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@ Motivation: Noncommutative spacetimes

© Poisson-Lie groups and Poisson homogeneous spaces
© (2+1) Poincaré PHS from Drinfel'd doubles

@ A Lorentzian PHS in (3+1) dimensions

© Open problems
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Motivation: Noncommutative spacetimes

Hypothesis:

‘Noncommutative’ space-times can be used to describe relevant
physical phenomena at the Planck scale (very high energy/curvature).
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Motivation: Noncommutative spacetimes

Hypothesis:
‘Noncommutative’ space-times can be used to describe relevant
physical phenomena at the Planck scale (very high energy/curvature).

@ They give rise to Planck scale uncertainty relations when
simultaneous measurements of ‘spacetime observables' described by a
noncommutative (C*) algebra are considered:

oi of N RN
[X,XJ]AP?éO N AX .AXJZ§|<[X7XJ]>\P>|>O

@ This ‘quantum’ spacetime algebra should be a ‘Planck scale’ (Ap)
deformation of the ‘classical’ commutative spacetime:
,\I;mo X, %], = 0.
Many different physical contexts since Snyder (1947): nc field theory, string
spacetimes, (2+1) quantum gravity, DSR and modified dispersion relations...
Also different mathematical approaches to noncommutative geometry.
[see R. J. Szabo, Physics Reports 378, 207-299 (2003)].



Motivation: Noncommutative spacetimes

There are many possibilities in order to introduce noncommutative
algebras of spacetime ‘coordinates’.

A mathematically consistent one is provided by quantum groups:

Deformations G4 of the Hopf algebra of functions on Lie groups or,
equivalently, Hopf algebra deformations U,(g) of the universal enveloping
algebra of g = Lie(G) [Drinfel'd, Manin, Woronowicz].
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Motivation: Noncommutative spacetimes

There are many possibilities in order to introduce noncommutative
algebras of spacetime ‘coordinates’.

A mathematically consistent one is provided by quantum groups:

Deformations G4 of the Hopf algebra of functions on Lie groups or,
equivalently, Hopf algebra deformations U,(g) of the universal enveloping
algebra of g = Lie(G) [Drinfel'd, Manin, Woronowicz].

@ 'Quantum spacetimes’ can be constructed as noncommutative
algebras that are covariant under quantum group (co)actions.

@ The ‘quantum’ deformation parameter would depend on some Planck
scale parameter: g = g(Ap) such that limy,_0q = 1.

@ In particular, quantum (Anti)-de Sitter and Minkowski
spacetimes can be constructed as quantum homogeneous spaces

of the corresponding quantum kinematical groups SOq(4,1),
504(3,2) and 1SO4(3,1).



Motivation: Noncommutative spacetimes

Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical
homogeneous spaces M = G/H, where H is the Lorentz isotropy
subgroup SO(3,1) and G is, respectively, SO(3,2), SO(4,1) and
1SO(3,1).
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Motivation: Noncommutative spacetimes

Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical
homogeneous spaces M = G/H, where H is the Lorentz isotropy
subgroup SO(3,1) and G is, respectively, SO(3,2), SO(4,1) and
1SO(3,1).

@ The construction of quantum homogeneous spaces M, implies that
quantum groups Gg and and the corresponding H have to be
considered.

e All invariance notions (isotropy subgroup, transitivity) have to be
translated into the language of the noncommutative Hopf algebras
of functions on G, and M.

@ Since H is a subgroup of G, the deformation Hj is fixed by the
deformation G,.

e Imposing that H, is a quantum subgroup (i.e., a Hopf subalgebra of

Gg) turns out to be too restrictive.
[Dijkhuizen and Koornwinder, 1994]
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Motivation: Noncommutative spacetimes

Why Poisson homogeneous spaces

Main results: [Drinfel'd]

Quantum groups G, are quantizations of Poisson-Lie groups (G, 1)
and quantum homogeneous spaces M, are quantizations of Poisson
homogeneous spaces (M, 7).

e Poisson-Lie groups (G, 1) are in one-to-one correspondence with Lie
bialgebra structures (g, ).

