Universidad de Burgos
Mathematical Physics Group

Lorentzian Poisson homogeneous spaces

Ángel Ballesteros,

Iván Gutiérrez-Sagredo, Francisco J. Herranz

Sevilla, 05/09/2018

Outline

(1) Motivation: Noncommutative spacetimes
(2) Poisson-Lie groups and Poisson homogeneous spaces
3) $(2+1)$ Poincaré PHS from Drinfel'd doubles
4) A Lorentzian PHS in $(3+1)$ dimensions
(5) Open problems

Hypothesis:

‘Noncommutative’ space-times can be used to describe relevant physical phenomena at the Planck scale (very high energy/curvature).

Hypothesis:
‘Noncommutative’ space-times can be used to describe relevant physical phenomena at the Planck scale (very high energy/curvature).

- They give rise to Planck scale uncertainty relations when simultaneous measurements of 'spacetime observables' described by a noncommutative $\left(C^{*}\right)$ algebra are considered:

$$
\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}} \neq 0 \quad \Longrightarrow \quad \Delta \hat{x}^{i} \cdot \Delta \hat{x}^{j} \geq \frac{1}{2}\left|\left\langle\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}}\right\rangle\right|>0
$$

Hypothesis:
‘Noncommutative’ space-times can be used to describe relevant physical phenomena at the Planck scale (very high energy/curvature).

- They give rise to Planck scale uncertainty relations when simultaneous measurements of 'spacetime observables' described by a noncommutative (C^{*}) algebra are considered:

$$
\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}} \neq 0 \quad \Longrightarrow \quad \Delta \hat{x}^{i} \cdot \Delta \hat{x}^{j} \geq \frac{1}{2}\left|\left\langle\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}}\right\rangle\right|>0
$$

- This 'quantum' spacetime algebra should be a 'Planck scale' $\left(\lambda_{P}\right)$ deformation of the 'classical' commutative spacetime:

$$
\lim _{\lambda_{P} \rightarrow 0}\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}}=0
$$

Hypothesis:
‘Noncommutative’ space-times can be used to describe relevant physical phenomena at the Planck scale (very high energy/curvature).

- They give rise to Planck scale uncertainty relations when simultaneous measurements of 'spacetime observables' described by a noncommutative $\left(C^{*}\right)$ algebra are considered:

$$
\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}} \neq 0 \quad \Longrightarrow \quad \Delta \hat{x}^{i} \cdot \Delta \hat{x}^{j} \geq \frac{1}{2}\left|\left\langle\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}}\right\rangle\right|>0
$$

- This 'quantum' spacetime algebra should be a 'Planck scale' $\left(\lambda_{P}\right)$ deformation of the 'classical' commutative spacetime:

$$
\lim _{\lambda_{P} \rightarrow 0}\left[\hat{x}^{i}, \hat{x}^{j}\right]_{\lambda_{P}}=0
$$

Many different physical contexts since Snyder (1947): nc field theory, string spacetimes, $(2+1)$ quantum gravity, DSR and modified dispersion relations... Also different mathematical approaches to noncommutative geometry. [see R. J. Szabo, Physics Reports 378, 207-299 (2003)].

There are many possibilities in order to introduce noncommutative algebras of spacetime 'coordinates'.

A mathematically consistent one is provided by quantum groups:
Deformations G_{q} of the Hopf algebra of functions on Lie groups or, equivalently, Hopf algebra deformations $U_{q}(\mathfrak{g})$ of the universal enveloping algebra of $\mathfrak{g}=\operatorname{Lie}(G)$ [Drinfel'd, Manin, Woronowicz].

There are many possibilities in order to introduce noncommutative algebras of spacetime 'coordinates'.

A mathematically consistent one is provided by quantum groups:
Deformations G_{q} of the Hopf algebra of functions on Lie groups or, equivalently, Hopf algebra deformations $U_{q}(\mathfrak{g})$ of the universal enveloping algebra of $\mathfrak{g}=\operatorname{Lie}(G)$ [Drinfel'd, Manin, Woronowicz].

- 'Quantum spacetimes' can be constructed as noncommutative algebras that are covariant under quantum group (co)actions.

There are many possibilities in order to introduce noncommutative algebras of spacetime 'coordinates'.

A mathematically consistent one is provided by quantum groups:
Deformations G_{q} of the Hopf algebra of functions on Lie groups or, equivalently, Hopf algebra deformations $U_{q}(\mathfrak{g})$ of the universal enveloping algebra of $\mathfrak{g}=\operatorname{Lie}(G)$ [Drinfel'd, Manin, Woronowicz].

