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Abstract. The kinematical foundations of a new picture of Quantum Mechan-
ics based on the theory of groupoids was presented in [1]. This groupoids based
picture provides the mathematical background for Schwinger’s algebra of selec-
tive measurements and his quantum variational principle. Category theory, in
particular the notion of 2-groupoids as well as their representations, is used in
the description of the new picture.

In this paper the dynamical aspects of the theory are analysed as well as its
statistical interpretation. For that, the algebra generated by the observables as
well as the notion of states are analysed and the structure of transition func-
tions, that play an instrumental role in Schwinger’s picture, are elucidated. A
Hamiltonian picture of dynamical evolution emerges naturally and the formalism
offers a simple way to discuss the quantum-to-classical transition. Some basic
examples are examined and the relation with the standard Dirac-Schrödinger
and Born-Jordan-Heisenberg pictures are discussed.
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1. Introduction: Groupoids and quantum systems

In the previous work [1], following the insight provided by Schwinger’s picture
of Quantum Mechanics [2, 3], it was argued that the basic mathematical structure
to describe a physical system is a 2-groupoid.

Schwinger’s algebra of measurements, his foundational approach to describe
quantum systems and quantized fields, is based on the notion of selective and
compound measurements [3]. Based on that, Schwinger developed a theory of
transitions functions that, together with a dynamical principle, set the basis to his
solution of the quantum description of electrodynamics (see the series of celebrated
papers [4]).

After a careful analysis of Schwinger’s algebra of measurements it was argued
in [1] that the abstract description of quantum mechanical systems should be
formulated in terms of a family of primary notions: ‘events’, corresponding to
elementary selective measurements; ‘transitions’, that in Schwinger’s simplified
presentation were called generalised selective measurements, and ‘transformations’,
that were used to compare descriptions corresponding to different incompatible
experimental setups.

The structural properties of such notions were discussed at length and it was
shown that they have the mathematical structure known as a 2-groupoid. In fact,
events and transitions provide a natural abstract setting for Schwinger’s notion
of physical selective measurements and form an ordinary groupoid. The theory of
transformations fits naturally in this setting and determines a 2-groupoid structure
on top of Schwinger’s groupoid, the groupoid defined by the transitions of the
system and its corresponding objects, the events.

The description of the mathematical structure behind Schwinger’s algebra of
measurements provided in [1] was essentially kinematical and no attention was paid
to the dynamical aspects of the theory. Thus, it can be considered as a background
structure for any quantum mechanical system. Only the broad aspects of the
theory, like the general form of events (but not their quantitative characteristics),
the relations among them, with its categorical trait, and the inner symmetries in
the form of transformations, were accounted for at this stage. It was shown that
the fundamental representation of Schwinger’s groupoid algebra allows to relate the
groupoid picture to Dirac’s picture of Quantum Mechanics by associating a Hilbert
space to it, again reinforcing this kinematical interpretation as no dynamics in the
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form of a Hamiltonian operator is specified1. Thus, an analysis of the fundamental
dynamical aspects of the theory, starting with the notion of observable and states,
should complement the work in [1]. This will be main objective of the present
paper.

Here we would like to discuss in detail the role of dynamical variables, that is,
observables, and the dynamical evolutions in the groupoid setting. Observables
will be defined in terms of the basic notion of amplitudes. An ‘amplitude’ would be
defined as the assignment of a complex numerical value to any physically allowed
transition of the system. Thus, amplitudes are just complex valued functions
on Schwinger’s groupoid and they carry a C∗-algebra structure. The physical
observables are then the real elements in this C∗-algebra.

A complete description of the system will be provided by a groupoid such that
the real elements in its algebra of amplitudes are actually the totality of observables
of the theory. In such case, the states of theory are the states of the C∗-algebra
of amplitudes, and their relation with vectors in the fundamental representation
of the groupoid will be discussed by means of the GNS construction. The the
standard probabilistic interpretation of the theory can be established by means of
the module square of amplitudes of the operators representing the observables.

The many different, but equivalent, descriptions of the same physical system
provided by (mutually incompatible) different complete families of experimental
setups allow to introduce a large class of generalised transitions, called in this
paper Stern-Gerlach transitions, which provide the mathematical background for
Schwinger’s theory of transitions functions and open the path towards the formula-
tion of a genuine dynamical principle for quantum systems. Some basic properties
of transition functions and their dynamical properties will be analysed, however,
the discussion of Schwinger’s dynamical principle and its subsequent applications
will be discussed elsewhere [5].

Before starting the actual presentation of the ideas sketched before, it is worth
to devote a few lines to place the aim and scope of the present project among the
many existing approaches regarding the foundations of Quantum Mechanics that
could be related to it.

Apart from the standard well-known pictures of Quantum Mechanics already
discussed in [1], many other settings have been proposed, some of them motivated
by the problem of achieving a quantum theoretical description of Gravity. With-
out pretending to be exhaustive, not even covering all relevant contributions on
the subject, we would like to mention here R. Penrose’s spin-networks [6], [7], von
Weizsacker urs [8], [9], the theory of causalnets developed from R. Sorkin’s insight
[10, 11], C. Isham’s categorical foundation of gravity [12], the noncommutative
geometry approach to the description of space-time inspired on A. Connes concep-
tion of geometry [13], [14], [15], etc. All of them share a notion of “discretness”

1Note that all infinite-dimensional separable Hilbert spaces are isometrically isomorphic, thus,
they do not provide a distinction between quantum systems.
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and “non-commutativity” in the description of fundamental physical theories in
Dirac’s spirit [16, 17]. Even if we will not offer here a proper analysis of the rela-
tion of the present discussion with any of them, we may state that the groupoid
description distilled from Schwinger’s ideas is related to all of them as it describes
physical systems without recurring to any notion of space-time; moreover, this
description incorporates in a natural way a statistical interpretation and may nat-
urally account for non-commutativity. However, we must stress here that we do
not pretend to use it as an alternative foundation for a ‘quantum’ theory of gravity.

The paper will be organised as follows. We will start by succinctly reviewing
the basic notions and notations used in our previous work and, afterwards, we will
discuss the properties and structure of the algebra of observables of the theory.
The notion of a complete description of a physical system will be introduced and
the C∗-structure of the algebra of observables will be discussed. The notion of
states and the construction of the corresponding vector descriptions in terms of
the fundamental representation of the groupoid algebra will be presented by using
the GNS construction. It will be shown that Schwinger’s transition functions are
naturally described in this setting and a discussion of the properties of transition
functions will be offered. Finally, the construction of the dynamical evolution of
closed systems will be analysed proving that a Hamiltonian observable must be
the infinitesimal generator of it. Then, we will end the paper by applying all
the previous ideas to discuss a few simple systems: the qubit and the harmonic
oscillator. These examples, even if elementary, illustrate the powerful analytical
insight offered by the groupoid approach.

As it was commented before, the discussion of Schwinger’s dynamical principle
as well as a detailed description of the probabilistic interpretation of the theory
in terms of Sorkin’s quantum measures [11], as well as the application to other
physical systems of interest, will be left for subsequent works.

2. Groupoids, algebras and other basic notions

Even if groupoids can be described in a very abstract setting using category
theory, in this paper we will only use set-theoretical concepts and notations to
work with them. Thus, a groupoid G will be a set whose elements α will be
called transitions. There are two maps s, t : G → Ω, called source and target
respectively, from the groupoid G into a set Ω whose elements will be called events,
and, if s(α) = a and t(α) = a′, we will often use the diagrammatic representation
α : a → a′ for the transition α. Notice that the previous notation does not imply
that α is a map from a set a into another set a′, even if sometimes we will use the
notation α(a) to denote a′ = t(α). We will also say that the transitions α relates
the event a to the event a′.

Denoting by G(a, a′) the set of transitions relating the event a with the event a′,
there is a composition law ◦ : G(a′, a′′)×G(a, a′)→ G(a, a′′) such that if α : a→ a′
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and β : a′ → a′′, then β ◦ α : a → a′′2. It is postulated that the composition law
◦ is associative whenever the composition of three transitions makes sense, that
is: γ ◦ (β ◦ α) = (γ ◦ β) ◦ α, whenever α : a → a′, β : a′ → a′′ and γ : a′′ → a′′′.
For any event a ∈ Ω there is a transition denoted by 1a satisfying the properties
α ◦ 1a = α, 1a′ ◦ α = α for any α : a → a′. Notice that the assignment a 7→ 1a
defines a natural inclusion i : Ω → G of the space of events in the groupoid G.
Finally it will be assumed that any transition α : a → a′ has an inverse, that is
there exists α−1 : a′ → a such that α ◦ α−1 = 1a′ , and α−1 ◦ α = 1a.

