ β′, ϕ′′ : α′′ ⇒ β′′ such that
α : a → a′, β : b → b′, α′ : a′ → a′′, β′ : b′ → b′′ and α′′ : a′′ → a′′′, β′′ : b′′ → b′′′.
The horizontal composition rule has natural units, that is, if ϕ : α ⇒ β, then
the transformation 1a′b′ : 1a′ ⇒ 1b′ , if α : a → a′ and β : b → b′, is such that:
ϕ ◦h 1a′b′ = ϕ and 1ab ◦h ϕ = ϕ.

We observe that there must be a natural compatibility condition between the
composition rules ◦v and ◦h. That is, if we have two pairs of vertically composable
transformations ϕ, ψ and ϕ′, ψ′ that can be also pairwise composed horizontally,
then the horizontal composition of the previously vertically composed pairs must
be the same as the vertical composition of the previously horizontally composed
pairs. This consistency condition will be called the exchange identity. Formally is
written as follows and a diagramatic description is provided in Fig. 5:

(13) (ϕ ◦v ψ) ◦h (ϕ′ ◦v ψ′) = (ϕ ◦h ϕ′) ◦v (ψ ◦h ψ′) .
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α

γ

ww�
ψ

ww�
ϕ

∼=

α′

γ′

ww�
ψ′

ww�
ϕ′

∼=

α

γ

www�ϕ ◦v ψ
∼=

α′

γ′

www�ϕ′ ◦v ψ′

α ◦ α′

γ ◦ γ′

ww�
ψ ◦h ψ′

ww�
ϕ ◦h ϕ′

∼=

α ◦ α′

β ◦ β′

www�
(ϕ ◦h ϕ′) ◦v (ψ ◦h ψ′)

(ϕ ◦v ψ) ◦h (ϕ′ ◦v ψ′)
=

Figure 5. A diagrammatic representation of the exchange identity:
starting with the first diagram move either first row right and down
or down and second row right.

Notice that given a transformation ϕ : α ⇒ β, we can define two maps, similar
to the source and target defined previously for transitions, that assign respectively
α and β to ϕ. The family of invertible transformations Γ with the vertical com-
position law and the source and target maps defined in this way form again a
groupoid over the space of transitions G. Moreover the source and target maps
are morphisms of groupoids.

This ‘double’ groupoid structure, that is, a groupoid (the family of invertible
transformations) whose objects (the family of all transitions) form again a groupoid
(whose objects are the events) and such that the source and target maps are
groupoid homomorphisms is called a 2-groupoid.

The morphisms of the first groupoid structure Γ (or external groupoid structure)
are sometimes called 2-morphism (or 2-cells). In our case 2-morphisms correspond
to what we have called transformations. The objects G of the first groupoid
structure which are the morphisms of the second groupoid structure (or inner
groupoid structure) are called 1-morphisms (or 1-cells). In our setting they will
correspond to what we have called transitions. Finally, the objects S of the second
groupoid structure are called 0-morphism (or 0-cells) and in the discussion before
they correspond to what we have called events.

The set of axioms discussed above can be thus summarised by saying that the
notions previously introduced to describe a physical system form a 2-groupoid with
0-, 1- and 2-cells being respectively events, transitions and transformations. Thus
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if we denote the total 2-groupoid by Γ, we will denote its set of 1-morphisms by
G, and the outer groupoid structure will be provided by the source and target
maps Γ ⇒ G. The groupoid composition law in Γ will be called the vertical
composition law and denoted ◦v. Because G ⇒ S is itself a groupoid and the
source and target maps of Γ are themselves groupoid homomorphisms, we can
always define a horizontal composition law in a natural way denoted by ◦h and
both composition laws must satisfy the exchange identity above, Eq. (13).

Thus we conclude by postulating that the categorical description of a physical
system is provided by a 2-groupoid Γ ⇒ G ⇒ S. The 1-cells of the 2-groupoid will
be interpreted as the transitions of the system and its 0-cells will be considered
as the events or outcomes of measurements performed on the system. The 2-cells
will be interpreted as the transformations among transitions of theory providing
the basis for its dynamical interpretation.

The identification of these abstracts notions with the corresponding standard
physical notions and their relations with other physical notions like quantum states,
unitary transformations, etc., will be provided by constructing representations of
the given 2-groupoid.