@ Poisson homogeneous spaces (M, ) are in one-to-one correspondence
with with Lagrangian Lie subalgebras ¢ of the Drinfel’d double
Lie algebra D(g) associated to 4.
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Motivation: Noncommutative spacetimes

@ The plurality of PHS (and of QHS) for a given M = G/H can be
explored by considering the classification of PL structures (and,
therefore, of quantum deformations) of G.

@ In order to be able to obtain the 7 bracket through canonical
projection from the PL bracket 1, the isotropy subgroup H has to be
coisotropic with respect to ¢:

5(h) ChAg, b= Lie(H).

This guarantees that 7 defines a Poisson subalgebra within I1.

@ A particular case: when H is a Poisson-Lie subgroup

d(b) ChAb,

its quantization would give rise to a quantum subgroup H,.
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Motivation: Noncommutative spacetimes

As a consequence, for the same ‘clasical’ M = G/H we have different
admissible Poisson (noncommutative) homogeneous structures.

@ We have as many possible PL structures 1 on G as Lie bialgebra
structures (g, ), whose dual §* is just the linearization of [1:

{X?X}I'I = A(X,f) {Xag}l'l = B(Xaf) {575}” = C(Xaé‘)

@ For each of them we have to find the appropriate 7 structure on M
that is compatible with I1:

{x,x}r = F(x).

The coisotropy condition ensures that 7 can be obtained as the
projection of [1 onto the PHS coordinates:

{x,x}r = {x,x}n = A(x,0) = F(x).
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Aim of this work:

Construct (A)dS and Minkowskian PHS and analyse their properties
as a preliminary step for the construction of their associated QHS.
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Motivation: Noncommutative spacetimes

Aim of this work:

Construct (A)dS and Minkowskian PHS and analyse their properties
as a preliminary step for the construction of their associated QHS.

Data:

@ In (241) dimensions PL structures are fully described through the
classifications of the corresponding (coboundary) Lie bialgebras:
- Poincaré Lie algebra [Stachura, 1998]
- dS and AdS Lie algebras [Zakrzewski 1994, Borowiec, Lukierski and
Tolstoy, 2016]

e In (34+1) dimensions, PL structures of the (3+1) Poincaré group are
classified [Zakrzewski 1997], but a complete (A)dS classification is
still lacking.

These classifications are not written in a suitable kinematical basis
{J, K, P} giving rise to the PHS with usual x* Minkowski coordinates.



Motivation: Noncommutative spacetimes

In particular:
Some examples of Lorentzian PHS: J

@ In (2+1) dimensions, Minkowski PHS coming from all possible
Drinfel'd double structures of the (2+1) Poincaré Lie algebra are
constructed. The DD (A)dS Poisson-Lie groups are known. 1

@ A PHS for the (3+1)-dimensional AdS group with respect to the
so-called k-Poisson—Lie structure is explicitly given.

Its Minkowskian limit can be obtained when the cosmological
constant vanishes.

1A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013), 155012
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Poisson-Lie groups and Poisson homogeneous spaces

2. POISSON-LIE GROUPS AND POISSON HOMOGENEOUS SPACES
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a) If (G, M) is a Poisson-Lie group, then g has a natural Lie bialgebra
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Poisson-Lie groups and Poisson homogeneous spaces

A Poisson-Lie group (G, [1) is a Lie group G that is also a Poisson
manifold such that the multiplication map for G is a Poisson map.

Theorem [Drinfel'd]. Let G be a Lie group with Lie algebra g:

a) If (G, M) is a Poisson-Lie group, then g has a natural Lie bialgebra
structure (g,0), called the tangent Lie bialgebra of G.

b) Conversely, if G is connected and simply connected, every Lie bialgebra
structure (g, d) is the tangent Lie bialgebra of a unique Poisson structure
on G which makes G into a Poisson-Lie group.