Given an event a ∈ Ω, we will denote by G+(a) the set of transitions starting
at a, that is, G+(a) = {α : a → a′} = s−1(a). In the same way we define G−(a)
as the set of transitions ending at a, that is, G−(a) = {α : a′ → a} = t−1(a). The
intersection of G+(a) and G−(a) is the set of transitions starting and ending at a
and is called the isotropy group Ga at a: Ga = G+(a) ∩G−(a). Notice that we
may write

(1) G ◦ 1a = G+(a) , 1a ◦G = G−(a) ,

in the sense that composing with the unit 1a on the right selects the transitions
starting at a. Indeed, a transition α which is the result of composing some other
transition with 1a must have its source at a. In fact, it is easy to check that
G ◦ α = G+(s(α)) and α ◦G = G−(t(α)).

Given an event a, the orbit Oa of a is the subset of all events related to a, that
is, a′ ∈ Oa if there exists α : a → a′. Clearly the isotropy group Ga acts on the
right on the space of transitions leaving from a, that is, there is a natural map
µa : G+(a)×Ga → G+(a), given by µa(α, γa) = α ◦ γa (notice that the transition
γa : a → a doesn’t change the source of α : a → a′). Then it is easy to check that
there is a natural bijection between the space of orbits of Ga in G+(a) and the
elements in the orbit Oa, given by α ◦Ga 7→ α(a) = a′. Then we may write:

G+(a)/Ga
∼= Oa .

It is obvious that there is also a natural left action of Ga into G−(a) and that
Ga\G−(a) ∼= Oa too. The subset G+(a) is left-invariant under the natural action
of the groupoid G on it, that is G ◦G+(a) = G+(a). In the same way G−(a) is
right invariant under the action of G. Notice that G◦G−(a) = G(a) = G+(a)◦G,
in fact, because of (1), we have:

(2) G ◦ 1a ◦G = G(a) .

The groupoid algebra C[G] of the groupoid G is defined in the standard way as
the associative algebra generated by the elements of G with the relations provided
by the composition law of the groupoid, that is, elements α in C[G] are finite formal
linear combinations α =

∑
α∈G cα α, with cα complex numbers. The groupoid

2The ‘backwards’ notation for the composition law has been chosen so that the various rep-
resentations and compositions used along the paper look more natural, it is also in agreement
with the standard notation for the composition of functions.
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algebra elements α can be though as mixed transitions for the system. Once
we introduce the C∗-algebra of amplitudes in the groupoid picture, the convex
combinations of the unit transitions 1a with a ∈ Ω may be thought of as the
normal states of the algebra of amplitudes. The associative composition law on
C[G] is defined as:

α ·α′ =
∑

α,α′∈G

cαcα′ δα,α′ α ◦ α′ ,

where the indicator function δα,α′ takes the value 1 if α and α′ are composable, and
zero otherwise. The groupoid algebra has a natural involution operator denoted
∗, defined as α∗ =

∑
α c̄α α

−1, for any α =
∑

α cα α.
If the groupoid G is finite, there is a natural unit element 1 =

∑
a∈Ω 1a in the

algebra C[G]. From Eq. (2) we get:

C[G] ◦ 1a ◦ C[G] = C[G(a)] ,

with C[G(a)] the groupoid algebra of the subgroupoid G(a).
Another family of relevant mixed transitions are given by 1Ga =

∑
γa∈Ga

γa,
which are the characteristic ‘functions’ of the isotropy groups Ga and 1G±(a) =∑

α∈G±(a) α that represent the characteristic ‘functions’ of the sprays G±(a) at a.

Finally, we should mention the ‘incidence’ or total transition, defined as I =
∑

α α.
Clearly,

C[G] ◦ I = I ◦ C[G] = C[G] ,

and

(3) I ◦ 1a = 1G+(a) , 1a ◦ I = 1G−(a) , 1a ◦ I ◦ 1a = 1Ga .

3. Amplitudes and Observables

3.1. The algebra of amplitudes. According to the premises laid on in [1] we will
assume that the description of a given physical system may be given in terms of
groupoids. Specifically, we start with a family A of experimental setups by means
of which we may perform experiments on the physical system under investigation
in order to measure a ‘property’. The outcomes of measurements performed in
such experiments are the ‘physical events’, and the set of all such outcomes is
denoted by ΩA . According to [1], we will not try to make precise at this stage
the meaning of ‘measurement’, ‘property’ or the nature of the outcomes as we will
consider them primary notions determined solely by the experimental setting used
to study our system.

In the incipit of [2], Schwinger writes: “The classical theory of measurement is
implicitly based upon the concept of an interaction between the system of interest
and the measuring apparatus that can be made arbitrarily small, or at least pre-
cisely compensated, so that one can speak meaningfully of an idealized experiment
that disturbs no property of the system. The classical representation of physical
quantities by numbers is the identification of all properties with the results of
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such nondisturbing measurements. It is characteristic of atomic phenomena, how-
ever, that the interaction between system and instrument cannot be indefinitely
weakened. Nor can the disturbance produced by the interaction be compensated
precisely since it is only statistically predictable. Accordingly, a measurement on
one property can produce unavoidable changes in the value previously assigned
to another property, and it is without meaning to ascribe numerical values to all
the attributes of a microscopic system. The mathematical language that is appro-
priate to the atomic domain is found in the symbolic transcription of the laws of
microscopic measurement3”.

The “ontological disturbance” of the act of measuring individuated by Schwinger
is at the roots of the introduction of the notion of transitions among the outcomes of
experiments. In a purely classical context, the act of measuring does not influence
the system and we may safely say that, if the outcome of the measurement we
actually performed on the system is a, the measured property of the system has the
value a. On the other hand, this is no longer the case for microscopic phenomena
where the outcome a of the measurement of some property we actually performed
on the system is compatible with different values, say, a′, a′′, etc., of the same
property before the act of measurement. The transitions among the outcomes of
experiments (henceforth simply: transitions) are precisely the objects that take
this instance into account. By imposing a small set of “natural” axioms on it, the
set GA of transitions becomes a groupoid over the set ΩA of events.

An amplitude of the system is by definition a map f : GA → C, that is, an
assignement of a complex number f(α) to any transition α. The set F(GA ) of all
amplitudes is an algebra with respect to the convolution product:

(4) (f ? g)(γ) =
∑
α◦β=γ

f(α)g(β) .

where the summation is taken over all transitions α, β in G such that α ◦ β = γ.
Notice that the previous expression can also be written as:

(f ? g)(γ) =
∑

t(α)=t(γ)

f(α)g(α−1 ◦ γ) =
∑

s(β)=s(γ)

f(γ ◦ β−1)g(β) .

In general, the algebra F(GA ) of amplitudes is non-commutative. However,
there is a natural involution operator ∗ : F(GA )→ F(GA ), f 7→ f ∗, defined by:

f ∗(γ) = f(γ−1) ,

that makes F(GA ) into a ∗-algebra. The observables are then the real elements
of the algebra F(GA ) with respect to the involution ∗. If the groupoid GA is
discrete countable (or finite), there is a unit element given by the function 1 that
takes the value 1 on all unit transitions 1a : a → a, and zero otherwise, that is:

3The emphasizing is due to the authors.
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1 = δΩA
, the characteristic function of the set of events ΩA considered as a subset

of GA . Notice that:

(1 ? f)(γ) =
∑
α

1(α−1 ◦ γ)f(α) = f(γ) ,

and similarly f ? 1 = f . Furthermore, there is a natural norm defined on F(GA )
that makes it into a C∗-algebra4. In what follows we will assume that the algebra
of amplitudes carries a C∗-algebra structure.

