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Motivation: Noncommutative spacetimes

Hypothesis:

‘Noncommutative’ space-times can be used to describe relevant
physical phenomena at the Planck scale (very high energy/curvature).

They give rise to Planck scale uncertainty relations when
simultaneous measurements of ‘spacetime observables’ described by a
noncommutative (C ∗) algebra are considered:

[x̂ i , x̂ j ]λP 6= 0 =⇒ ∆x̂ i .∆x̂ j ≥ 1

2
|〈[x̂ i , x̂ j ]λP 〉| > 0

This ‘quantum’ spacetime algebra should be a ‘Planck scale’ (λP)
deformation of the ‘classical’ commutative spacetime:

lim
λP→0

[x̂ i , x̂ j ]λP = 0.

Many different physical contexts since Snyder (1947): nc field theory, string

spacetimes, (2+1) quantum gravity, DSR and modified dispersion relations...

Also different mathematical approaches to noncommutative geometry.

[see R. J. Szabo, Physics Reports 378, 207-299 (2003)].
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Motivation: Noncommutative spacetimes

There are many possibilities in order to introduce noncommutative
algebras of spacetime ‘coordinates’.

A mathematically consistent one is provided by quantum groups:

Deformations Gq of the Hopf algebra of functions on Lie groups or,
equivalently, Hopf algebra deformations Uq(g) of the universal enveloping
algebra of g = Lie(G ) [Drinfel’d, Manin, Woronowicz].

‘Quantum spacetimes’ can be constructed as noncommutative
algebras that are covariant under quantum group (co)actions.

The ‘quantum’ deformation parameter would depend on some Planck
scale parameter: q = q(λP) such that limλP→0 q = 1.

In particular, quantum (Anti)-de Sitter and Minkowski
spacetimes can be constructed as quantum homogeneous spaces
of the corresponding quantum kinematical groups SOq(4, 1),
SOq(3, 2) and ISOq(3, 1).
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Motivation: Noncommutative spacetimes

Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical
homogeneous spaces M = G/H, where H is the Lorentz isotropy
subgroup SO(3, 1) and G is, respectively, SO(3, 2), SO(4, 1) and
ISO(3, 1).

The construction of quantum homogeneous spaces Mq implies that
quantum groups Gq and and the corresponding Hq have to be
considered.

All invariance notions (isotropy subgroup, transitivity) have to be
translated into the language of the noncommutative Hopf algebras
of functions on Gq and Mq.

Since H is a subgroup of G , the deformation Hq is fixed by the
deformation Gq.

Imposing that Hq is a quantum subgroup (i.e., a Hopf subalgebra of
Gq) turns out to be too restrictive.
[Dijkhuizen and Koornwinder, 1994]
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Motivation: Noncommutative spacetimes

Why Poisson homogeneous spaces

Main results: [Drinfel’d]

Quantum groups Gq are quantizations of Poisson-Lie groups (G ,Π)
and quantum homogeneous spaces Mq are quantizations of Poisson
homogeneous spaces (M, π).

Poisson-Lie groups (G ,Π) are in one-to-one correspondence with Lie
bialgebra structures (g, δ).

Poisson homogeneous spaces (M, π) are in one-to-one correspondence
with with Lagrangian Lie subalgebras ` of the Drinfel’d double
Lie algebra D(g) associated to δ.
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Motivation: Noncommutative spacetimes

The plurality of PHS (and of QHS) for a given M = G/H can be
explored by considering the classification of PL structures (and,
therefore, of quantum deformations) of G .

In order to be able to obtain the π bracket through canonical
projection from the PL bracket Π, the isotropy subgroup H has to be
coisotropic with respect to δ:

δ(h) ⊂ h ∧ g, h = Lie(H).

This guarantees that π defines a Poisson subalgebra within Π.

A particular case: when H is a Poisson-Lie subgroup

δ (h) ⊂ h ∧ h,

its quantization would give rise to a quantum subgroup Hq.
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Motivation: Noncommutative spacetimes

As a consequence, for the same ‘clasical’ M = G/H we have different
admissible Poisson (noncommutative) homogeneous structures.