The cocommutator map 0 : g — g ® g is such that:

@ i)  is a 1-cocycle, i.e.,
(X, YD) =[0(X), 1Y+ YR1+[1eX+X®1, §(Y)], VX, Y € g.
@ ii) The dual map §* : g* ® g* — g* is a Lie bracket on g*.

12/31



Poisson-Lie groups and Poisson homogeneous spaces

@ In some cases the 1-cocycle § is a coboundary
I(X)=[1aX+X®1,r] Xeg
where r is a skewsymmetric element of g ® g (the r-matrix)
r=r"®X,AXp

which has to be a solution of the modified classical Yang—Baxter
equation (mCYBE)

Xe1Iol+loXl+11eX,[[rr]]]=0 Xecg.
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@ In some cases the 1-cocycle § is a coboundary
I(X)=1X+X®1,r] Xeg
where r is a skewsymmetric element of g ® g (the r-matrix)
r=r®X,AXp

which has to be a solution of the modified classical Yang—Baxter
equation (mCYBE)

Xe1Iol+loXl+11eX,[[rr]]]=0 Xecg.

@ For a coboundary Poisson-Lie group G, the Poisson structure 1 on G
is given by the so-called Sklyanin bracket

{f.g} =7 (VH Vg~ VFfVfg),  f.geC™(G)

where V,-L, Vf are left- and right-invariant vector fields on G.

13 /31



Let g be a Lie bialgebra

[Xi, Xl = Ci X, 6(Xn) = £"X) A Xy
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Poisson-Lie groups and Poisson homogeneous spaces

Let g be a Lie bialgebra
[Xi, Xj] = CiXie,  6(Xn) = £" X/ A X
The Drinfel’d double Lie algebra D(g) associated to the Lie bialgebra
(g,0) is the Lie algebra structure on the vector space g + g* given by
X X = CiXe, ] =X ) X)) = G~ 7 X,

where {X1,...,X,} and {x},...,x"} are dual basis for g and g*, under
the canonical pairing

(X, xIy = &,
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Poisson-Lie groups and Poisson homogeneous spaces

Let g be a Lie bialgebra
[Xi, Xi] = CiXe,  0(Xn) = £"X1 A X,
The Drinfel’d double Lie algebra D(g) associated to the Lie bialgebra
(g,0) is the Lie algebra structure on the vector space g + g* given by
X X = CiXe, ] =X ) X)) = G~ 7 X,

where {X1,...,X,} and {x},...,x"} are dual basis for g and g*, under

the canonical pairing _ .
(X,',XJ> = (5{

v

D(g) has a canonical quasi-triangular Lie bialgebra structure given by
r= in ® Xi,
i

since r is always a solution of the CYBE [[r, r]] = 0.
14 /31



Poisson-Lie groups and Poisson homogeneous spaces

Let (G, ) be a PL group. A Poisson homogeneous space is a Poisson
manifold (M, ) with a transitive group action > : G x M — M that is
a Poisson map with respect to the Poisson structure m on M and the
product 1 x 7 of the Poisson structures on G and M.
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Poisson-Lie groups and Poisson homogeneous spaces

Let (G, ) be a PL group. A Poisson homogeneous space is a Poisson
manifold (M, ) with a transitive group action > : G x M — M that is
a Poisson map with respect to the Poisson structure m on M and the
product 1 x 7 of the Poisson structures on G and M.

Theorem [Drinfel'd]

Let G be a Poisson-Lie group and let H be a connected subgroup of G.
Poisson homogeneous spaces on M = G/H are in one-to one
correspondence with Lagrangian Lie subalgebras ¢ of the double Lie
algebra D(g) such that /Ng=5.

The Lagrangian Lie subalgebra ¢ of the double Lie algebra D(g) fulfills:
o Maximality: dim ¢ = dim g = N.
e lIsotropy: (¢,¢) =0.
@ The condition £Ng =b.