It is easy to see that F(GA ) is ‘dual’ to the groupoid algebra C[GA ] introduced
in section 2. Specifically, any function f ∈ F(GA ) can be written as:

f =
∑
γ

f(γ)δγ ,

with δγ the function that takes the value 1 at γ and zero elsewhere. There is a
natural pairing 〈·, ·〉 : F(GA )×C[GA ]→ C, between the algebra of amplitudes and
the groupoid algebra obtained by extending linearly the evaluation of amplitudes
on transitions, that is:

〈f,α〉 =
∑
α

f(α)cα ,

with α =
∑

α cαα. When ΩA is discrete, there is also a natural algebraic identi-
fication between both algebras provided by the linear basis {δα} and {α} of the
algebras F(GA ) and C[GA ] respectively. Under this identification the unit 1 in
C[GA ] goes into the unit function 1 in F(GA ).

We may describe this identification by denoting by αf the element in C[GA ]
associated with the function f and by fα the function associated with α. Then,
it is immediate to check that:

fα ? fβ = fα·β , αf ·αg = αf?g .

Moreover:

αf∗ = α∗f , fα∗ = f ∗α .

It is then clear that, under suitable conditions of completeness for the norms on
C[GA ] and F(GA ), the algebra of amplitudes F(GA ) has the structure of a von
Neumann algebra because it is the dual Banach space of C[GA ]. This situation
agrees with what happens in the algebraic formulation of quantum field theories
where the relevant algebras turns out to be von Neumann algebras.

4There is a natural way of constructing a C∗-algebra for a given groupoid over a locally
compact space of events by means of a family of (left-invariant) Haar measures as described for
instance in [19] (see also [20, Part III, Chap. 3] and references therein).
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3.2. Observables and self-adjoint operators in the fundamental represen-
tation. The fundamental representation of the groupoid GA provides a natural
intepretation of amplitudes in terms of operators. That is, if we denote as in [1]
by π : F(GA ) → End(HA ) the fundamental representation of the finite groupoid
GA , which is given by5:

(6) π(f)|a〉 =
∑
α

f(α)δ(α, a)|t(α)〉 ,

where a ∈ ΩA , |a〉 denotes the corresponding vector in HA , δ(α, a) is the indicator
function defined as δ(α, a) = 1 if α : a → b and zero otherwise, and t(α) is the
target of α, i.e., t(α) = b, then:

π(f ∗) = π(f)† ,

that is, the fundamental representation is a ∗-representation. Using an alternative
notation Af = π(f), we get Af∗ = A†f , where A† denotes the adjoint operator of
A in HA .

Notice that if the space of events is finite, a ranges over a finite set and HA is a
finite dimensional Hilbert space. Notice that 〈b, Afa〉 is just the sum of the values
of the function f on the transitions α : a→ b, that is:

〈b, Afa〉 = 〈b|(Af |a〉) =
∑
α : a→b

f(α) .

where we are using Dirac’s notation 〈b|a〉 to denote the inner product of the vec-
tors |a〉 and |b〉. Notice finally that real elements in the algebra F(GA ), that is,

functions such that f ∗ = f , are such that Af = A†f . In other words, real ele-
ments in the algebra of amplitudes determine self-adjoint operators on the Hilbert
space HA , that is, observables in the standard framework of quantum mechanics.
Accordingly, we call a real element in F(GA ) an observable.

For any amplitude f we may write the following formula for the sum of ampli-
tudes:

〈a|Af |b〉 =
∑
α : a→b

f(α) .

In the particular instance when f is an observable and a = b, we get the real
number 〈a|Af |a〉, that can be interpreted as the expected value of the observable

5There is a natural extension of this formula when the groupoid GA is a locally compact
groupoid over a standard Borel measurable space with a measure µ and a family of left-invariant
Haar measures νa. In such case HA = L2(Ω, µ) and next equation (6) becomes:

(5) π(f)|a〉 =

∫
s−1(a)

f(α) |t(α)〉 dν(α) .
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f in the ‘state’ |a〉, given by:

(7) 〈a|Af |a〉 =
∑

α : a→a

f(α) =
∑
α∈Ga

f(α) .

This formula justifies the name of amplitudes given before to the values of the
functions f on transitions. Actually, if there is just one transition from a to b like
in Schwinger’s measurement algebra model (see [1]), then the value f(α) is exactly
the amplitude of the operator π(f) = Af with respect to the vectors |a〉 and |b〉 in
the fundamental Hilbert space HA .

3.3. Completeness of systems of compatible observables. Notice that the
notion of observable we have introduced is consistent with the terminology intro-
duced from the very beginning where the events a were named after the outcomes
of measurements performed during some experiment on the system. In fact, given
an event a, if we assume for simplicity that a is just a real number, there is an
observable in F(GA ) whose expected value is a. Indeed, the observable fa = a δ1a

is such that 〈a|Afa|a〉 = a.
So far, we have identified the algebra of amplitudes associated with the family

A of experimental setups with the dual algebra of the algebra of the groupoid
of transitions GA . No assumption whatsoever was made on the structure of the
whole family of amplitudes themselves A. It is possible that when we use a family
A of compatible experimental setups, the algebra of amplitudes F(GA ) associated
with the groupoid of transitions over the space of events ΩA determined by A ,
yield all amplitudes of the system.

More formally, suppose that A is the family of all amplitudes of the system6.
Then, we proceed to determine experimentally as many families of events and
transitions among them as possible by selecting families of compatible experimental
setups A , B, etc. As it was discussed in [1], these families form a groupoid G with
total space of objects Ω. Suppose that we select a family A of experimental setups
and its corresponding subspace of events {a} = ΩA ⊂ Ω. This choice will select
a subgroupoid GA ⊂ G consisting of those transitions α : a → a′, a, a′ ∈ ΩA .
Eventually, we can consider the algebra of the groupoid GA and its corresponding
algebra of amplitudes F(GA ). This algebra will be contained in A as it was shown
before. It could also happen that the groupoid of transitions associated with the
family A of experimental setups we have chosen is ‘generic’ enough, so that the

6Notice that this is just an idealisation of a situation that would never happen, that is, we
could never know for sure if the quantities we have identified as measurable for a given system
are all its physical attributes that can be measured. For instance, think to the spin of the
electron. When Thompson identified it, it was just possible to measure its position, linear
momentum, angular momentum, energy and charge. Only much later it was realised that there
was another measurable physical quantity for the electron, its spin. We may also consider the
examples provided by the many quantum charges, isospin, barionic charge, strangeness, etc.,
that have been discovered discovered later on and which are characteristic measurable quantities
of elementary particles.



GROUPOIDS AND QUANTUM MECHANICS 11

algebra of amplitudes F(GA ) is essentially7 the whole A. Then we will say that
the family of amplitudes associated with A is a complete8 family of amplitudes
for A. As we were saying before, that an algebra of amplitudes is complete or not
could be more an academic question than a real one, in the sense that if we find a
family such that the C∗-algebra of amplitudes constructed from them contains all
other relevant descriptions we have of the system, we may consider that algebra is
just the algebra of amplitude of the system.

In what follows we will just assume that we have a family A of experimental
setups such that the algebra of amplitudes of the system is given by the algebra
F(G) functions on the groupoid G defined by such family. This is not really a
simplifying assumption, as the structure of the events determined by that family
could be very complicated. We will often use the simplifying assumption that
the space of events is discrete (or even finite) to illustrate the main ideas without
having to rely on heavy technical machinery from functional analysis and operator
algebras.

4. States

We can now discuss properly the notion of states for physical systems described
by groupoids of transitions. Given that the algebra of amplitudes of the system
under consideration is a C∗-algebra, the C∗-algebra of functions F(G) on the
groupoid G of transitions, we define a state ρ as a state on F(G) in the sense
of functional analysis. Consequently, a state ρ is a normalized positive linear
functional on F(G), that is, ρ : F(G)→ C, is a linear map such that ρ(f ∗?f) ≥ 0,
for all f , and ρ(1) = 1. Notice that we are assuming that the C∗-algebra F(G) is
unital.

According to the previous definition a state is an element in the dual space
of F(G), however, F(G) is the dual of the groupoid algebra C[G] generated by
transitions, and thus we may identify some of these transitions as states in the
above sense.