- 'Quantum spacetimes' can be constructed as noncommutative algebras that are covariant under quantum group (co)actions.
- The 'quantum' deformation parameter would depend on some Planck scale parameter: $q=q\left(\lambda_{P}\right)$ such that $\lim _{\lambda_{P} \rightarrow 0} q=1$.

There are many possibilities in order to introduce noncommutative algebras of spacetime 'coordinates'.

A mathematically consistent one is provided by quantum groups:
Deformations G_{q} of the Hopf algebra of functions on Lie groups or, equivalently, Hopf algebra deformations $U_{q}(\mathfrak{g})$ of the universal enveloping algebra of $\mathfrak{g}=\operatorname{Lie}(G)$ [Drinfel'd, Manin, Woronowicz].

- 'Quantum spacetimes' can be constructed as noncommutative algebras that are covariant under quantum group (co)actions.
- The 'quantum' deformation parameter would depend on some Planck scale parameter: $q=q\left(\lambda_{P}\right)$ such that $\lim _{\lambda_{P} \rightarrow 0} q=1$.
- In particular, quantum (Anti)-de Sitter and Minkowski spacetimes can be constructed as quantum homogeneous spaces of the corresponding quantum kinematical groups $\mathrm{SO}_{q}(4,1)$, $S O_{q}(3,2)$ and $I S O_{q}(3,1)$.

Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical homogeneous spaces $M=G / H$, where H is the Lorentz isotropy subgroup $S O(3,1)$ and G is, respectively, $S O(3,2), S O(4,1)$ and ISO $(3,1)$.

Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical homogeneous spaces $M=G / H$, where H is the Lorentz isotropy subgroup $S O(3,1)$ and G is, respectively, $S O(3,2), S O(4,1)$ and ISO $(3,1)$.

- The construction of quantum homogeneous spaces M_{q} implies that quantum groups G_{q} and and the corresponding H_{q} have to be considered.

> Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical homogeneous spaces $M=G / H$, where H is the Lorentz isotropy subgroup $S O(3,1)$ and G is, respectively, $S O(3,2), S O(4,1)$ and ISO $(3,1)$.

- The construction of quantum homogeneous spaces M_{q} implies that quantum groups G_{q} and and the corresponding H_{q} have to be considered.
- All invariance notions (isotropy subgroup, transitivity) have to be translated into the language of the noncommutative Hopf algebras of functions on G_{q} and M_{q}.

```
Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical homogeneous spaces \(M=G / H\), where \(H\) is the Lorentz isotropy subgroup \(S O(3,1)\) and \(G\) is, respectively, \(S O(3,2), S O(4,1)\) and ISO \((3,1)\).
```

- The construction of quantum homogeneous spaces M_{q} implies that quantum groups G_{q} and and the corresponding H_{q} have to be considered.
- All invariance notions (isotropy subgroup, transitivity) have to be translated into the language of the noncommutative Hopf algebras of functions on G_{q} and M_{q}.
- Since H is a subgroup of G, the deformation H_{q} is fixed by the deformation G_{q}.

```
Maximally symmetric spacetimes (AdS, dS, Minkowski) are classical homogeneous spaces \(M=G / H\), where \(H\) is the Lorentz isotropy subgroup \(S O(3,1)\) and \(G\) is, respectively, \(S O(3,2), S O(4,1)\) and ISO \((3,1)\).
```

- The construction of quantum homogeneous spaces M_{q} implies that quantum groups G_{q} and and the corresponding H_{q} have to be considered.
- All invariance notions (isotropy subgroup, transitivity) have to be translated into the language of the noncommutative Hopf algebras of functions on G_{q} and M_{q}.
- Since H is a subgroup of G, the deformation H_{q} is fixed by the deformation G_{q}.
- Imposing that H_{q} is a quantum subgroup (i.e., a Hopf subalgebra of G_{q}) turns out to be too restrictive.
[Dijkhuizen and Koornwinder, 1994]

Why Poisson homogeneous spaces

Main results: [Drinfel'd]
Quantum groups G_{q} are quantizations of Poisson-Lie groups (G, Π) and quantum homogeneous spaces M_{q} are quantizations of Poisson homogeneous spaces (M, π).

Why Poisson homogeneous spaces

Main results: [Drinfel'd]
Quantum groups G_{q} are quantizations of Poisson-Lie groups (G, Π) and quantum homogeneous spaces M_{q} are quantizations of Poisson homogeneous spaces (M, π).

- Poisson-Lie groups (G, Π) are in one-to-one correspondence with Lie bialgebra structures (\mathfrak{g}, δ).