15/31



(2+1) Poincaré PHS from Drinfel'd doubles

3. POINCARE PHS FROM DRINFEL'D DOUBLES IN (2+1)
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(2+1) Poincaré PHS from Drinfel'd doubles

The (2+1) Poincaré Lie algebra:

[J7 Kl] — K27 [Jv K2] — _Kla [Kla K2] — _J7

[J, Po] =0, [J, P1] = Px, [J, P2] = —Px,
[K1, Po] = P, [K1, P1] = P, [K1, P2] =0,

Two quadratic Casimirs:
CL =P — P} — P3,

G=JPy+ Ko P — K1 Ps.
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(2+1) Poincaré PHS from Drinfel'd doubles

The (2+1) Poincaré Lie algebra:

[J; Kl] — K27 [J7 KZ] — _K17 [Kly K2] — _J7

[J, Po] =0, [J, P1] = Px, [J, P2] = —Px,
[K1, Po] = P, [K1, P1] = P, [K1, P2] =0,

Two quadratic Casimirs:
CL =P — P} — P3,

G=JPy+ Ko P — K1 Ps.

(2+1) gravity can be described as a Chern-Simons gauge theory whose
symplectic structure can be defined in terms of PL structures [Fock and
Rosly 1992, Alekseev and Malkin 1995], and the most natural PL
structures are those coming from classical Drinfel'd doubles [Meusburger
and Schroers, 2009].
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(2+1) Poincaré PHS from Drinfel'd doubles

[vayj]:Ci’i(Yk [yivyj]: kijyk [yivyj]:cj&yk_ﬂ'ikyk

Table 1: The eigth non-equivalent DD Lie algebras which are isomorphic to the (2+1) Poincaré algebra. The
parameter w can be rescaled to any non-zero real number of the same sign, while X is an essential parameter. In Case
5 they must obey wA > 0. In Case 6 we have w > 0.

Case 0 Casel Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
Yo, 1] 273 Y1 Y i =Y Y1 Y1 =Yz
[Yo,Y2] —2Y2 Yz Y, Y1+ Y2 ¢! Y1+ Y2 Y, Y;
V1,Ys] Y 0 0 0 0 0 0 0
¥%%'] o y° 0 Ay? 0 Ay? 0 0
%% O yt y' 0 -4° 0 y' —4°
ly'%? O y? 0 0 Ayl —y? 2wy® 2wy —y
% Y] o0 -1 0 0 —Ys 0 0 Ys
WO o2 -Ys -Ys 0 2Ys —y? 0 -Ys 0
0, v2] —y! 0 0 -yt Yo - AVi+y!  —Av; 0 0
v, Yo] 2yt Yo+y' ot y'+y? 0 —WYs+yt +y?  —WwYo+yt 9P
[yl s Yl] _ZyO _,yO _yO _yO —Ys _yO _yﬂ Ys
¥, ¥s] © -Y; 0 AYo-1y° Y1y AYo —° 0 —°
¥ Yo] —29* g2 y? y? 0 2wY1 + ¢ 2wY1 +y* —Yo-—y!
b* v o Yo Yo 0 y° 0 Yo Vi 490
[y2‘ YZ] 2y0 Y — yO _yO _yO 0 _yO _yO 0

A.B., |. Gutiérrez-Sagredo, F.J. Herranz, The Poincaré group as a Drinfel’d double, preprint.
18/



(2+1) Poincaré PHS from Drinfel'd doubles

e A generic element of the P(2 + 1) group is constructed as

G = exp (x” p(Po)) exp (x* p(P1)) exp (x* p(P2)) exp (&' p(K1)) exp (€2 p(K2)) exp (6 p(J))-