For instance consider the linear functional defined by the unit 1a, that is, ρa(f) =
f(1a). Clearly ρa is a state because ρa(1) = 1(1a) = 1 and

ρa(f
∗ ? f) = (f ∗ ? f)(1a) =

∑
α◦β=1a

f ∗(α)f(β) =
∑
β : a→b

f ∗(β−1)f(β)(8)

=
∑
β : a→b

f(β)f(β) =
∑
β : a→b

|f(β)|2 ≥ 0

where the sum above should be replaced by an integral in the continuous case.
Thus the events a obtained from the family A can be properly identified with

7In the infinite dimensional situation we will demand that the algebra of amplitudes generated
by GA will be dense in A using an appropriate topology.

8Notice that this is not the usual meaning of ‘complete’ that usually refers to the family to
be a maximal subset of compatible observables.
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states ρa of the algebra of amplitudes. Even more, the value ρa(f) = f(1a) is
just the expected value of the amplitude f in the state ρa in agreement with the
interpretation provided by formula (7) in the case that there is a unique transition
1a : a → a. Notice that if the system has ‘inner’ structure, that is Ga 6= {1a},
then the state describing the expected value of the amplitude f would be the state
defined as:

ρinner
a (f) =

1

|Ga|
∑
α∈Ga

f(α) ,

or, equivalently ρinner
a = 1

|Ga|
∑

α∈Ga
α, which is a convex combination with weights

pα = 1/|Ga| of all ‘inner’ transitions α ∈ Ga.
Given a state ρ, we can construct the GNS Hilbert space Hρ associated with

it and the corresponding representation of the C∗-algebra. Let us recall that Hρ

is the completion of the quotient space F(G) with respect to the Gelfand ideal
Jρ = {f | ρ(f ∗ ? f) = 0}. There is a natural inner product defined on F(G)/Jρ
given by 〈f + Jρ, g + Jρ〉 = ρ(f ∗ ? g) whose associated norm is used to construct
the desired completion. The algebra F(G) is represented canonically on Hρ as:
πρ(f)(g + Jρ) = f ? g + Jρ.

In the particular instance when we use the state ρa, we get that because Eq.
(8), ρa(f

∗ ? f) = 0 iff
∑

β |f(β)|2 = 0, for all β : a → a′. We will denote by G(a)
the collection of transitions starting at a:

G(a) = {α : a→ a′} ,

then, the ideal Jρa = {f | f(β) = 0, β : a → b}, is just the ideal of functions
vanishing at G(a), but then:

F(G)/Jρa = F(G(a)) .

Thus, the Hilbert space Hρa of the GNS representation of the state ρa is given by
the set of functions ψ on G(a) with inner product:

(9) 〈φ, ψ〉ρa = ρa(φ ? ψ) = (φ ? ψ)(1a) =
∑

α∈G(a)

φ(α−1)ψ(α) ,

were, with an evident abuse of notation, we use the symbols φ and ψ for both the
functions in F(G(a)) and their extension to F(G).

Finally, notice that the space Hρa = F(G(a)) supports the GNS representation
of the algebra F(G), that is, F(G) acts on it by πa(f)ψ = f ? ψ. This action is
the dual action of the action of the groupoid algebra C[G] in G(a) on the right,
that is: α 7→ α ◦ β, for all α : a → a′ and β a transition composable with α9. We
have concluded the GNS construction for the state ρa

9The ‘duality’ between C[G] and F(G) must be defined properly (that is being antilinear
in the first factor) so that everything fits nicely - recall the problem with the adjoint in the
fundamental representation!
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On the other hand, notice that the isotropy group Ga of the unit 1a is contained
in G(a) and it acts on G(a) by composition on the right, that is, γa : α→ γa ◦ α,
γa ∈ Ga and α ∈ G(a). Then, provided the groupoid G is connected, we have :

G(a)/Ga
∼= Ω .

The quotient space G(a)/Ga (that is, the space of orbits of Ga in G(a)) is in
one-to-one correspondence with the space of events Ω. The map describing such
correspondence is given by [α] 7→ t(α) = a′ if α : a→ a′, and [α] denotes the orbit
passing through α. The map is clearly surjective. To show that it is injective,
notice that t(γa ◦ α) = t(α) and if we have two transitions: α, α′ : a → a′, then
α′ ◦ α−1 = γa ∈ Ga and [α] = [α′].

The GNS representation πa will not be irreducible in general, that is, the state
ρa is not pure in general. We can see that by observing that there is a natural
representation µa of the group Ga on Hρa = F(G(a)) defined as follows:

[µa(γa)ψ](α) = ψ(γa ◦ α) , γa ∈ Ga, α ∈ G(a) ,

and ψ : G(a) → C is a function in Hρa . Notice that the representation µa will
not be irreducible in general and it will decompose as a direct sum of irreducible
representations of Ga. However µa will always contain the trivial representation
of Ga. It will be given by the subspace of invariant functions in F(G(a)), that is,
the subspace of functions of the form:

ψ̃(α) =
1√
|Ga|

∑
γa∈Ga

ψ(γa ◦ α) .

Notice that this subspace, that can be denoted as H̃Ω, is isomorphic to the Hilbert
space HΩ supporting the fundamental representation because these functions are
invariant along the orbits of Ga, so that they project to functions on G(a)/Ga

∼= Ω.

The precise assignment is given by ψ̃ 7→ ψ, ψ(a′) = ψ̃(α), with α : a→ a′.
Finally, notice that because of Eq. (9) we get:

〈φ̃, ψ̃〉ρa =
∑

α∈G(a)

φ̃(α−1)ψ̃(α) =
1

|Ga|
∑
a′∈Ω

∑
γa∈Ga

φ(a′)ψ(a′) = 〈φ, ψ〉HΩ
,

which shows that the trivial irreducible component H̃ρa of the GNS representation
Hρa of the state ρa is isomorphic to the fundamental representation of the algebra of
observables of the groupoid. G. Evenually, we can summarise the results obtained
is far in the following theorem:

Theorem 1. Given a physical system described by the groupoid G of transitions
among the outcomes of experiments associated with a family A of experimental
setups with outcome space Ω, and such that the algebra F(G) of amplitudes of
the system is a C∗-algebra with unit, there is a Hilbert space associated with the
system which is provided by the Hilbert space HΩ supporting the fundamental rep-
resentation of the groupoid G ⇒ Ω. Moreover, the states ρa determined by the unit
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transitions 1a of the system are naturally identified with the vectors |a〉 ∈ HΩ. The
Hilbert space HΩ is isomorphic to the subspace supporting the trivial representation
of the group Ga in the Hilbert space Hρa obtained by the GNS construction applied
to any state ρa. Eventually, observables in the algebra F(GA) are represented as
self-adjoint operators in HΩ. The expected value of the real observable f in any
state ρ determining a vector |φ〉 in HΩ is given by 〈f〉ρ = ρ(f) = 〈φ|Af |φ〉.

5. Schwinger’s transition functions

5.1. A ‘relativity principle’ and the composition of transitions again.
The assumption that we can construct the algebra of observables of the system
out of a complete family of compatible experimental setups and its corresponding
groupoid of transitions leads to a relevant observation regarding the nature and
composition properties of transitions.

Two complete families of experimental setups A , B for a given physical system
provide two different descriptions of its family of observables A given respectively
by the algebras F(GA ) and F(GB). Because the physical reality described by
observers using an experimental setting A cannot be different from that described
by other observers using B, we postulate that the algebras F(GA ) and F(GB)
must be isomorphic. Given their canonical C∗-algebraic structures, we will as-
sume that they are isomophic as C∗-algebras. In fact, this assumption is based on
physical grounds as the involution operator ∗ is the abstract notion of the adjoint
operator in the fundamental representation, thus the condition that the identifi-
cation between both algebras is a ?-homomorphism is just the demand that the
identification preserves the identification of real observables. On the other hand,
the norms of the algebras are induced from the fundamental representation, thus
the condition the the identification is norm preserving is just the statement that
the identification of amplitudes f(α) with expectation values (recall Eq. (7)) is
preserved.

This equivalence between the physical realities described by using different com-
plete families of experimental setups is a sort of relativity principle that has deep
implications on the composition properties of transitions. In fact, if A and B rep-
resent again two complete descriptions of the system, the algebras generated by
the transitions of both systems, that is the algebras of the corresponding groupoids
GA and GB to which the corresponding algebras of observables are dual, must be
isomorphic too because of the equivalence of the algebras of observables. We can
denote by τ : C[GB]→ C[GA ] this isomorphim and by τ ∗ : F(GA )→ F(GB) the
corresponding isomorphism between the algebras of observables.