Why Poisson homogeneous spaces

Main results: [Drinfel'd]
Quantum groups G_{q} are quantizations of Poisson-Lie groups (G, Π) and quantum homogeneous spaces M_{q} are quantizations of Poisson homogeneous spaces (M, π).

- Poisson-Lie groups (G, Π) are in one-to-one correspondence with Lie bialgebra structures (\mathfrak{g}, δ).
- Poisson homogeneous spaces (M, π) are in one-to-one correspondence with with Lagrangian Lie subalgebras ℓ of the Drinfel'd double Lie algebra $D(\mathfrak{g})$ associated to δ.
- The plurality of PHS (and of QHS) for a given $M=G / H$ can be explored by considering the classification of PL structures (and, therefore, of quantum deformations) of G.
- The plurality of PHS (and of QHS) for a given $M=G / H$ can be explored by considering the classification of PL structures (and, therefore, of quantum deformations) of G.
- In order to be able to obtain the π bracket through canonical projection from the PL bracket Π, the isotropy subgroup H has to be coisotropic with respect to δ :

$$
\delta(\mathfrak{h}) \subset \mathfrak{h} \wedge \mathfrak{g}, \quad \mathfrak{h}=\operatorname{Lie}(H)
$$

This guarantees that π defines a Poisson subalgebra within Π.

- The plurality of PHS (and of QHS) for a given $M=G / H$ can be explored by considering the classification of PL structures (and, therefore, of quantum deformations) of G.
- In order to be able to obtain the π bracket through canonical projection from the PL bracket Π, the isotropy subgroup H has to be coisotropic with respect to δ :

$$
\delta(\mathfrak{h}) \subset \mathfrak{h} \wedge \mathfrak{g}, \quad \mathfrak{h}=\operatorname{Lie}(H)
$$

This guarantees that π defines a Poisson subalgebra within Π.

- A particular case: when H is a Poisson-Lie subgroup

$$
\delta(\mathfrak{h}) \subset \mathfrak{h} \wedge \mathfrak{h}
$$

its quantization would give rise to a quantum subgroup H_{q}.

As a consequence, for the same 'clasical' $M=G / H$ we have different admissible Poisson (noncommutative) homogeneous structures.

As a consequence, for the same 'clasical' $M=G / H$ we have different admissible Poisson (noncommutative) homogeneous structures.
(1) We have as many possible PL structures Π on G as Lie bialgebra structures (g, δ), whose dual δ^{*} is just the linearization of Π :

$$
\{x, x\}_{\Pi}=A(x, \xi) \quad\{x, \xi\}_{\Pi}=B(x, \xi) \quad\{\xi, \xi\}_{\Pi}=C(x, \xi) .
$$

As a consequence, for the same 'clasical' $M=G / H$ we have different admissible Poisson (noncommutative) homogeneous structures.
(1) We have as many possible PL structures Π on G as Lie bialgebra structures (g, δ), whose dual δ^{*} is just the linearization of Π :

$$
\{x, x\}_{\Pi}=A(x, \xi) \quad\{x, \xi\}_{\Pi}=B(x, \xi) \quad\{\xi, \xi\}_{\Pi}=C(x, \xi)
$$

(2) For each of them we have to find the appropriate π structure on M that is compatible with Π :

$$
\{x, x\}_{\pi}=F(x)
$$

As a consequence, for the same 'clasical' $M=G / H$ we have different admissible Poisson (noncommutative) homogeneous structures.
(1) We have as many possible PL structures Π on G as Lie bialgebra structures (g, δ), whose dual δ^{*} is just the linearization of Π :

$$
\{x, x\}_{\Pi}=A(x, \xi) \quad\{x, \xi\}_{\Pi}=B(x, \xi) \quad\{\xi, \xi\}_{\Pi}=C(x, \xi)
$$

(2) For each of them we have to find the appropriate π structure on M that is compatible with Π :

$$
\{x, x\}_{\pi}=F(x)
$$

The coisotropy condition ensures that π can be obtained as the projection of Π onto the PHS coordinates:

$$
\{x, x\}_{\pi}=\{x, x\}_{\Pi}=A(x, 0)=F(x)
$$

Aim of this work:
Construct (A)dS and Minkowskian PHS and analyse their properties as a preliminary step for the construction of their associated QHS.

Data:

Aim of this work:
Construct (A)dS and Minkowskian PHS and analyse their properties as a preliminary step for the construction of their associated QHS.