19/31



(2+1) Poincaré PHS from Drinfel'd doubles
e A generic element of the P(2 + 1) group is constructed as
G = exp (x” p(Po)) exp (x" p(Pr)) exp (x* p(P2)) exp (€' p(K1)) exp (€ p(K2)) exp (8 p(J))-

o {x% x,x2} are local coordinates on the homogeneous
Minkowski spacetime defined as M = G/H with H = {J, K1, K>}.
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(2+1) Poincaré PHS from Drinfel'd doubles

e A generic element of the P(2 + 1) group is constructed as
G = exp (x” p(Po)) exp (x" p(Pr)) exp (x* p(P2)) exp (€' p(K1)) exp (€ p(K2)) exp (8 p(J))-
o {x% x,x2} are local coordinates on the homogeneous
Minkowski spacetime defined as M = G/H with H = {J, K1, K>}.
o Left and right invariant vector fields on P(2 + 1) are:

V4 = 9y,
L _ cosf

K1 ™ cosh €2

(O + sinh £2 0p) + sin6 9z,
-~ sin 6 (
cosh £2

V%, = cosh&? (cosh €' 0,0 + sinh £'9,1) + sinh €202,
v,%] = cos @ (sinhflaxo + cosh 513551) +sinf (sinh§2 (cosh{lazn + sinhﬁlazl) + cosh 52812) s
V£ = —sinf (sinh £'8,0 + cosh £19,1) + cos 0 (sinh &2 (cosh &' 9,0 + sinh £19,,1) + cosh £29,2)

Vlk2 = Og + sinh £2 (99) +cos 6 O,

VE = 220, + 20, + cosh¢! (89 — sinh £20;1) + sinh &' D2
cosh £2 ’
V%l =zt Ogo + z° Op1 + 851,
sinh ¢! .
V§2 = .’172320 + :L'Oaz2 + Coshgz (— Slnhfzagl + 69) + cosh 51852,
Vgo = Oz0, Vg, = Og1, Vg, = Og2.



(2+1) Poincaré PHS from Drinfel'd doubles

Table 2: The (2+1) Poincaré r-matrices and Poisson subgroup/coisotropy condition for each of the eight DD struc-

tures on p(2 + 1) as well as the corresponding class in the Stachura classification.

Case  Classical r-matrix r} ép (b) Stachura class.
0 LW(-P AT —PLAK2+ P2 NKY) = (V)
1 KiANJ+KiAKy+ (—PoAJ— Py AKa+ P2 A Ky) ChAb (0]
2 PyAJ—PoAKy—PaANKa+ 5(PoAJ — Pr AKg + Py A K1) ChAg (11a)
3 —PZ/\J—PU/\KZ—PZ/\K2+%(—P0/\J+P1/\K2—P2/\K1) ZhAg (ITa)
+1(PoAP1+2(Po APy + P2 APY))
4 PZ/\J+%(POI\J—Plf\Kg+P2/\K1)+)\P0AP2 ZhAg (I1Ib)
5 PIAJ+ 3 (~PoAJ+PiAKy—PAK1)+ $PIA P ZHhAg (I1Ib)
6 POAK2+%(—P0/\J+P1/\K2+P2AK1) ChAg (I1Ib)
7 PZ/\J+%(—POAJ+P1/\K2—P2/\K1) ChAg (I1Ib)
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(2+1) Poincaré PHS from Drinfel'd doubles

Table 2: The (2+1) Poincaré r-matrices and Poisson subgroup/coisotropy condition for each of the eight DD struc-

tures on p(2 + 1) as well as the corresponding class in the Stachura classification.

Stachura class.