Before elaborating on this, we will briefly discuss a particular instance where
all these abstract structures have a specific physical interpretation, albeit no the
only possible one. It corresponds to that proposed by Schwinger in his original
presentation of the ‘algebra of measurements’.

4. Schwinger’s algebra of selective measurements

4.1. Schwinger’s algebra of measurements symbols. As discussed in the in-
troduction J. Schwinger described the fundamental algebraic relations satisfied
by a set of symbols representing fundamental measurement processes, that were
called selective measurements. In this section we will analyse the algebraic rela-
tions satisfied by the family of selective measurements under similar simplifying
assumptions used by Schwinger himself.

In its simplest form, a complete selective measurement can be defined as follows.
Given a physical system let us denote by E an ensemble associated with it, that is a
large family of physical systems of the same type and satisfying the same specified
conditions [20]. The elements S of the ensenble E , that is, individual systems, are
of course noninteracting.

It will be assumed that there is a family of observables A, representing measur-
able physical quantities, and that the outcomes a ∈ R of their individuals A ∈ A
can be measured on elements S of the ensemble E (ideally to each element corre-
sponds one particular device by means of which the measurement is made). Such
measurement will be denoted as a = 〈A : S〉 (our notation) and it clearly supposes
an idealized simplification of a full fledged statistical interpretation of a quantum
mechanical picture.
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It will be assumed that the ensemble E is large enough so that for any observable
A and for each possible outcome a of the observable there are elements S of the
ensemble such that when A is measured on them the outcome is actually a. Under
these conditions we will say that the ensemble E is sufficient for the observable
A.8

Two observables A,B ∈ A will be said to be compatible if the outcomes of
their respective measurements are not affected by the outcomes of the other. Al-
ternatively we may say that their outcomes do not depend on the order in which
they are performed. If we denote by 〈A,B : S〉 the outcome (a, b) obtained of
the measurement of the ordered pair of observables A and B on the element S
of the ensemble, that is, first A is measured and, after a negligible amount of
time, B is measured (notice that the causal relations between the corresponding
physical measurement actions depend on the observer performing them), then the
observables A,B are compatible if the outcome of 〈B,A : S〉 is (b, a).

A family of observables A = {A1, . . . , AN} ⊂ A9 is said to be compatible if they
are compatible among them or, in other words, if the outcomes of their measure-
ments do not depend on the order in which the measurements are performed.

Following Schwinger we define a selective measurement M(a) associated with
the family of compatible observables A = {A1, . . . , AN}, as a process or device
that rejects all elements S of the ensemble E whose outcomes a′ = (a′1, . . . , a

′
N)

are different from a = (a1, . . . , aN) and leaving only the elements S such that the
measurement of A on it gives a. Denoting the outcomes of the measurement of A
on the element S by 〈A : S〉, then we may write M(a)S = S if a = 〈A : S〉 and
M(a)S = ∅ if a 6= 〈A : S〉. Hence, using a set-theoretical notation, we may define
the subensemble

EA(a) = {S ∈ E | 〈A : S〉 = a} ,
(in what follows we will just write E(a) unless risk of confusion). Then, we may
rewrite the previous definition as M(a)S = S if S ∈ E(a) and M(a)S = ∅ other-
wise. The empty set ∅ will be formally added to the ensemble E with the physical
meaning of the absence of the physical system. Notice however that if the ensem-
ble E is sufficient for A it cannot happen that M(a)S = ∅ for all S. Then, with
this notation, M(a)E = E(a).

In what follows we will consider just maximal families A of compatible ob-
servables, and we will assume that the selective measurements M(a) defined by
families A of compatible observables are unique. In other words, we may prepare
a different physical implementation M ′(a) of the selective measurement associated

8Notice that we may also proceed by dictating that the observable A is defined by limiting
the outcomes to the actual values that can be measured over the elements of the ensemble E ,
however, the natural notion of sub-ensemble leads immediately to consider maximal ensembles
that will be ‘sufficient’ in the previous sense.

9Notice that such family doesn’t need to be finite even if for practical purposes we will be
working under this assumption.
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with A with outcomes a that selects the sub-ensemble E(a) by using different ap-
paratuses, but then M ′(a) and M(a) will be identified and denoted collectively as
before, M(a).

Schwinger assumes that the ‘state’ of a quantum system is estabilished by per-
forming on it a maximal selective measurement, and thus the space of states S of
the theory is provided by the space of outcomes of a complete selective measure-
ments. According to the general picture introduced in the previous section, we
identify Schwinger’s space of states (the space of outcomes of a complete selective
measurement) with the space of events10. It is in this sense that Schwinger’s pic-
ture produces a concrete realisation of the abstract description of physical systems
used in the previous section, Sect. 3.