Data:

- In $(2+1)$ dimensions PL structures are fully described through the classifications of the corresponding (coboundary) Lie bialgebras:
- Poincaré Lie algebra [Stachura, 1998]
- dS and AdS Lie algebras [Zakrzewski 1994, Borowiec, Lukierski and Tolstoy, 2016]

Aim of this work:
Construct (A)dS and Minkowskian PHS and analyse their properties as a preliminary step for the construction of their associated QHS.

Data:

- In (2+1) dimensions PL structures are fully described through the classifications of the corresponding (coboundary) Lie bialgebras:
- Poincaré Lie algebra [Stachura, 1998]
- dS and AdS Lie algebras [Zakrzewski 1994, Borowiec, Lukierski and Tolstoy, 2016]
- In (3+1) dimensions, PL structures of the $(3+1)$ Poincaré group are classified [Zakrzewski 1997], but a complete (A)dS classification is still lacking.

Aim of this work:
Construct (A)dS and Minkowskian PHS and analyse their properties as a preliminary step for the construction of their associated QHS.

Data:

- In (2+1) dimensions PL structures are fully described through the classifications of the corresponding (coboundary) Lie bialgebras:
- Poincaré Lie algebra [Stachura, 1998]
- dS and AdS Lie algebras [Zakrzewski 1994, Borowiec, Lukierski and Tolstoy, 2016]
- In (3+1) dimensions, PL structures of the $(3+1)$ Poincaré group are classified [Zakrzewski 1997], but a complete (A)dS classification is still lacking.

These classifications are not written in a suitable kinematical basis $\{J, K, P\}$ giving rise to the PHS with usual x^{μ} Minkowski coordinates.

In particular:
Some examples of Lorentzian PHS:

- In $(2+1)$ dimensions, Minkowski PHS coming from all possible Drinfel'd double structures of the $(2+1)$ Poincaré Lie algebra are constructed. The DD (A)dS Poisson-Lie groups are known. ${ }^{1}$
- A PHS for the (3+1)-dimensional AdS group with respect to the so-called κ-Poisson-Lie structure is explicitly given.

Its Minkowskian limit can be obtained when the cosmological constant vanishes.

[^0]
2. Poisson-Lie groups and Poisson homogeneous spaces

A Poisson-Lie group (G, Π) is a Lie group G that is also a Poisson manifold such that the multiplication map for G is a Poisson map.

A Poisson-Lie group (G, Π) is a Lie group G that is also a Poisson manifold such that the multiplication map for G is a Poisson map.

Theorem [Drinfel'd]. Let G be a Lie group with Lie algebra \mathfrak{g} :
a) If (G, Π) is a Poisson-Lie group, then \mathfrak{g} has a natural Lie bialgebra structure (\mathfrak{g}, δ), called the tangent Lie bialgebra of G.
b) Conversely, if G is connected and simply connected, every Lie bialgebra structure (\mathfrak{g}, δ) is the tangent Lie bialgebra of a unique Poisson structure on G which makes G into a Poisson-Lie group.

A Poisson-Lie group (G, Π) is a Lie group G that is also a Poisson manifold such that the multiplication map for G is a Poisson map.

Theorem [Drinfel'd]. Let G be a Lie group with Lie algebra \mathfrak{g} :
a) If (G, Π) is a Poisson-Lie group, then \mathfrak{g} has a natural Lie bialgebra structure (\mathfrak{g}, δ), called the tangent Lie bialgebra of G.
b) Conversely, if G is connected and simply connected, every Lie bialgebra structure (\mathfrak{g}, δ) is the tangent Lie bialgebra of a unique Poisson structure on G which makes G into a Poisson-Lie group.

The cocommutator map $\delta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ is such that:

- i) δ is a 1 -cocycle, i.e.,

$$
\delta([X, Y])=[\delta(X), 1 \otimes Y+Y \otimes 1]+[1 \otimes X+X \otimes 1, \delta(Y)], \forall X, Y \in g
$$

- ii) The dual map $\delta^{*}: \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ is a Lie bracket on \mathfrak{g}^{*}.
- In some cases the 1 -cocycle δ is a coboundary

$$
\delta(X)=[1 \otimes X+X \otimes 1, r] \quad X \in \mathfrak{g}
$$

where r is a skewsymmetric element of $\mathfrak{g} \otimes \mathfrak{g}$ (the r-matrix)

$$
r=r^{a b} X_{a} \wedge X_{b}
$$

which has to be a solution of the modified classical Yang-Baxter equation (mCYBE)

$$
[X \otimes 1 \otimes 1+1 \otimes X \otimes 1+1 \otimes 1 \otimes X,[[r, r]]]=0 \quad X \in \mathfrak{g}
$$