1 We have as many possible PL structures Π on G as Lie bialgebra
structures (g , δ), whose dual δ∗ is just the linearization of Π:

{x , x}Π = A(x , ξ) {x , ξ}Π = B(x , ξ) {ξ, ξ}Π = C (x , ξ).

2 For each of them we have to find the appropriate π structure on M
that is compatible with Π:

{x , x}π = F (x).

The coisotropy condition ensures that π can be obtained as the
projection of Π onto the PHS coordinates:

{x , x}π = {x , x}Π = A(x , 0) = F (x).
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Motivation: Noncommutative spacetimes

Aim of this work:

Construct (A)dS and Minkowskian PHS and analyse their properties
as a preliminary step for the construction of their associated QHS.

Data:

In (2+1) dimensions PL structures are fully described through the
classifications of the corresponding (coboundary) Lie bialgebras:
- Poincaré Lie algebra [Stachura, 1998]
- dS and AdS Lie algebras [Zakrzewski 1994, Borowiec, Lukierski and
Tolstoy, 2016]

In (3+1) dimensions, PL structures of the (3+1) Poincaré group are
classified [Zakrzewski 1997], but a complete (A)dS classification is
still lacking.

These classifications are not written in a suitable kinematical basis
{J,K ,P} giving rise to the PHS with usual xµ Minkowski coordinates.
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Motivation: Noncommutative spacetimes

In particular:

Some examples of Lorentzian PHS:

In (2+1) dimensions, Minkowski PHS coming from all possible
Drinfel’d double structures of the (2+1) Poincaré Lie algebra are
constructed. The DD (A)dS Poisson-Lie groups are known. 1

A PHS for the (3+1)-dimensional AdS group with respect to the
so-called κ-Poisson–Lie structure is explicitly given.

Its Minkowskian limit can be obtained when the cosmological
constant vanishes.

1
A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013), 155012
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Poisson-Lie groups and Poisson homogeneous spaces

2. Poisson-Lie groups and Poisson homogeneous spaces
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Poisson-Lie groups and Poisson homogeneous spaces

A Poisson-Lie group (G ,Π) is a Lie group G that is also a Poisson
manifold such that the multiplication map for G is a Poisson map.

Theorem [Drinfel’d]. Let G be a Lie group with Lie algebra g:

a) If (G ,Π) is a Poisson-Lie group, then g has a natural Lie bialgebra
structure (g, δ), called the tangent Lie bialgebra of G .
b) Conversely, if G is connected and simply connected, every Lie bialgebra
structure (g, δ) is the tangent Lie bialgebra of a unique Poisson structure
on G which makes G into a Poisson-Lie group.

The cocommutator map δ : g→ g⊗ g is such that:

i) δ is a 1–cocycle, i.e.,
δ([X ,Y ]) = [δ(X ), 1⊗Y +Y ⊗1]+[1⊗X +X⊗1, δ(Y )], ∀X ,Y ∈ g .

ii) The dual map δ∗ : g∗ ⊗ g∗ → g∗ is a Lie bracket on g∗.
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Poisson-Lie groups and Poisson homogeneous spaces

In some cases the 1-cocycle δ is a coboundary

δ(X ) = [1⊗ X + X ⊗ 1, r ] X ∈ g

where r is a skewsymmetric element of g⊗ g (the r-matrix)

r = rab Xa ∧ Xb

which has to be a solution of the modified classical Yang–Baxter
equation (mCYBE)

[X ⊗ 1⊗ 1 + 1⊗ X ⊗ 1 + 1⊗ 1⊗ X , [[r , r ]] ] = 0 X ∈ g.

For a coboundary Poisson-Lie group G , the Poisson structure Π on G
is given by the so-called Sklyanin bracket

{f , g} = r ij
(
∇L

i f ∇L
j g −∇R

i f ∇R
j g
)
, f , g ∈ C∞(G )

where ∇L
i ,∇R

i are left- and right-invariant vector fields on G .
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Poisson-Lie groups and Poisson homogeneous spaces

Let g be a Lie bialgebra

[Xi ,Xj ] = C k
ij Xk , δ(Xn) = f lmn Xl ∧ Xm.