Again following Schwinger, a more general class of symbols M(a′, a) are intro-
duced that denote selective measurements that reject all elements of an ensemble
whose outcomes are different from a and those accepted are changed in such a way
that their outcomes are a′. Using the set-theoretical notation introduced above
we have: M(a′, a)S ∈ E(a′) if S ∈ E(a) and M(a′, a)S = ∅ otherwise. Notice that
consistently M(a, a) = M(a) and M(a′, a)E = E(a′).

It is an immediate consequence of the basic definitions above that if we consider
the natural composition law of selective measurements M(a′′, a′)◦M(a′, a) defined
as the selective measurement obtained by performing first the selective measure-
ment M(a′, a) and immediately afterwards the selective measurement M(a′′, a′),
then we get:

(14) M(a′′, a′) ◦M(a′, a) = M(a′′, a) ,

and

(15) M(a′) ◦M(a′, a) = M(a′, a) , M(a′, a) ◦M(a) = M(a′, a) ,

It is clear that performing two selective measurements M(a′, a), and M(a′′′, a′′)
one after the other will produce a selective measurement again only if a′′ = a′,
otherwise if a′′ 6= a′, then M(a′′′, a′′) ◦M(a′, a)S = ∅ for all S which, as indicated
before, is not a selective measurement of the form M(a′, a).

Notice that if we have three selective measurements M(a, a′), M(a′, a′′) and
M(a′′, a′′′) then, because of the basic definitions, the associativity of the composi-
tion law holds:

(16) M(a, a′) ◦ (M(a′, a′′) ◦M(a′′, a′′′)) = (M(a, a′) ◦M(a′, a′′)) ◦M(a′′, a′′′) .

Finally it is worth to observe that given a measurement symbol M(a′, a) the mea-
surement symbol M(a, a′) is such that:

(17) M(a′, a) ◦M(a, a′) = M(a′) , M(a, a′) ◦M(a′, a) = M(a) .

10We prefer the word ‘event’ rather than the word ‘state’ in view of the discussion of states
as positive normalized functionals on the algebra of observables of the theory, see [3].
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Then we conclude that the composition law of selective measurements satisfying
Eqs. (14), (15), (16), (17), determines a groupoid law in the collection GA of all
measurement symbols M(a′, a) associated with the complete family of observables
A, whose objects (the events of the system) are the possible outcomes a of the
observables A.

In this formulation the general selective measurements M(a, a′) are the mor-
phisms of the groupoid GA and correspond to the notion of ‘transitions’ intro-
duced in the general setting described in the previous section. Notice that, in this
context, ‘transitions’ have not a dynamical meaning but are the consequences of
deliberate manipulation of the system by the observers11. Even if at this moment
we would change our notation to α : a→ a′ as in the previous section, we will stick
with Schwinger’s original notation to facilitate the comparison with the original
presentation.

4.2. Stern-Gerlach measurements. We have just seen that, in Schwinger’s pic-
ture of Quantum Mechanics, with a given physical system we associate a family
of groupoids GA for all maximal families of compatible observables A. As it was
pointed out before, events are defined as outcomes of maximal selective measure-
ments, thus for each maximal family of compatible observables A there is a family
of events SA. Given another different maximal family of compatible observables
B, it would determine another family of events, denoted now by b ∈ SB. It could
happen that the sub-ensemble determined by the selective measurement MA(a)
would lie inside that defined by MB(b), that is EA(a) ⊂ EB(b). We will say that
in such case b is subordinate to a and we will denote it by b ⊂ a. In such case
the measurement of B will not modify the outcomes defined by the sub-ensemble
determining the event a. If it happens that a is subordinate to b and viceversa,
i.e., b ⊂ a and a ⊂ b, we will consider that both events are the same, b ∼ a, and
we will treat them as the same object. Thus the space of events S of the system is
the collection of equivalence classes of events with respect to equivalence relation
“∼” associated with the subordination “⊂” relation among them.