Notice that the transitions are observed experimentally and they occur indepen-
dently of the devices we have chosen to set our experimental setting. However,
the composition law on each groupoid GA depends on the events determined by
A , hence, the groupoid algebra law depends on the chosen system A . This im-
plies that when observing a transition β : b → b′ within the ‘experimental frame’
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provided by the system A we do not get a yes-no answer as it would be the case
when observing a transition α : a → a′ with events a, a′ defined by A . However,
because of the isomorphism τ between both representation it is possible to identify
the transition β with an element in the algebra C[GA ], that is:

(10) τ(β) =
∑
α∈GA

c(β, α)α ,

for some complex numbers c(β, α)10.
This decomposition of transitions β corresponding to a given ‘experimental

frame’ B with respect to transitions in a different, hence necessarily incompatible,
experimental frame A is instrumental in Schwinger’s construction of the algebra of
measurements. Let us recall (see [1]) that ‘transitions’ are realised in Schwinger’s
algebra of measurements by means of selective measurements MA(a, a′), meaning
by that a device that selects the system whose outcome when measuring A is a
and returns the system changed in such a way that the outcome of another measure
of A would be a′. Thus, in principle, it does not make sense to compose selective
measurements MA(a, a′) and MB(b, b′) corresponding to incompatible systems of
experimental setups (unless the events a′ and b are equivalent, as it was observed
in [1]). However, at this point, in order to develop a full algebra of measurements,
Schwinger introduces the following fundamental assumption [3, pp. 9]:

“...(selective) Measurements that we have already considered involve the passage
of all systems or no systems at all between the two stages, as represented by the
multiplicative numbers 1 and 0. More generally, measurements of properties B,
performed on a system in a state a′ that refers to properties incompatible with B,
will yield a statistical distribution11 of possible values. Hence only a determinate
fraction of the systems emerging from the first state will be accepted by the second
stage. We express this by the general multiplication law:

(11) M(a′, b′)M(c′, d′) = 〈b′ | c′〉M(a′, d′) ,

where 〈b′ | c′〉 is a number characterizing the statistical relation between the states
b′ and c′.”

Even if at first sight this interpretation of the experimental results seems to be
correct, there is a fundamental issue with it. A proper probabilistic interpretation
of the fraction of the systems that will emerge in the final state should be given
by a positive real number, while the numbers 〈b′ | c′〉 appearing in the previous
expansion are complex and as such are treated in Schwinger’s construction of the
algebra of measurements (see for instance, Eq. (1.40) in [3, pp. 16]). Actually
they must be so because they represent amplitudes of transitions. It is the positive

10Properly speaking, it would be the image of β under the isomorphism between the two
algebras the one that would be written as a linear combination of transitions in GA , but in what
follows we will identify β with its image to avoid cumbersome notations.

11The underlying is ours.
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real number |〈b′ | c′〉|2 the one that provides the probabilistic interpretation and
the one that is actually measured in experiments.

Thus, we conclude that Schwinger’s interpretation of the composition law for
compound measurements Eq. (11) should be properly interpreted. A proper inter-
pretation is provided by formula (10) above. To be more precise, the fundamental
property that we have established is that a given physical transition β can be de-
scribed as a linear combination with complex coefficients of transitions α : a→ a′

obtained from a different complete family of experimental setups A . Hence given
two transitions α : a→ a′ ∈ GA and β : b→ b′ ∈ GB, we can compose them once
we identify β with an element in C[GA ] (or viceversa).

5.2. General Schwinger’s transition functions. Even if the composition for-
mula (10) provides a way to interpret the experimental results obtained when
observing transitions between events with respect to different complete systems of
observables, we have not provided a way of describing the general class of com-
pound transitions M(a, b) used in Schwinger’s composition law, Eq. (11), and that
we have called Stern-Gerlach transitions in [1].

We will start by defining a compound (or generalised, or Stern-Gerlach) transi-
tion γab : a→ b ∈ C[GA ] as follows:

(12) γab :=
∑

α : a→a′
α ◦ τ(1b) =

∑
α∈G(a)

α ◦ τ(1b) .

First we must point out that the transition γab lies in the algebra of transitions
with respect to the complete system A and, even if will have a definite outcome
b with respect to the system B, it will not have a definite outcome with respect
to the system A . In particular, the image τ(1b) of the unit transition 1b (cor-
responding to the event b defined by the complete system B) will be a linear
combination of transitions α ∈ GA . However, because the identification τ be-
tween the corresponding algebras is an isomorphism of ∗-algebras, we have that
τ(1b)

2 = τ(12
b) = τ(1b) and τ(1b)

∗ = τ(1∗b) = τ(1b), hence τ(1b) is a real idempotent
element. In this sense definition (12) of a compound transition can be understood
as ‘the projection onto the event b of all transitions emanating from a’.

An important observation is that because the algebras C[GA ] and C[GB] are
isomorphic as C∗-algebras, their corresponding irreducible representations must
be unitarily equivalent. Thus the fundamental representation πA of C[GA ] and
the fundamental representation πB of C[GB] are unitarily equivalent. This means
that there must exists an unitary operator U : HA → HB such that we get the
covariance property:

πA(τ(β)) = U †πB(β)U , ∀β ∈ GB .

Then, recall that the unit transition 1b defines the vector |b〉 ∈ HB, so that |b〉
can be identified with a vector |b̃〉 = U †|b〉 ∈ HA in the Hilbert space supporting
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the fundamental representation of F(GA ). In what follows we will use the same

symbol for the vector |b〉 and its image |b̃〉 in the space HA , thus we may write:

|b〉 =
∑
a∈ΩA

〈a|b〉|a〉 .

with the complex numbers 〈a|b〉 denoting the inner product of the vectors |a〉 and

|b̃〉 in HA . Alternatively we may have used that the unit 1b determines the state ρb
(that is, ρb(f) = f(1b)) on the algebra of observables F(GB), but as both algebras
F(GB) and F(GA ) are isomorphic, then ρb will also define a state in F(GA ).
More precisely, (τ−1)ρb will define a state on F(GA ). Not only that, as it was
shown before the state ρb can be identified with the vector |b〉 in the fundamental
representation of F(GB), but, again because both representations are equivalent,
the vector |b〉 can be identified with a vector in the fundamental representation of
F(GA ).

6. Dynamics

6.1. A first approach to dynamics on Schwinger’s groupoids: Heisen-
berg representation. A dynamical description of a physical system consists in
prescribing the evolution of its states. In our current setting (see theorem 1),
states are positive normalized linear functionals ρ on the algebra A generated by
the observables of the system, where the algebraA is identified with the C∗-algebra
F(G) with G the groupoid of transitions of the system. The family of states will
be denoted as S(G) and is a convex set in the topological dual of A.

However, because of the natural duality between states and observables, instead
of describing the evolution of states, we may also describe the dynamical evolution
of a system by means of observables. In particular, we will consider all those
dynamical evolutions that are described as a one-parameter family of positive,
normalised linear maps of the C∗-algebra F(G). Actually, a positive, normalised
linear map Φ: F(G)→ F(G), induces a map Φ∗ : S(G)→ S(G), as:

Φ∗(ρ)(f) = ρ(Φ(f)) , ρ ∈ S(G) , f ∈ F(G) .

This approach is the analog of Heisenberg’s picture in the setting we are developing.
A linear map Φ: A → B is positive if it maps the positive cone of the C∗-algebra A
into the positive cone of the C∗-algebra B. Then, if Φ is positive, Φ∗ maps positive
linear functionals into positive linear functionals. Finally, if Φ is normalised, that is
Φ(1) = 1, it maps normalised linear functionals into normalised linear functionals,
Φ∗(ρ)(1) = ρ(Φ(1)) = ρ(1) = 1. Hence, if Φ is a normalised positive linear map
of the C∗-algebra F(G), then Φ∗ maps the state ρ into another state Φ(ρ) of the
system. Consequently, if Φt is a one-parameter family of normalised positive maps,
the maps ϕt := Φ∗t : S(G) → S(G) define a dynamical evolution on the space of
states.
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We will not discuss here the characterisation of positive linear maps12 and we
will leave this discussion for later analysis. What we want to focus our attention
on is on the simplest situation of dynamics of closed systems.