- In some cases the 1-cocycle δ is a coboundary

$$
\delta(X)=[1 \otimes X+X \otimes 1, r] \quad X \in \mathfrak{g}
$$

where r is a skewsymmetric element of $\mathfrak{g} \otimes \mathfrak{g}$ (the r-matrix)

$$
r=r^{a b} X_{a} \wedge X_{b}
$$

which has to be a solution of the modified classical Yang-Baxter equation (mCYBE)

$$
[X \otimes 1 \otimes 1+1 \otimes X \otimes 1+1 \otimes 1 \otimes X,[[r, r]]]=0 \quad X \in \mathfrak{g}
$$

- For a coboundary Poisson-Lie group G, the Poisson structure Π on G is given by the so-called Sklyanin bracket

$$
\{f, g\}=r^{i j}\left(\nabla_{i}^{L} f \nabla_{j}^{L} g-\nabla_{i}^{R} f \nabla_{j}^{R} g\right), \quad f, g \in \mathcal{C}^{\infty}(G)
$$

where $\nabla_{i}^{L}, \nabla_{i}^{R}$ are left- and right-invariant vector fields on G.

Let \mathfrak{g} be a Lie bialgebra

$$
\left[X_{i}, X_{j}\right]=C_{i j}^{k} X_{k}, \quad \delta\left(X_{n}\right)=f_{n}^{l m} X_{I} \wedge X_{m}
$$

Let \mathfrak{g} be a Lie bialgebra

$$
\left[X_{i}, X_{j}\right]=C_{i j}^{k} X_{k}, \quad \delta\left(X_{n}\right)=f_{n}^{I m} X_{I} \wedge X_{m}
$$

The Drinfel'd double Lie algebra $D(\mathfrak{g})$ associated to the Lie bialgebra (\mathfrak{g}, δ) is the Lie algebra structure on the vector space $\mathfrak{g}+\mathfrak{g}^{*}$ given by

$$
\left[X_{i}, X_{j}\right]=C_{i j}^{k} X_{k}, \quad\left[x^{i}, x^{j}\right]=f_{k}^{i j} x^{k}, \quad\left[x^{i}, X_{j}\right]=C_{j k}^{i} x^{k}-f_{j}^{i k} X_{k}
$$

where $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{x^{1}, \ldots, x^{n}\right\}$ are dual basis for \mathfrak{g} and \mathfrak{g}^{*}, under the canonical pairing

$$
\left\langle X_{i}, x^{j}\right\rangle=\delta_{i}^{j} .
$$

Let \mathfrak{g} be a Lie bialgebra

$$
\left[X_{i}, X_{j}\right]=C_{i j}^{k} X_{k}, \quad \delta\left(X_{n}\right)=f_{n}^{I m} X_{I} \wedge X_{m}
$$

The Drinfel'd double Lie algebra $D(\mathfrak{g})$ associated to the Lie bialgebra (\mathfrak{g}, δ) is the Lie algebra structure on the vector space $\mathfrak{g}+\mathfrak{g}^{*}$ given by

$$
\left[X_{i}, X_{j}\right]=C_{i j}^{k} X_{k}, \quad\left[x^{i}, x^{j}\right]=f_{k}^{i j} x^{k}, \quad\left[x^{i}, X_{j}\right]=C_{j k}^{i} x^{k}-f_{j}^{i k} X_{k}
$$

where $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{x^{1}, \ldots, x^{n}\right\}$ are dual basis for \mathfrak{g} and \mathfrak{g}^{*}, under the canonical pairing

$$
\left\langle X_{i}, x^{j}\right\rangle=\delta_{i}^{j} .
$$

$D(\mathfrak{g})$ has a canonical quasi-triangular Lie bialgebra structure given by

$$
r=\sum_{i} x^{i} \otimes X_{i}
$$

since r is always a solution of the CYBE $[[r, r]]=0$.

Let (G, Π) be a PL group. A Poisson homogeneous space is a Poisson manifold (M, π) with a transitive group action $\triangleright: G \times M \rightarrow M$ that is a Poisson map with respect to the Poisson structure π on M and the product $\Pi \times \pi$ of the Poisson structures on G and M.

Let (G, Π) be a PL group. A Poisson homogeneous space is a Poisson manifold (M, π) with a transitive group action $\triangleright: G \times M \rightarrow M$ that is a Poisson map with respect to the Poisson structure π on M and the product $\Pi \times \pi$ of the Poisson structures on G and M.