Notice that the family
⋃

A GA of all groupoids GA associated with all complete
selective measurements is a groupoid over the space of events S. Under such
premises two selective measurements MA(a′, a) and MB(b′,b) can be composed
if and only if a ∼ b′ in which case: MA(a′, a) ◦MB(b′,b) will correspond to a
physical device that will take as inputs elements in the sub-ensemble EB(b) and
will return elements in the sub-ensemble EA(a). If we denote it by MAB(a′,b) (or
simply M(a′,b) for short) then, provided that a ∼ b′ we get again:

M(a′, a) ◦M(b′,b) = M(a′,b) .

11Of course, the observers may decide to use the Hamitonian determining the dynamical
evolution, and use selective measurements that use the dynamics itself to change the system.
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The operation M(a′,b) is invertible too. Actually the operation

M(b, a′) = M(b,b′) ◦M(a, a′) ,

is such that M(b, a′) ◦ M(a′,b) = M(b,b′) ◦ M(a, a′) ◦ M(a′, a) ◦ M(b′,b) =
M(b) = 1b and M(a′,b) ◦M(b, a′) = 1a′ .

Notice that this new family of operations does not correspond (in general) to a
maximal set of compatible observables C constructed out of A and B12, however
it is important to introduce them because they correspond to the physical oper-
ations of composition of Stern-Gerlach devices (so they could be called composite
Stern-Gerlach measurements or just SG-measurements for short). These extended
operations were also introduced by Schwinger as a consistency condition for the
relations of the algebra of selective measurements. However in the reformulation
of the basic notions we are presenting here, they will play a more significant role
as they would uncover another layer of structure in the algebraic setting for basic
measurement operations that, as it was discussed in the previous section, is that
of a 2-groupoid.

All together, if we consider the space G consisting of all complete selective
measurements and composite Stern-Gerlarch measurements together with their
natural composition law, it has the structure of a groupoid whose space of objects
is the space of events S of the system. Thus we will denote by G ⇒ S such
groupoid with the source and target maps s, t given by:

s(M(a′, a)) = a , t(M(a′, a)) = a′ .

4.3. The 2-groupoid structure of Schwinger’s algebra of selective mea-
surements. It is clear that SG-measurements define transformations among se-
lective measurements. That is, if we consider the transition MA(a, a′) and the
SG-measurements M(a′,b′) and M(b, a) that transform the ensembles EA(a′) in
EB(b′), and EB(b) in EA(a) respectively, then the transition M(b, a) ◦MA(a, a′) ◦
M(a′,b′) must be the transition corresponding to the selective measurementMB(b,b′),
that is:

(18) M(b, a) ◦MA(a, a′) ◦M(a′,b′) = MB(b,b′) .

Hence formula (18) defines a transformation ϕ : MA(a, a′) ⇒ MB(b,b′) in the
sense of Sect. 3.3. This transformation could be just denoted as ϕ(a, a′; b,b′)
instead of listing the pair of SG-measurements M(b, a) and M(a′,b′) involved on
its definition in order to avoid a too cumbersome notation.

It is a simple matter to check the axioms introduced in Sect. 3.3 for the theory
of transformations. The unit transformations are given by the pairs M(a) and

12There is no natural notion of ‘maximal selective measurement generated by a family of com-
patible observables’ as there could be many different maximal families of compatible observables
containing them.
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M(a′), that is 1(a,a′) = ϕ(a, a′; a, a′) because ϕ(a, a′; a, a′) ◦v ϕ(a, a′; b,b′) would
transform the transition MA(a, a′) into the transition:

MA(a, a′)
ϕ(a,a′;a,a′)⇒ M(a) ◦MA(a, a′) ◦M(a′)
ϕ(a,a′;b,b′)⇒ M(b, a) ◦MA(a, a′) ◦M(a′,b′) = MB(b,b′) .

Notice that with this notation the vertical composition law is simply written as:

ϕ(a, a′; b,b′) ◦v ϕ(b,b′; c, c′) = ϕ(a, a′; c, c′) .

as it is shown by the following computation:

M(c,b) ◦ (M(b, a) ◦MA(a, a′) ◦M(a′,b′)) ◦M(b′, c′)

= (M(c,b) ◦M(b, a)) ◦MA(a, a′) ◦ (M(a′,b′) ◦M(b′, c′))

= M(c, a) ◦MA(a, a′′) ◦M(a′′, c′′) = MB(c, c′′) ,

The associativity property of the vertical composition law is easily checked in a
similar way.