A closed system is a system for which its dynamical evolution is independent
of external observations. ‘Observations’ here refers to the collection of actions
undertaken by specific observers when preparing and analysing the system. Of
course, when measurements are performed, the states of the system can be modified
and consequently the subsequent evolution of the states changes, however, no
further modifications on the dynamical behaviour of the system are caused by the
observers. From the mathematical point of view, this means that the algebra of
transitions and their transformations is not affected by the dynamics. In turn,
this means that the linear maps Φt describing their dynamics must preserve the
composition of transitions, hence, they must preserve the convolution product in
F(G):

Φt(f ? g) = Φt(f) ? Φt(g) .

More generally, we may consider that evolution is described by a family Φt0,t of
linear transformations of the algebra F(G), where t0 indicates a reference time
chosen by the observer and t > t0 the time when the system is observed. However,
because the system is closed, its dynamical behaviour does not depend on the
particular reference t0 chosen by the observer, and we conclude that Φt0,t depends
only on the difference s = t− t0 and Φt0,t = Φt−t0 . The family of maps Φt will be
called the dynamical flow of the system.

On the other hand, the system is ‘reversible’ because it is closed, that is, the
knowledge of the evolved states ρt = Φ∗t−t0ρt0 at time t > t0 under the dynamic
flow Φt−t0 allows to determine the original states ρt0 by inverting the dynamics,
that is, ρt0 = (Φ−1

t−t0)∗ρt. Hence, the dynamical flow should consists of invertible
linear maps that, in addition, must satisfy:

Φt ◦ Φs = Φt+s .

The dynamics is thus described by a one-parameter group of linear invertible
maps13.

Moreover, it is natural to request that the dynamics should preserve the real
character of observables, that is, if f ∗ = f , then Φt(f)∗ = Φt(f) = Φt(f

∗). Conse-
quently, because we may write any element f ∈ F(G) as f = f1 + if2 with fa real,
Φt preserves the real character of observables iff Φt(f)∗ = Φt(f)∗ for all f and all

12More precisely, we would like to consider completely positive maps, but this will be discussed
elsewhere where the specific adaptation of Stinespring’s and Choi’s theorems to the C∗-algebra
F(G) will be analysed.

13In general, it is only a local one-parameter group of automorphisms as it is not guaranteed
that Φt is defined for all t.
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t. Therefore, we conclude that the dynamical flow Φt of a closed system should
consists of a one-parameter group of automorphisms of the C∗-algebra F(G) 14.

Notice that, if the algebra F(G) is unital, then necessarily Φ(1) = 1, and
thus Φ is normalised. Moreover, if Φ is an automorphims, we have Φ(f ∗ ? f) =
Φ(f)∗ ? Φ(f) ≥ 0 for any f , and thus Φ is positive. Eventually, we conclude that
every such family of automorphisms Φt defines a family of normalised positive
maps.

If we have a dynamical flow Φt on the C∗-algebra F(G), its infinitesimal gener-
ator D defined as:

Df =
d

dt
Φt(f) |t=0 ,

is a derivationD, that is, it is a linear map such thatD(f?g) = Df?g+f?Dg for all
f, g ∈ F(G). Moreover, the derivation D is a ∗-derivation, that is D(f ∗) = (Df)∗,
hence it maps real observables into real observables. It is easy to check that given
an arbitrary function k ∈ F(G) the operation Dkf = [f, k] = f ? k − k ? f
is a derivation, moreover if k is imaginary, that is k∗ = −k, then it defines a
∗-derivation as:

(Dkf)∗ = [f, k]∗ = k∗ ? f ∗ − f ∗ ? k∗ = f ∗ ? k − k ? f ∗ = [f ∗, k] = Dk(f
∗) .

We may assume in what follows that the derivation is bounded (what always be
the case in finite dimensions) even if this will not be the case in general (see later
Sect. 7.2). Moreover if the algebra F(G) is semisimple, as it happens in the finite-
dimensional case [18], then the derivation D will be inner, this means that there

will exist an imaginary element h̃ = ih (h real) such that:

D = i[·, h] .

We will call the real observable h the Hamiltonian generator of the dynamical flow
and it will determine the dynamics of the system.

6.2. The Hamiltonian formalism. Suppose that a Hamiltonian h is given, then,
we may write down the equation for the dynamics of the system in Heisenberg form
as:

(13)
d

dt
f = i[f, h] ,

meaning that, given an initial observable f0, a solution of Eq. (13) is a curve f(t)
of observables such that df(t)/dt = i[f(t), h]. Because the derivation Dh = [·, h] is
bounded, that is h ∈ F(G), we may build its associated dynamical flow as:

Φtf = exp itDhf =
∑
k≥0

(it)k

k!
Dk
h(f) ,

14It is often requested that the flow satisfies a continuity property, typically being strongly
continuous with respect to the topology of the C∗-algebra.
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and after some simple computations we get that the solution to Eq. (13) with
initial value f0 is given by

f(t) = eitDhf0 = Φt(f0) .

which justifies the opening statement of this paragraph.
We should stress that, because the fundamental representation π is a represen-

tation of the algebra F(G), we have π(f ? g) = π(f)π(h), and then Eq. (13)
becomes Heisenberg’s evolution equation in the standard formalism of operators
in Hilbert space, that is:

(14)
d

dt
A = i[A,H] .

where H = Ah = ĥ = π(h) is the self-adjoint operator on HΩ representing the
Hamiltonian h, and A = Af for some f . Notice that any operator A is the image
under π of some element f in F(G)15.

Recall from the discussion on Sect. 4 that the folium of the state ρx consists of
density operators in the fundamental representation, thus, in particular, equation
(14), describes the evolution of density operators (‘mixed states’), that is:

(15)
d

dt
ρ̂ = i[ρ̂, H] .

This equation is also known as Landau-von Neumann’s evolution equation.

6.3. The quantum-to-classical transition. As a direct application of the dis-
cussion before we may sketch a description of the transition from a purely quantum
description of a dynamical system to a classical one. This constitutes a relevant
problem in any dynamical description of quantum systems which has not a general
agreement on how to be addressed. There are many proposals and ideas on how
to address this problem ([22]) some of them close in spirit to the proposal here. A
more detailed discussion of it will be pursued elsewhere.

First of all, we shall make precise what a classical description of a physical
system is. If we have a system whose algebra of observables is given by F(G), it
has a natural subalgebra provided by the functions supported on Ω16, that is the
algebra of functions F(Ω) that can be considered then as a subalgebra of F(G).
Notice that, if the product does not increase the support supp(f), supp(g) ⊂ Ω,
then:

f ? g = f · g ,
with · denoting the commutative pointwise product on functions in F(Ω). No-
tice that the representation π(f) of a function f with support in Ω is provided
by the multiplication operator by the function, then ||π(f)|| = sup ||f · Ψ|| =

15This is a general fact known as the ‘density theorem’.
16Recall that Ω can be considered as a subset of G by using the identification of events a with

the units 1a.
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supa∈Ω |f(a)| = ||f ||∞, hence F(Ω) inherits the structure of a commutative C∗-
algebra over Ω. Thus the commutative subalgebra of functions on Ω provides a
good model for the space of observables of a classical system whose configurations
are the events in Ω. On the other hand, classical states will correspond to nor-
malized positive functional on F(Ω). For instance, if Ω is a compact topological
space, then the C∗-algebra F(Ω) becomes the C∗-algebra of continuous functions
on Ω and the space of states the space of Radon measures on Ω.

In order to understand what kind of dynamics is induced on the classical sub-
algebra F(Ω) from a Hamiltonian dynamics on F(G) we will assume that the
Hamiltonian hε on G depends on a small parameter ε in such a way that hε → h0

when ε → 0,and h0 is a classical observable, that is h0 ∈ F(Ω). We will be more
precise on the dependence of hε in a moment. Notice that if f is a classical ob-
servable, f ∈ F(Ω), then, if α : x → y is an allowed transition from x to y, we
get:

[f, hε](α) = (f(y)− f(x))hε(α) ,

hence,

[f, hε] =
∑

α : x→y

(f(y)− f(x))hε(α)δα

=
∑

α : x→y

f(y)hε(α)δα −
∑

α : x→y

f(x)hε(α)δα

=
∑
x∈Ω

 ∑
α∈G−(x)

f(x)hε(α)δα −
∑

α∈G+(x)

f(x)hε(α)δα


=

∑
x∈Ω

 ∑
α∈G+(x)

f(x)h̄ε(α
−1)δα−1 −

∑
α∈G+(x)

f(x)hε(α)δα


=

∑
x∈Ω

f(x)
∑

α∈G+(x)

(
h̄ε(α

−1)δα−1 − hε(α)δα
)
.