The Drinfel’d double Lie algebra D(g) associated to the Lie bialgebra
(g, δ) is the Lie algebra structure on the vector space g + g∗ given by

[Xi ,Xj ] = C k
ij Xk , [x i , x j ] = f ijk xk , [x i ,Xj ] = C i

jkx
k − f ikj Xk ,

where {X1, . . . ,Xn} and {x1, . . . , xn} are dual basis for g and g∗, under
the canonical pairing

〈Xi , x
j〉 = δji .

D(g) has a canonical quasi-triangular Lie bialgebra structure given by

r =
∑
i

x i ⊗ Xi ,

since r is always a solution of the CYBE [[r , r ]] = 0.
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jkx
k − f ikj Xk ,

where {X1, . . . ,Xn} and {x1, . . . , xn} are dual basis for g and g∗, under
the canonical pairing

〈Xi , x
j〉 = δji .

D(g) has a canonical quasi-triangular Lie bialgebra structure given by

r =
∑
i

x i ⊗ Xi ,

since r is always a solution of the CYBE [[r , r ]] = 0.
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Poisson-Lie groups and Poisson homogeneous spaces

Let (G ,Π) be a PL group. A Poisson homogeneous space is a Poisson
manifold (M, π) with a transitive group action B : G ×M → M that is
a Poisson map with respect to the Poisson structure π on M and the
product Π× π of the Poisson structures on G and M.

Theorem [Drinfel’d]

Let G be a Poisson-Lie group and let H be a connected subgroup of G .
Poisson homogeneous spaces on M = G/H are in one-to one
correspondence with Lagrangian Lie subalgebras ` of the double Lie
algebra D(g) such that ` ∩ g = h.

The Lagrangian Lie subalgebra ` of the double Lie algebra D(g) fulfills:

Maximality: dim ` = dim g ≡ N.

Isotropy: 〈`, `〉 = 0.

The condition ` ∩ g = h.
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(2+1) Poincaré PHS from Drinfel’d doubles

3. Poincaré PHS from Drinfel’d doubles in (2+1)
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(2+1) Poincaré PHS from Drinfel’d doubles

The (2+1) Poincaré Lie algebra:

[J,K1] = K2, [J,K2] = −K1, [K1,K2] = −J,
[J,P0] = 0, [J,P1] = P2, [J,P2] = −P1,

[K1,P0] = P1, [K1,P1] = P0, [K1,P2] = 0,

[K2,P0] = P2, [K2,P1] = 0, [K2,P2] = P0,

[P0,P1] = 0, [P0,P2] = 0, [P1,P2] = 0,

Two quadratic Casimirs:

C1 = P2
0 − P2

1 − P2
2 ,

C2 = J P0 + K2 P1 − K1 P2.

(2+1) gravity can be described as a Chern-Simons gauge theory whose
symplectic structure can be defined in terms of PL structures [Fock and
Rosly 1992, Alekseev and Malkin 1995], and the most natural PL
structures are those coming from classical Drinfel’d doubles [Meusburger
and Schroers, 2009].
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(2+1) Poincaré PHS from Drinfel’d doubles

[Yi ,Yj ] = C k
ij Yk [y i , y j ] = f ijk y

k [y i ,Yj ] = C i
jk y

k − f ikj Yk

A.B., I. Gutiérrez-Sagredo, F.J. Herranz, The Poincaré group as a Drinfel’d double, preprint.
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(2+1) Poincaré PHS from Drinfel’d doubles

A generic element of the P(2 + 1) group is constructed as

G = exp (x0 ρ(P0)) exp (x1 ρ(P1)) exp (x2 ρ(P2)) exp (ξ1 ρ(K1)) exp (ξ2 ρ(K2)) exp (θ ρ(J)).