Regarding the horizontal composition law, we must notice that if

ϕ(a, a′; b,b′) : MA(a, a′)⇒MB(b,b′) ,

and,

ϕ(a′, a′′; b′,b′′) : MA(a′, a′′)⇒MB(b′,b′′) ,

denote two transformations, then the composition:

(M(b, a) ◦MA(a, a′) ◦M(a′,b′)) ◦ (M(b′, a′) ◦MA(a′, a′′) ◦M(a′′,b′′))

= M(b, a) ◦ (MA(a, a′) ◦MA(a′, a′′)) ◦M(a′′,b′′)

= M(b, a) ◦MA(a, a′′) ◦M(a′′,b′′) = MB(b,b′′) ,

(where we have used that SG-measurements are invertible) shows that the pair of
SG-measurements M(b, a) and M(a′′,b′′) define a transformation from MA(a, a′′)
to MB(b,b′′) or, in other words:

ϕ(a, a′; b,b′) ◦h ϕ(a′, a′′; b′,b′′) = ϕ(a, a′′; b′,b′′) .

Finally, a simple computation shows that the exchange identity (13) is satisfied.
That is, we compute first:

(ϕ(a, a′; b,b′) ◦h ϕ(a′, a′′; b′,b′′)) ◦v (ϕ(b,b′; c, c′) ◦h ϕ(b′,b′′; c′, c′′))

= ϕ(a, a′′; b,b′′) ◦v ϕ(b,b′′; c, c′′) = ϕ(a, a′′; c, c′′) ,

but

(ϕ(a, a′; b,b′) ◦v ϕ(b,b′; c, c′)) ◦h (ϕ(a′, a′′; b′,b′′) ◦v ϕ(b′,b′′; c′, c′′))

= ϕ(a, a′; c, c′) ◦h ϕ(a′, a′′; c′, c′′) = ϕ(a, a′′; c, c′′) .

which proves the desired identity.
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The previous discussion can be summarised by saying that the family of Schwinger’s
maximal selective and Stern-Gerlach measurements have the structure of a 2-
groupoid whose 2-cells (corresponding to the notion of transformations discussed
in Sect. 3.3) are given by pairs of SG-measurements. The 1-cells, or transitions,
are given by maximal measurements, and its 0-cells, or events, are given by the
outcomes of maximal selective measurements.

4.4. The fundamental representation of Schwinger’s algebra of selective
measurements and the standard pictures of QM. The fundamental repre-
sentation of a groupoid was introduced in Sect. 2.4.1. We will use this representa-
tion to provide an interpretation of Schwinger’s 2-groupoid in terms of the standard
pictures of Quantum Mechanics. First we will assume, as Schwinger’s did, that
the set of outcomes {a} of maximal measurements is finite. This restriction can
be lifted but we will not worry much about it here. We will select the subgroupoid
GA corresponding to transitions M(a, a′). The fundamental representation of the
groupoid GA will take place on the finite dimensional Hilbert space HA generated
by the set of events a. Thinking now of the events a as labels ordered from 1
to n, with n the number of events and the dimension of HA, the elements in the
groupoid algebra C[GA] can be written as:

A =
n∑

a,a′=1

Aa,a′M(a, a′) ,

i.e., they are formal linear combinations of the selective measurements with com-
plex coefficients Aa,a′ . Hence they can be identified with n × n matrices whose
entries are given by Aa,a′ . The groupoid algebra composition law is just given by
multiplication of matrices, that is:

A ·B =
n∑

a,a′,a′′,a′′′=1

Aa,a′Ba′′,a′′′ δ(a
′, a′′)M(a, a′) ◦M(a′′, a′′′)

=
n∑

a,a′′′=1

(
n∑

a′′=1

Aa,a′′Ba′′,a′′′

)
M(a, a′′′)

=
n∑

a,a′′′=1

(AB)a,a′′′M(a, a′′′) ,

where in the last row, AB stands for the standard product of the matrices A and
B.

Continuing with this interpretation, we notice that using the canonical orthonor-
mal basis provided by the vectors |a〉, vectors |ψ〉 in the fundamental Hilbert
space HA can be identified with column vectors with components ψa, that is
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|ψ〉 =
∑n

a=1 ψa|a〉. Then, we get:

π(A)|ψ〉 =
n∑

a,a′,a′′=1

Aa,a′ψa′′ δ(a, a
′′) π(M(a, a′))|a′′〉 =

=
n∑

a,a′=1

Aa,a′ψa |a′〉 =
n∑

a′=1

(Aψ)a′ |a′〉 ,

where Aψ in the last row denotes the standard matrix-vector product. Hence the
fundamental representation becomes just the standar representation of the algebra
of n× n matrices on the corresponding linear space Cn.