The quantum-to-classical transition from the quantum system (F(G), hε), ε >
0 to a classical system on F(Ω) will be obtained by assuming that as ε → 0,
the amplitudes of the transitions α : x → y, x 6= y, tend to zero and become
concentrated at the edges, that is, we will assume that hamiltonian hε has a power
series expansion of the form:

hε(α) = εh1,α(x, y) + ε2h2,α(x, y) + · · · , α : x→ y .

On the other hand, the basis functions δα, will also have to have a limit when
ε→ 0 in F(Ω). The only natural limit form them is δy−δx if α : x→ y or, in other
words, we may imagine that there is a deformation δα(ε) such that δα(1) = δα and
δα(0) = δy − δx. For instance, if we represent the transition α : x → y as the
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oriented interval [0, 1], and δα is the constant function 1, then δα(ε) could be given
by the family of functions shown in the picture. Thus we will assume that:

h̄ε(α
−1)δα−1 − hε(α)δα = ε

(
(h̄1,α(x, y)− h1,α(x, y))(δy − δx)

)
+ h.o.t. ,

Then, the dynamical evolution of the system is given by:

ḟ = i[f, hε] =

= iε
∑
x∈Ω

f(x)
∑
y∈Ω

∑
α∈G(x,y)

(
h̄1,α(x, y)− h1,α(x, y)

)
(δy − δx)

= ε
∑
x,y∈Ω

f(x)k(x, y)(δy − δx) ,

with the kernel k(x, y) given by:

k(x, y) = −2
∑

α∈G(x,y)

Imh1,α(x, y) ,

and
k(x, y) = −k(y, x) .

If we consider now a change in the scale of time as t 7→ τ = εt, then the equation
of motion for the classical observable f becomes:

(16)
d

dτ
f =

∑
x,y∈Ω

(f(x)− f(y))k(x, y)δx ,

or, if Ω is finite and its elements numbered x1, . . . , xn and the values f(xi) = fi,
k(xi, xk) = kij, then:

d

dτ
fi =

n∑
j=1

(kijfj − kijfi) ,

thus we defining the matrix K with entries:

(17) Kij = kij −
n∑
l=1

kilδij ,

we have:
d

dτ
f = K · f ,

with · denoting the matrix vector product and f denoting the column vector with
entries fi.

In particular notice that if we have a classical state, that is a state of the form
p =

∑
x∈Ω px1x, px ≥ 0,

∑
x px = 1, then, its evolution under a Hamiltonian

function hε becomes:

(18)
d

dτ
pi =

n∑
j=1

Kij · pj ,
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but because Eq. (17) we get that the matrix K satisfies that
∑n

i=1Kij = 0, and
then

d

dτ

n∑
i=1

pi = 0 ,

and the total probability is conserved. Finally if hε is such that hε(α) = iεγ(x, y)
with γ(x, y) < 0, then k(x, y) > 0 and the classical evolution equation of the
system is that of a classical random walk on the space of events Ω.

7. Some simple examples

7.1. The extended singleton. Let us start the discussion by considering what
is arguably the simplest non-trivial groupoid structure. We call it the extended
singleton and is given by the diagram below, see Fig. 1:

+ −

α

α−1

Figure 1. The extended singleton.

This diagram will correspond to a physical system described by a complete
family of experimental setups A producing just two outputs, denoted by + and
− in the diagram, and with just one transition α : + → − among them. Notice
that the groupoid GA associated to this diagram has 4 elements {1+, 1−, α, α

−1}
and the space of events is just ΩA = {+,−}. The groupoid algebra is a complex
vector space of dimension 4 generated by e1 = 1+, e2 = 1−, e3 = α and e4 = α−1

with structure constants given by the relations:

e2
1 = e1 , e2

2 = e2 , e1e2 = 0 , e3e4 = e1 ,

e4e3 = e2 , e3e3 = e4e4 = 0 , e1e3 = e3 ,

e4e1 = e4 , e1e4 = 0 , e3e2 = e3 , e2e3 = 0 .

The fundamental representation of the groupoid algebra is supported in the 2-
dimensional complex space H = C2 with canonical basis |+〉, |−〉. The groupoid
elements are represented by operators acting on the canonical basis as:

A+|+〉 = π(1+)|+〉 = |+〉 , A− = π(1−)|−〉 = 0 ,

that is with associated matrix:

A+ =

[
1 0
0 0

]
.
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Similarly we get:

A− = π(1−) =

[
0 0
0 1

]
, Aα = π(α) =

[
0 0
1 0

]
, Aα−1 = π(α−1) =

[
0 0
1 0

]
,

Thus the groupoid algebra can be naturally identified with the algebra of 2 × 2
complex matrices M2(C) and the fundamental representation is just provided by
the matrix-vector product of matrices and 2-component column vectors of C2.

Amplitudes are maps f : GA → C, thus, they assign an amplitude to any of
the transitions above, in particular we get f(α) = 〈−|Af |+〉, with Af the operator
associated to f .

Observables correspond to elements in the dual space of the algebra of the
groupoid that we will identy again with the algebra of 2 × 2 complex matrices
using the standard trace inner product, that is 〈A,B〉 = Tr (A†B). Then real
observables can be identified with 2× 2 Hermitean matrices:

(19) A =

[
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

]
= x0 I + x · σ = 〈x, σ〉 ,

where σµ denote the standard Pauli σ-matrices:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

together with σ0 = I, and x is the vector in R3 with components (x1, x2, x3). Then,
the real observable f defined by the Hermitean matrix A above, Eq. (19), is given
by:

f(1+) = x0 + x3 , f(1−) = x0 − x3 , f(α) = x1 + ix2 , f(α−1) = x1 − ix2 .

States ρ are defined as normalised positive functionals in M2(C), and they can be
identified with density matrices ρ = ρ†, Tr ρ = 1, ρ ≥ 0. In this representation
the complete system of observables will be the operator σ3, identified for instance
with the third component Sz of the spin operator S of an electron. The outcomes
of this operator would be its eigenvalues ±1 (that we have represented by the
symbols + and − respectively). Notice that in the symbolic notation used above,
this observable f3 would be defined as f3(1+) = 1, f3(1−) = −1 and zero otherwise.

Stern-Gerlach transitions will be obtained by considering another complete sys-
tem of experimental setups. It is not completely obvious, but after a minute
reflection we will arrive to the conclusion that any other such complete system,
call it B, will provide exactly two outcomes, we may denote them as {→,←}. The
algebra of transitions will be generated by 1→, 1←, β and β−1, with β the ‘flip’
transition from the event → to the event ←. The algebra of transitions generated
by B will be isomorphic to the algebra of transitions generated by A , this means
that there is an isomorphism Φ from the C∗-algebra of 2 × 2 matrices into itself.
This isomorphism Φ will necessarily have the form Φ(A) = UAU † with U a unitary
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operator17. Notice that in such case the image of 1→ in the description provided by
A will be given by Φ(1b) = UA+U

†. It is then clear that the extended singleton
introduced here is equivalent to a qubit system.

Finally we may consider the most general Hamiltonian dynamic for the extended
singleton. For that we may consider a general hamiltonian H provided by a Her-
mitean matrix :

H =

[
h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

]
and the evolution equation (13) becomes:

ḟ+ = i(fα−1hz − h̄zfα) ,(20)

ḟ− = i(h̄zfα − fα−1hz) ,(21)

ḟα = i((f− − f+)hz − 2h3fα) ,(22)

ḟα−1 = i((f+ − f−)h̄z − 2h3fα) .(23)

with hz = h1 + ih2. Notice that d(f+ + f−)/dt = 0 and f+ + f− is preserved. In
particular if f where a density operator ρ̂ the trace would be preserved (and equal
to 1).

If hz = 0, that means if H is diagonal, then ḟ± = 0 and f± does not change. If
we had a classical state, that is p = p+1+ + p−1−, p+ + p− = 1, p± ≥ 0, then, for
H diagonal there will be no evolution of the classical state.