{x0, x1, x2} are local coordinates on the homogeneous
Minkowski spacetime defined as M = G/H with H = {J,K1,K2}.
Left and right invariant vector fields on P(2 + 1) are:
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(2+1) Poincaré PHS from Drinfel’d doubles

Among the eight r-matrices generating the (2+1) PL structures:

We have five coisotropic cases with respect to the Lorentz isotropy
subalgebra.

Cases 0 and 1 are of Poisson subgroup type.

All the r -matrices should be multiplied by a constant (λP).
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(2+1) Poincaré PHS from Drinfel’d doubles

DD Poisson Minkowski spacetimes in (2+1) dimensions

Case 0
{x0, x1} = − x2, {x0, x2} = x1, {x1, x2} = x0,

Case 1

{x0, x1} = −x2(x0 + x1) + 2x2,
{x0, x2} = x1(x0 + x1)− 2x1,
{x1, x2} = x0(x0 + x1)− 2x0,

Case 2

{x0, x1} = 0, {x0, x2} = −
(
x0 − x2

)
, {x1, x2} = −

(
x0 − x2

)
,

Case 6
{x0, x1} = 0, {x0, x2} = −x0 + x1, {x1, x2} = 0,

Case 7
{x0, x1} = 0, {x0, x2} = 0, {x1, x2} = −(x0 + x2).

Quantization is non-trivial for Case 2 (quadratic Poisson algebra).
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A Lorentzian PHS in (3+1) dimensions

4. A Lorentzian PHS in (3+1) dimensions
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A Lorentzian PHS in (3+1) dimensions

The (3+1)D AdSω Lie algebra (ω = −Λ):

[Ja, Jb] = εabcJc , [Ja,Pb] = εabcPc , [Ja,Kb] = εabcKc ,

[Ka,P0] = Pa , [Ka,Pb] = δabP0 , [Ka,Kb] = −εabcJc ,
[P0,Pa] = ωKa , [Pa,Pb] = −ωεabcJc , [P0, Ja] = 0 .

Explicilty, AdS3+1
ω comprises the three following Lorentzian spacetimes:

ω > 0,Λ < 0: AdS spacetime AdS3+1 ≡ SO(3, 2)/SO(3, 1).
ω < 0,Λ > 0: dS spacetime dS3+1 ≡ SO(4, 1)/SO(3, 1).
ω = Λ = 0: Minkowski spacetime M3+1 ≡ ISO(3, 1)/SO(3, 1).

Casimir operators: the quadratic one

C = P2
0 − P2 + ω

(
J2 −K2

)
and the quartic one (Pauli-Lubanski)

W = W 2
0 −W2 + ω (J ·K)2

W0 = J · P Wa = −JaP0 + εabcKbPc
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A Lorentzian PHS in (3+1) dimensions

The classical r-matrix for the AdS κ-deformation is 2

r = z
(
K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +

√
ω J1 ∧ J2

)
, z = 1/κ,

and the cocommutator map reads

δ(P0) = 0, δ(J3) = 0,

δ(J1) = z
√
ω J1 ∧ J3, δ(J2) = z

√
ω J2 ∧ J3,

δ(P1) = z
(
P1 ∧ P0 − ω J2 ∧ K3 + ω J3 ∧ K2 +

√
ω J1 ∧ P3

)
,

δ(P2) = z
(
P2 ∧ P0 − ω J3 ∧ K1 + ω J1 ∧ K3 +

√
ω J2 ∧ P3

)
,

δ(P3) = z
(
P3 ∧ P0 − ω J1 ∧ K2 + ω J2 ∧ K1 −

√
ω J1 ∧ P1 −

√
ω J2 ∧ P2

)
,

δ(K1) = z
(
K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2 +

√
ω J1 ∧ K3

)
,

δ(K2) = z
(
K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3 +

√
ω J2 ∧ K3

)
,

δ(K3) = z
(
K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1 −

√
ω J1 ∧ K1 −

√
ω J2 ∧ K2

)
.

The coisotropy condition holds δ(h) ⊂ h ∧ g.