Vectors in the fundamental space can be identified with complex linear combina-
tions of events and transitions are represented by rank 1 operators. In other words
the transition M(a, a′) is represented by the operator |a′〉〈a| in HA. Elements A
in the groupoid algebra are then represented as operators acting on HA. In this
sense the units 1a of the groupoid GA are represented by the rank one orthogonal
projectors |a〉〈a| that provide a resolution of the identity of HA,

∑n
a=1 |a〉〈a| = 1.

We may repeat the same construction starting with another subgroupoid GB

associated with the maximal set of compatible observables B obtaining a Hilbert
space HB and a representation of C[GB] in terms of linear operators on HB. If
the space of events ΩA and ΩB are assumed to have the same (finite) cardinal-
ity (i.e., A and B codify for the same physical information on the system under
consideration) we have that HA and HB are isomorphic as Hilbert spaces. More
interestingly, the 2-groupoid structure of Schwinger’s 2-groupoid Γ appears repre-
sented by the hand of the theory of transformations of Hilbert spaces. Consider a
transformation ϕ(a, a′; b,b′) : MA(a, a′) ⇒ MB(b,b′) sending the selective mea-
surement MA(a, a′) into the selective measurement MB(b,b′). Following the ideas
above, the selective measurements MA(a, a′) and MB(b,b′) will be represented on
the corresponding Hilbert spaces HA and HB supporting the fundamental rep-
resentations of the groupoids GA and GB respectively. Then, considering the
vector |A〉 =

∑n
a,a′=1Aa,a′ |M(a, a′)〉 in the Hilbert space generated by GA and the

element Φ =
∑
Ta,a′;b,b′ϕ(a, a′; b,b′), we get (all repeated indexes are summed):

π(Φ)A =
∑

Ta,a′;b,b′Ac,c′ δ(a, c)δ(a′, c′) π(ϕ(a, a′; b,b′))|M(c, c′)〉

=
∑

Ta,a′;b,b′Aa,a′ |M(b,b′)〉 .

But, transformations ϕ(a, a′; b,b′) are defined by pairs of SG-measurements, that
is the basis for the groupoid algebra C[Γ] consists on pairs of SG-measurements,
thus as a linear space it is the tensor product of the linear space generated by
SG-measurements. Then the coefficients Ta,a′;b,b′ can be written as the products
Tb,aTa′,b′ , hence we conclude:

(19) π(Φ)A =
∑

Tb,aTa′,b′Aa,a′ |M(b,b′)〉 =
∑

(T †AT ′)b,b′ |M(b,b′)〉 .
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where T †AT ′ stands for the standard matrix multiplication of the matrices defined
by T =

(
T̄a,b

)
, T ′ = (Ta′,b′) and A = (Aa,a′). The previous formula (19) shows that

the transformation ϕ(a, a′; b,b′) is represented in the standard form as operators
between the Hilbert spaces HA and HB.

5. Conclusions and discussion

A careful analysis of the structure of the algebra of measurements interpreta-
tion of a quantum system proposed by J. Schwinger reveals that its underlying
mathematical structure is that of a 2-groupoid. Using this background, a proposal
for the mathematical description of quantum systems based on the primitive no-
tions of events, transitions and transformations under the mathematical form of
a 2-groupoid is stated.

The standard interpretation in terms of vectors and operators in Hilbert spaces
is recovered when we consider the fundamental representation of such 2-groupoid.
Other representations can be chosen that will reveal different characteristics of the
system.

The analysis of the dynamics has been barely touched and a detailed analysis
of it will be developed in forthcoming works as well as other aspects of the theory,
like the reconstruction of the algebra of observables and the states of the quantum
system from the 2-groupoid structure. It is just sufficient to mention here that
groupoid-algebra, which naturally has the structure of an involution algebra, gives
a first insight regarding the connection with the C∗-algebraic formulation of quan-
tum theories which will be further explored in the forthcoming paper. In particlar,
the projectors |a〉〈a| will turn out to be normal pure states of the C∗-algebra of
the system, and the GNS construction applied to any of them will reconstruct the
Hilbert space of the fundamental representation.

Composition of systems, symmetries, examples and applications, etc., are all
aspects that will be discussed in subsequent works.
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