Another interesting situation happens when h3 = 0 and hz is imaginary of the
form hz = iν, ν > 0. Then, if f−f+ > 0, we have fα(t) → 0 as t → ∞, thus
interpreting f as measuring the amplitude of the transition α, in the limit of t
large, such amplitude vanish.

In the particular instance of a classical state defined by the density operator:

ρ̂ =

[
p1 0
0 p2

]
,

we obtain for a hamiltonian of the form

hε = iε
γ

2
(δα − δα−1) , γ > 0 ,

that corresponds to the case h0 = h1 = h2 = 0 and h2 = iεγ/2, and then:

d

dt
ρ̂ = ε

[
0 (p1 − p2)γ/2

(p2 − p1)γ/2 0

]
,

but, applying the classical transition described in Sect. 6.3, we obtain that the
kernel k has only one entry k12 (where we are labelling now the events +,− as

17A harder problem is when we are not considering complete descriptions, then, the map
between both algebras will be just positive and we will use Choi’s characterization of such
transformations.
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1, 2), and then the 2× 2 Markovian matrix K in Eq. (17) becomes:

K =

[
−γ γ
γ −γ

]
,

and the classical dynamics of the state becomes:

ṗ1 = −γp1 + γp2 , ṗ2 = γp1 − γp2 .

7.2. The harmonic oscillator.

7.2.1. The diagram K∞. We will now discuss a family of genuinely infinite-dimensional
examples. Their kinematical description is as follows. The events are labelled by
the symbols an n = 0, 1, 2,..., and the groupoid structure is generated by a family
of transitions αn : an → an+1 for all n.

The assignment of physical meaning to the events an and the transitions αn,
that is, the identification of events with outcomes of a certain observable and the
observation of physical transitions depends on the specific system under study.
This in turn implies an assignment of physical meaning to the observables and
the identification of the dynamics, and fixing the experimental setting chosen by
the observers. For instance the events can be identified with the energy levels
of a given system, an atom for instance, or the number of photons of a given
frequency on a cavity. In the case of atoms the transitions will correspond to the
physical transitions observed by measuring the photons emitted or absorbed by
the system. In the case of an e.m. field on a cavity, the transitions will correspond
to the change in the number of photons that could be determined by counting the
photons emitted by the cavity or pumping a determined number of photons into
it.

At this point, no specific values have been assigned to the events an yet, they
just represent a sort of kinematical background for the theory. An assignment
of numerical values to the events will be part of the dynamical prescription of
the system. For instance, in the case of energy levels, we will be assigning a real
number En to each event while in the case of photons, it will be a certain collection
of non-negative integers n1, n2, .... In what follows we will focus on the simplest
non-trivial assignment of the number n to the event an.

A diagram describing this situation is shown in Fig. 2.

0 1
α1

α−1
1

2
α2

α−1
2

n n+ 1
αn

α−1
n

Figure 2. The diagram K∞ generating the quantum harmonic oscillator.
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The groupoid of transitions generated by this system GA is the groupoid of
pairs of the natural numbers, that is, the complete graph with countable many
vertices K∞. Transitions m→ n will be denoted by αn,m or just (n,m) for short.
The notation in the picture corresponds to αn := αn+1,n = (n + 1, n). With this
notation, two transitions (n,m) and (j, k) are composable if and only if m = j, and
their composition will be (n,m) ◦ (m, k) = (n, k). Notice that (n,m)−1 = (m,n)
and 1n = (n, n) for all n ∈ N.

The algebra of observables of the system will be given by functions on the
groupoid GA but this time, in order to construct a C∗-algebra structure, we should
start by considering first the set of functions which are zero except on a finite
number of transitions and then take the closure with respect to an appropriate
topology. Thus, denote by Ffin(GA ) = Ffin(K∞) the set of functions on K∞ which
are zero except on a finite number of pairs (n,m). We may write any one of these
functions as:

(24) f =
∞∑

n,m=1

f(n,m)δ(n,m) ,

where only a finite number of coefficients f(n,m) are different from zero (the
function δ(n,m) is the obvious function δ(n,m)(αjk) = δnjδmk). We can define as
usual the convolution product on Ffin(K∞):

(f ? g)(n,m) =
∑

(n,j)◦(j,m)=(n,m)

f(n, j)g(j,m) =
∑
j

f(n, j)g(j,m) .

Hence, using Heisenberg’s interpretation of observables as (infinite) matrices, we
may consider the coefficients f(n,m), n,m = 0, 1, . . . , in the expansion (24) of the
observable f as defining an infinite matrix F whose entries Fnm are f(n,m), and
the convolution product on the algebra Ffin(K∞) is just the matrix product of the
matrices F and G corresponding to f and g respectively (notice that the product
is well defined as there are only finitely many non zero entries on both matrices).

The involution f 7→ f ∗ is defined in the standard way f ∗(n,m) = f(m,n) for all
n,m.

The fundamental representation of the system will be supported on the Hilbert
space H generated by vectors |n〉, n = 0, 1, . . ., that is, the family of vectors
{|n〉} define an orthonormal basis of H. Thus, the Hilbert space H is the space
l2(Z) of infinite sequences z = (z0, z1, z2, . . .) of complex numbers with ||z||2 =∑∞

n=0 |zn|2 < ∞. The fundamental representation π of the algebra Ffin(K∞) is
just given by18:

π(αnm)|k〉 = δmk|n〉 ,

18With some abuse of notation as we are identifying the functions δ(n,m) with the transition

αnm.
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that is, π(αnm) is the operator in H that sends the vector |m〉 into the vector |n〉
and zero otherwise. Even in more concise terms: the fundamental representation
of the transition αn maps the vector |n〉 into the vector |n + 1〉. In particular
π(α1)|0〉 = |1〉. Notice that π(α−1

n )|n+ 1〉 = |n〉.
Using the fundamental representation π we may define a norm on Ffin(K∞) as
||f || = ||π(f)||H and consider the completion F(K∞) of Ffin(K∞) with respect to
it. It is now clear that such completion is a C∗-algebra as ||f ∗?f || = ||π(f ∗?f)||H =
||π(f ∗)π(f)||H = ||π(f)†π(f)||H = ||π(f)||2H = ||f ||2. Moreover, by construction,
the representation π is continuous and has a continuous extension to the completed
algebra F(K∞). By construction the map π defines an isomorphism of algebras
between the algebra F(K∞) and the algebra B(H) of bounded operators on the
Hilbert space H19. The elementary transitions αn generating the graph K∞ con-
tain the relevant information of the system. Any transition αnm can be obtained
composing elementary transitions: αnm = αnαn+1 · · ·αm−1 (n < m).

7.2.2. The standard harmonic oscillator. From the considerations raised in Sect.
7.2.1, once we have chosen the assignment an = n, n = 0, 1, 2, . . ., we may define
the functions a and a† in F(K∞) as follows:

(25) a(αn) =
√
n , a†(αn) =

√
n+ 1 ,

or, in terms of the algebra of the groupoid K∞, we will have that a and a† are
given as the formal series:

a =
∞∑
n=0

√
nα−1

n , a =
∞∑
n=0

√
n+ 1αn .

Strictly speaking a, a† are not elements in the groupoid algebra F(K∞), indeed,
they define unbounded operators in the fundamental representation, however, they
do define functions on K∞ and we can manipulate them formally. A simple com-
putation shows that:

[a, a†] = 1 ,

with 1 =
∑∞

n=0 1n, or in terms of functions in K∞, [a, a†](1n) = 1 for all n and
zero otherwise. Hence we may construct the Hamiltonian function:

h = a†a+
1

2
=
∞∑
n=0

nδn +
1

2
.

and the corresponding equations of motion:

ȧ = i[a, h] = −ia , ȧ† = i[a†, h] = ia† ,

which constitute the standard equations of motion for the quantum harmonic
oscillator.

19This constitutes a particular instance of Renault’s construction of C∗-algebras defined by
groupoids [19], see also the comments in [21].
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Notice that the functions a, a† on the groupoid K∞ define densely defined un-
bounded operators on the Hilbert space H = l2(Z) supporting the fundamen-
tal representation such that π(a)† = π(a†). Moreover the Hamiltonian operator
H = π(h) may be identified with the Hamiltonian operator of a harmonic oscillator
with creation and annihilation operators π(a†) and π(a) respectively.
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