Case Classical r-matrix r1’. ép (b)
0 LW(-P AT —PLAK2+ P2 NKY) =

1 KiANJ+KiAKy+ (—PoAJ— Py AKa+ P2 A Ky) ChAb
2 PANJ-PoAK2—P2AKa+ 3(PoAJ - PLAK2 + P2 A K1) Chng
3 —PyANJ—PyAKy—PyANKy+ 5(-PoAJ+PIAKy —PANK1) ¢ hAg

+3(PoAP1+2(Po APy + P2 APY))

4 PAJ+L(PoAT—PiAKa+PaAK1)+ AP AP, ZhAg
5 PIAJ+ 3 (~PoAJ+PiAKy—PAK1)+ $PIA P ZhAg
6 PyAKy+ 3(—PoAJ+ Py AKz+ Py AKi) ChAg
7 Py AT+ 5(—PyAJ+PLAKy — P AKY) ChAg

)

(II1b)
(II1b)
(IT1b)
(I11b)

Among the eight r-matrices generating the (2+41) PL structures:

@ We have five coisotropic cases with respect to the Lorentz isotropy

subalgebra.
@ Cases 0 and 1 are of Poisson subgroup type.

@ All the r-matrices should be multiplied by a constant (Ap).
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(2+1) Poincaré PHS from Drinfel'd doubles

DD Poisson Minkowski spacetimes in (2+1) dimensions

Case 0
{XO,XI} _ 7X27 {XO,Xz} _ Xl, {XI,XZ} _ XO,
Case 1
{x% x1 = —x*(x° + x') + 2x°,
{x% 5%} = x'(x* + x') — 2x*,
{xl,xz} = xo(x0 + Xl) —2x°,
Case 2

{Xovxl} = 07 {X07X2} = (XO - X2) ’ {X17X2} = (XO - X2) ’
Case 6
{xo,xl} =0, {XO,XQ} =—x"+x, {xl,x2} =0,
Case 7
{xo,xl} =0, {XO,XQ} =0, {xl,xz} = —(x0 —|—X2).

Quantization is non-trivial for Case 2 (quadratic Poisson algebra).
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A Lorentzian PHS in (3+1) dimensions

4. A LORENTZIAN PHS IN (3+1) DIMENSIONS
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The (34+1)D AdS,, Lie algebra (w = —A):

[J37 Jb] - 6abCJC7 [J37 Pb] - 6abCPC7 [Ja7 Kb] - 6‘QIJCI{C Y
[Kaa PO] - Pa; [Kaa 'Db] = 5abP0a [K37 Kb] = _EachCa
[P07 Pa] = WKav [Paa Pb] = _weabCJC7 [POa Ja] - 0
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The (34+1)D AdS,, Lie algebra (w = —A):

[J37 Jb] - 6abCJC7 [J37 Pb] - 6abCPC7 [J37 Kb] - 6abCI’(C Y
[Kaa PO] = Pa; [Kaa 'Db] = 5abP0a [Km Kb] = _Eachca
[Po, Pa] =wkKj, [Pa7 Pb] = —We€apc e , [Po, Ja] =0.

Explicilty, AdSS’JJrl comprises the three following Lorentzian spacetimes:
e w>0,A < 0: AdS spacetime AdS>*! = S0(3,2)/S0(3,1).
e w < 0,A > 0: dS spacetime dS3*1 = SO(4,1)/S0(3,1).
e w = A= 0: Minkowski spacetime M3*1 =1S0(3,1)/SO(3,1).
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The (34+1)D AdS,, Lie algebra (w = —A):

[J37 Jb] - 6abCJC7 [J37 Pb] - 6abCPC7 [J37 Kb] - 6abCI’(C Y
[Kaa PO] = Pa; [Kaa 'Db] = 5abP0a [Km Kb] = _Eachca
[Po, Pa] =wkKj, [Pa7 Pb] = —We€apc e , [Po, Ja] =0.

Explicilty, AdSS’JJrl comprises the three following Lorentzian spacetimes:
e w>0,A < 0: AdS spacetime AdS>*! = S0(3,2)/S0(3,1).
e w < 0,A > 0: dS spacetime dS3*1 = SO(4,1)/S0(3,1).
e w = A= 0: Minkowski spacetime M3+1 =1S0(3,1)/SO(3,1).