Theorem [Drinfel'd]
Let G be a Poisson-Lie group and let H be a connected subgroup of G.
Poisson homogeneous spaces on $M=G / H$ are in one-to one correspondence with Lagrangian Lie subalgebras ℓ of the double Lie algebra $D(\mathfrak{g})$ such that $\ell \cap \mathfrak{g}=\mathfrak{h}$.

The Lagrangian Lie subalgebra ℓ of the double Lie algebra $D(\mathfrak{g})$ fulfills:

- Maximality: $\operatorname{dim} \ell=\operatorname{dim} \mathfrak{g} \equiv N$.
- Isotropy: $\langle\ell, \ell\rangle=0$.
- The condition $\ell \cap \mathfrak{g}=\mathfrak{h}$.

3. Poincaré PHS from Drinfel'd doubles in $(2+1)$

The $(2+1)$ Poincaré Lie algebra:

$$
\begin{array}{lll}
{\left[J, K_{1}\right]=K_{2},} & {\left[J, K_{2}\right]=-K_{1},} & {\left[K_{1}, K_{2}\right]=-J,} \\
{\left[J, P_{0}\right]=0,} & {\left[J, P_{1}\right]=P_{2},} & {\left[J, P_{2}\right]=-P_{1},} \\
{\left[K_{1}, P_{0}\right]=P_{1},} & {\left[K_{1}, P_{1}\right]=P_{0},} & {\left[K_{1}, P_{2}\right]=0} \\
{\left[K_{2}, P_{0}\right]=P_{2},} & {\left[K_{2}, P_{1}\right]=0,} & {\left[K_{2}, P_{2}\right]=P_{0}} \\
{\left[P_{0}, P_{1}\right]=0,} & {\left[P_{0}, P_{2}\right]=0,} & {\left[P_{1}, P_{2}\right]=0,}
\end{array}
$$

Two quadratic Casimirs:

$$
\begin{gathered}
C_{1}=P_{0}^{2}-P_{1}^{2}-P_{2}^{2} \\
C_{2}=J P_{0}+K_{2} P_{1}-K_{1} P_{2}
\end{gathered}
$$

The $(2+1)$ Poincaré Lie algebra:

$$
\begin{array}{lll}
{\left[J, K_{1}\right]=K_{2},} & {\left[J, K_{2}\right]=-K_{1},} & {\left[K_{1}, K_{2}\right]=-J,} \\
{\left[J, P_{0}\right]=0,} & {\left[J, P_{1}\right]=P_{2},} & {\left[J, P_{2}\right]=-P_{1},} \\
{\left[K_{1}, P_{0}\right]=P_{1},} & {\left[K_{1}, P_{1}\right]=P_{0},} & {\left[K_{1}, P_{2}\right]=0} \\
{\left[K_{2}, P_{0}\right]=P_{2},} & {\left[K_{2}, P_{1}\right]=0,} & {\left[K_{2}, P_{2}\right]=P_{0}} \\
{\left[P_{0}, P_{1}\right]=0,} & {\left[P_{0}, P_{2}\right]=0,} & {\left[P_{1}, P_{2}\right]=0}
\end{array}
$$

Two quadratic Casimirs:

$$
\begin{gathered}
C_{1}=P_{0}^{2}-P_{1}^{2}-P_{2}^{2} \\
C_{2}=J P_{0}+K_{2} P_{1}-K_{1} P_{2}
\end{gathered}
$$

$(2+1)$ gravity can be described as a Chern-Simons gauge theory whose symplectic structure can be defined in terms of PL structures [Fock and Rosly 1992, Alekseev and Malkin 1995], and the most natural PL structures are those coming from classical Drinfel'd doubles [Meusburger and Schroers, 2009].

$$
\left[Y_{i}, Y_{j}\right]=C_{i j}^{k} Y_{k} \quad\left[y^{i}, y^{j}\right]=f_{k}^{i j} y^{k} \quad\left[y^{i}, Y_{j}\right]=C_{j k}^{i} y^{k}-f_{j}^{i k} Y_{k}
$$

Table 1: The eigth non-equivalent DD Lie algebras which are isomorphic to the (2+1) Poincaré algebra. The parameter ω can be rescaled to any non-zero real number of the same sign, while λ is an essential parameter. In Case 5 they must obey $\omega \lambda>0$. In Case 6 we have $\omega>0$.