2
A.B., F.J. Herranz, F. Musso, P. Naranjo, PLB (2017); arXiv:1612.03169
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A Lorentzian PHS in (3+1) dimensions

By computing the Sklyanin bracket for the r -matrix and by taking the
canonical projection onto the spacetime Poisson subalgebra we get the
(3+1) κ-AdS noncommutative spacetime 3

{x0, x1} = − z tanh(
√
ω x1)sech2(

√
ω x2)sech2(

√
ω x3)√

ω
ω → 0 − z x1

{x0, x2} = − z tanh(
√
ω x2)sech2(

√
ω x3)√

ω
ω → 0 − z x2

{x0, x3} = − z tanh(
√
ω x3)√

ω
ω → 0 − z x3

{x1, x2} = − z cosh(
√
ω x1) tanh2(

√
ω x3)√

ω
ω → 0 0

{x1, x3} = z cosh(
√
ω x1) tanh(

√
ω x2) tanh(

√
ω x3)√

ω
ω → 0 0

{x2, x3} = − z sinh(
√
ω x1) tanh(

√
ω x3)√

ω
ω → 0 0

With respect to the Minkowski limit ω = −Λ→ 0, space coordinates do
not commute and space isotropy is lost.

3
A.B., I. Gutiérrez-Sagredo, F.J. Herranz, The κ-AdS Poisson homogeneous spacetime, preprint.
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A Lorentzian PHS in (3+1) dimensions

The (2+1) κ-AdSω noncommutative spacetime

The classical r-matrix in the (2+1) case reads 4

r = z (K1 ∧ P1 + K2 ∧ P2),

and the Lie bialgebra (AdSω, δ) is

δ(P0) = δ(J) = 0,

δ(P1) = z(P1 ∧ P0 − ωK2 ∧ J),

δ(P2) = z(P2 ∧ P0 + ωK1 ∧ J),

δ(K1) = z(K1 ∧ P0 + P2 ∧ J),

δ(K2) = z(K2 ∧ P0 − P1 ∧ J).

This Lie bialgebra fulfills the coisotropy condition with h = {J,K1,K2}:

δ(h) ⊂ h ∧ g.

4
A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.
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A Lorentzian PHS in (3+1) dimensions

Poisson–Lie group relations among spacetime xµ group coordinates:

{x0, x1} = −z tanh
√
ωx1√

ω cosh2√ωx2

ω → 0 − z x1

{x0, x2} = −z tanh
√
ωx2√
ω

ω → 0 − z x2

{x1, x2} = 0

The quantum AdSω group in ‘local coordinates’ would be the quantization
of the above nonlinear PL bracket. In particular, since {x1, x2} = 0 we
could write:

[x̂0, x̂1] = −z tanh
√
ωx̂1√

ω cosh2√ωx̂2

= −z
(
x̂1 −

1

3
ωx̂3

1 − ωx̂1x̂
2
2

)
+O(ω2),

[x̂0, x̂2] = −z tanh
√
ωx̂2√
ω

= −z
(
x̂2 −

1

3
ωx̂3

2

)
+O(ω2),

[x̂1, x̂2] = 0.
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Open problems

Open problems
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Open problems

Construction of the coisotropic PHS for AdS2+1.

Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.

The Minkowski and (A)dS3+1 PHS: the H subgroup is SO(3, 1).
The complete classification of coisotropic and Poisson subgroup Lie
bialgebra structures on SO(3, 2), SO(4, 1) and P(3 + 1).

Construction of PHS of time-like worldlines:

h = {J1, J2, J3,P0}

ω = −Λ Space of time-like worldlines S(2) ≡ {x1, x2, x3, ξ1, ξ2, ξ3}

ω > 0, Λ < 0 LAdS3×3 = SO(3, 2)/ (SO(3)⊗ SO(2))

ω = Λ = 0 LM3×3 = ISO(3, 1)/ (SO(3)⊗ R)

ω < 0, Λ > 0 LdS2×2 = SO(4, 1)/ (SO(3)⊗ SO(2, 1))

Quantization of PHS and representation theory of the associated
spacetime algebras.
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Open problems

THANKS FOR YOUR ATTENTION
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