Casimir operators: the quadratic one
C=P;—P +w(F-K?
and the quartic one (Pauli-Lubanski)

W=WZ-W?+w(J K)?
Wo=1J-P Wy = —J3P0 + €apc Kb Pe
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A Lorentzian PHS in (3+1) dimensions

The classical r-matrix for the AdS x-deformation is 2

r=Z(K1/\P1+K2/\P2+K3/\P3+\@J1/\J2), Z=1//<;,

2A.B., F.J. Herranz, F. Musso, P. Naranjo, PLB (2017); arXiv:1612.03169
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A Lorentzian PHS in (3+1) dimensions

The classical r-matrix for the AdS x-deformation is 2

r=z(KiAPL+ Ky AP+ Kz AP3+Jwh Ad), z=1/k,
and the cocommutator map reads

6(Po) =0,  4(h)=0,
6(h) = zVwh Ak, 0(f) = 2w o A U,
5(P1) Z(Pl/\Po—ng/\K3—|-wJ3/\K2—|-\FJl/\Pg,)

§(P)=z(P2APy—wJls AKy+wh AKs+/wd AP3),
§(P3)=z(PsAPy—wh AKo+wh ANKi —Jwh APy —wdh AP),
§(Ki) =z (KiAPy+ o AP3s—J3 AP+ +/wd AKs),

§(K2) =z (Ko APy + 3 APy —h AP3+wdh AKs),

§(K3) =z (KsAPy+h APy — b AP —wh AKL—Vwdh AKs) .

The coisotropy condition holds §(h) C h A g.

2A.B., F.J. Herranz, F. Musso, P. Naranjo, PLB (2017); arXiv:1612.03169
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A Lorentzian PHS in (3+1) dimensions

By computing the Sklyanin bracket for the r-matrix and by taking the
canonical projection onto the spacetime Poisson subalgebra we get the

(3+1) x-AdS noncommutative spacetime 3
{Xo,Xl} _ _ztanh(\/@xl)sechi}a\/@Xz)sech2(\/QX3) w0 —zx
{XO,X2} _ _ztanh(\/ax\g/);ech2(\/c;X3) w0 —zx
{Xo,Xs}Z*%;/w w—0 — zx3
{x1,x} = —ZCOSh(\/aX%anhz(‘/axﬁ w—0 0
{Xl,X3} _ zcosh(\/fuxl)tanf:}w\/@)q)tanh(\/ﬂxﬂ w0 0
{x2,x3} = —Zsmh(ﬁx\l/)ganh(ﬁx3) w—0 0

With respect to the Minkowski limit w = —A — 0, space coordinates do

not commute and space isotropy is lost.

3

A.B., I. Gutiérrez-Sagredo, F.J. Herranz, The k-AdS Poisson homogeneous spacetime, preprint.
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The (2+1) x-AdS,, noncommutative spacetime
The classical r-matrix in the (2+1) case reads *
r=z(KiAP1+ Ky A P2),

and the Lie bialgebra (AdS,,, d) is

6(Po) = 6(J) =0,

0(P1) =2z(P1 APy —wkaAJ),
0(P2) =z(Pa A Pp+wKi AJ),
(5(K1) Z(K1AP0+P2/\J)
§(K2) = z(Ka A Py — Py A J).

This Lie bialgebra fulfills the coisotropy condition with h = {J, K1, K2 }:

s(h)ChAg.

A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.
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A Lorentzian PHS in (3+1) dimensions

Poisson—Lie group relations among spacetime x,, group coordinates:

tanh /wxy

X0, X1} = —2— 5 —— w—0 —zx
Doa) Vw cosh?/wxs !
tanh /wxo
{x0,x0} = —z ———— w—0 —zX0
Vw

{X17X2} =0
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A Lorentzian PHS in (3+1) dimensions

Poisson—Lie group relations among spacetime x,, group coordinates:

tanh /wxy

X0, X1} = —Z———F5—— w—0 —Zzx

Do} Vw cosh?/wxs !
tanh

{XO,XQ}:—Z# w—0 —ZX

{x1,x2} =0

The quantum AdS,, group in ‘local coordinates’ would be the quantization

of the above nonlinear PL bracket. In particular, since {x1,x2} = 0 we
could write:

S f] = —z VO (e ZR3 — w2 ) + O(w?),

o, %] /@ cosh?y/wko 17 3% 12 ()
tanh o 1

(o S0] = 2 \/\a@m _ <$<2 - 3%3) L0,

[%1, %] = 0.
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Open problems

OPEN PROBLEMS
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Open problems

e Construction of the coisotropic PHS for AdS>+1.
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o Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.
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Open problems

e Construction of the coisotropic PHS for AdS2*1.
o Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.

@ The Minkowski and (A)dS3*! PHS: the H subgroup is SO(3,1).
The complete classification of coisotropic and Poisson subgroup Lie
bialgebra structures on SO(3,2), SO(4,1) and P(3 + 1).
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e Construction of the coisotropic PHS for AdS2*1.
o Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.

@ The Minkowski and (A)dS3*! PHS: the H subgroup is SO(3,1).
The complete classification of coisotropic and Poisson subgroup Lie

bialgebra structures on SO(3,2), SO(4,1) and P(3 + 1).
@ Construction of PHS of time-like worldlines:

h={h,t,Js, P}

w=-—A Space of time-like worldlines Sy

= {x1, %, x3, &1, &2, &3}

w>0, A<0  LAdS**® = 50(3,2)/(50(3) ® SO(2))
w=A=0 LM**3 = JSO(3,1)/ (SO(3) ® R)
w<0, A>0  LdS**? =50(4,1)/(50(3) ® SO(2,1))
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o Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.

@ The Minkowski and (A)dS3*! PHS: the H subgroup is SO(3,1).
The complete classification of coisotropic and Poisson subgroup Lie

bialgebra structures on SO(3,2), SO(4,1) and P(3 + 1).
@ Construction of PHS of time-like worldlines:

h={h,t,Js, P}

w=-—A Space of time-like worldlines Sy

= {x1, %, x3, &1, &2, &3}

w>0, A<0  LAdS**® = 50(3,2)/(50(3) ® SO(2))
w=A=0 LM**3 = JSO(3,1)/ (SO(3) ® R)
w<0, A>0  LdS**? =50(4,1)/(50(3) ® SO(2,1))

@ Quantization of PHS and representation theory of the associated

spacetime algebras.
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Open problems
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Quantized Space-Time

HARTLAND S. SNYDER
Depariment of Physics, Northwestern University, Evanston, Illinois
(Received May 13, 1946)

It is usually assumed that space-time is a continuum. This assumption is not required by
Lorentz invariance. In this paper we give an example of a Lorentz invariant discrete space-time,

for transformations from one inertial frame to R —— !1ave
a total of forty-five commutators. Only six of

another. It is usually assumed that the variables
x, ¥, 2, and ¢ take on a continuum of values and
that they may take on these values simul-
taneously. This last assumption we change to the
following:

%, ¥, 2, and ¢ are Hermitian operators for the space-time
coordinates of a particular Lorentz frame; the spectrum
of each of the operators x, ¥, z, and ¢'is composed of the
possible results of a measurement of the corresponding
quantity; the operators x, ¥, 2, and ¢ shall be such that the
spectra of the operators &/, 3, 7/, ¢’ formed by taking linear
combinations of x, ¥, z, and £, which leave the quadratic
form (1) invariant, shall be the same as the spectra of
x, ¥, 2, and .

these commutators differ from the ordinary ones
and these six are

[t, x]=(1a*/hc) M.,
[t y1=(a*/he) My, (5)
[t, z]=(1a*/he) M ,.

[, y]=(ia*/R) L.,
Ly, s]=(ia*/h) L,
[z x1= (ia*/k) Ly,

We see from these commutators that if we take
the limit a—0 keeping % and ¢ fixed, our quan-
tized space-time changes to the ordinary con-
tinuous space-time.
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