	Case 0	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
$\left[Y_{0}, Y_{1}\right]$	$2 Y_{1}$	Y_{1}	Y_{1}	Y_{1}	$-Y_{2}$	Y_{1}	Y_{1}	$-Y_{2}$
$\left[Y_{0}, Y_{2}\right]$	$-2 Y_{2}$	Y_{2}	Y_{2}	$Y_{1}+Y_{2}$	Y_{1}	Y_{2}	Y_{2}	Y_{1}
$\left[Y_{1}, Y_{2}\right]$	Y_{0}	0	0	0	0	0	0	0
$\left[y^{0}, y^{1}\right]$	0	y^{0}	0	λy^{2}	0	λy^{2}	0	0
$\left[y^{0}, y^{2}\right]$	0	y^{1}	y^{1}	0	$-y^{0}$	y^{1}	$-y^{0}$	
$\left[y^{1}, y^{2}\right]$	0	y^{2}	0	0	$\lambda y^{0}-y^{1}$	$2 \omega y^{0}$	$2 \omega y^{0}$	$-y^{1}$
$\left[y^{0}, Y_{0}\right]$	0	$-Y_{1}$	0	0	$-Y_{2}$	0	0	$-Y_{2}$
$\left[y^{0}, Y_{1}\right]$	y^{2}	$-Y_{2}$	$-Y_{2}$	0	$\lambda Y_{2}-y^{2}$	0	0	0
$\left[y^{0}, Y_{2}\right]$	$-y^{1}$	0	0	$-\lambda y^{1}$	$Y_{0}-\lambda Y_{1}+y^{1}$	$-\lambda Y_{1}$	$-2 \omega Y_{2}+y^{1}+y^{2}$	$-2 \omega Y_{2}+y^{1}$
$\left[y^{1}, Y_{0}\right]$	$2 y^{1}$	$Y_{0}+y^{1}$	y^{1}	$y^{1}+y^{2}$	0	y^{2}		
$\left[y^{1}, Y_{1}\right]$	$-2 y^{0}$	$-y^{0}$	$-y^{0}$	$-y^{0}$	$-Y_{2}$	$-y^{0}$	$-y^{0}$	Y_{2}
$\left[y^{1}, Y_{2}\right]$	0	$-Y_{2}$	0	$\lambda Y_{0}-y^{0}$	$Y_{1}-y^{0}$	$\lambda Y_{0}-y^{0}$	0	$-y^{0}$
$\left[y^{2}, Y_{0}\right]$	$-2 y^{2}$	y^{2}	y^{2}	y^{2}	0	$2 \omega Y_{1}+y^{2}$	$2 \omega Y_{1}+y^{2}$	$-Y_{0}-y^{1}$
$\left[y^{2}, Y_{1}\right]$	0	Y_{0}	Y_{0}	0	0	Y_{0}	$-Y_{1}+y^{0}$	
$\left[y^{2}, Y_{2}\right]$	$2 y^{0}$	$Y_{1}-y^{0}$	$-y^{0}$	$-y^{0}$	0	$-y^{0}$	$-y^{0}$	0

A.B., I. Gutiérrez-Sagredo, F.J. Herranz, The Poincaré group as a Drinfel'd double, preprint.

- A generic element of the $P(2+1)$ group is constructed as $G=\exp \left(x^{0} \rho\left(P_{0}\right)\right) \exp \left(x^{1} \rho\left(P_{1}\right)\right) \exp \left(x^{2} \rho\left(P_{2}\right)\right) \exp \left(\xi^{1} \rho\left(K_{1}\right)\right) \exp \left(\xi^{2} \rho\left(K_{2}\right)\right) \exp (\theta \rho(J))$.
- A generic element of the $P(2+1)$ group is constructed as $G=\exp \left(x^{0} \rho\left(P_{0}\right)\right) \exp \left(x^{1} \rho\left(P_{1}\right)\right) \exp \left(x^{2} \rho\left(P_{2}\right)\right) \exp \left(\xi^{1} \rho\left(K_{1}\right)\right) \exp \left(\xi^{2} \rho\left(K_{2}\right)\right) \exp (\theta \rho(J))$.
- $\left\{x^{0}, x^{1}, x^{2}\right\}$ are local coordinates on the homogeneous Minkowski spacetime defined as $M=G / H$ with $H=\left\{J, K_{1}, K_{2}\right\}$.
- A generic element of the $P(2+1)$ group is constructed as
$G=\exp \left(x^{0} \rho\left(P_{0}\right)\right) \exp \left(x^{1} \rho\left(P_{1}\right)\right) \exp \left(x^{2} \rho\left(P_{2}\right)\right) \exp \left(\xi^{1} \rho\left(K_{1}\right)\right) \exp \left(\xi^{2} \rho\left(K_{2}\right)\right) \exp (\theta \rho(J))$.
- $\left\{x^{0}, x^{1}, x^{2}\right\}$ are local coordinates on the homogeneous Minkowski spacetime defined as $M=G / H$ with $H=\left\{J, K_{1}, K_{2}\right\}$.
- Left and right invariant vector fields on $P(2+1)$ are:

$$
\begin{aligned}
& \nabla_{J}^{L}=\partial_{\theta} \\
& \nabla_{K_{1}}^{L}=\frac{\cos \theta}{\cosh \xi^{2}}\left(\partial_{\xi^{1}}+\sinh \xi^{2} \partial_{\theta}\right)+\sin \theta \partial_{\xi^{2}} \\
& \nabla_{K_{2}}^{L}=-\frac{\sin \theta}{\cosh \xi^{2}}\left(\partial_{\xi^{1}}+\sinh \xi^{2} \partial_{\theta}\right)+\cos \theta \partial_{\xi^{2}} \\
& \nabla_{P_{0}}^{L}=\cosh \xi^{2}\left(\cosh \xi^{1} \partial_{x^{0}}+\sinh \xi^{1} \partial_{x^{1}}\right)+\sinh \xi^{2} \partial_{x^{2}} \\
& \nabla_{P_{1}}^{L}=\cos \theta\left(\sinh \xi^{1} \partial_{x^{0}}+\cosh \xi^{1} \partial_{x^{1}}\right)+\sin \theta\left(\sinh \xi^{2}\left(\cosh \xi^{1} \partial_{x^{0}}+\sinh \xi^{1} \partial_{x^{1}}\right)+\cosh \xi^{2} \partial_{x^{2}}\right), \\
& \nabla_{P_{2}}^{R}=-\sin \theta\left(\sinh \xi^{1} \partial_{x^{0}}+\cosh \xi^{1} \partial_{x^{1}}\right)+\cos \theta\left(\sinh \xi^{2}\left(\cosh \xi^{1} \partial_{x^{0}}+\sinh \xi^{1} \partial_{x^{1}}\right)+\cosh \xi^{2} \partial_{x^{2}}\right), \\
& \nabla_{J}^{R}=-x^{2} \partial_{x^{1}}+x^{1} \partial_{x^{2}}+\frac{\cosh \xi^{1}}{\cosh \xi^{2}}\left(\partial_{\theta}-\sinh \xi^{2} \partial_{\xi^{1}}\right)+\sinh \xi^{1} \partial_{\xi^{2}} \\
& \nabla_{K_{1}}^{R}=x^{1} \partial_{x^{0}}+x^{0} \partial_{x^{1}}+\partial_{\xi^{1}}, \\
& \nabla_{K_{2}}^{R}=x^{2} \partial_{x^{0}}+x^{0} \partial_{x^{2}}+\frac{\sinh \xi^{1}}{\cosh \xi^{2}}\left(-\sinh \xi^{2} \partial_{\xi^{1}}+\partial_{\theta}\right)+\cosh \xi^{1} \partial_{\xi^{2}} \\
& \nabla_{P_{0}}^{R}=\partial_{x^{0}}, \quad \nabla_{P_{1}}^{R}=\partial_{x^{1}}, \\
& \nabla_{P_{2}}^{R}=\partial_{x^{2}}
\end{aligned}
$$

Table 2: The (2+1) Poincaré r-matrices and Poisson subgroup/coisotropy condition for each of the eight DD structures on $\mathfrak{p}(2+1)$ as well as the corresponding class in the Stachura classification.

Case	Classical r-matrix r_{i}^{\prime}	$\delta_{D}(\mathfrak{h})$	Stachura class.
0	$\frac{1}{2}\left(-P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$=0$	(IV)
1	$K_{1} \wedge J+K_{1} \wedge K_{2}+\left(-P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{h}$	(I)
2	$P_{2} \wedge J-P_{0} \wedge K_{2}-P_{2} \wedge K_{2}+\frac{1}{2}\left(P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{g}$	(IIa)
3	$-P_{2} \wedge J-P_{0} \wedge K_{2}-P_{2} \wedge K_{2}+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}-P_{2} \wedge K_{1}\right)$	$\not \subset \mathfrak{h} \wedge \mathfrak{g}$	(IIa)
	$\quad+\frac{1}{\lambda}\left(P_{0} \wedge P_{1}+2\left(P_{0} \wedge P_{2}+P_{2} \wedge P_{1}\right)\right)$		
4	$P_{2} \wedge J+\frac{1}{2}\left(P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)+\lambda P_{0} \wedge P_{2}$	$\not \subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)
5	$P_{1} \wedge J+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}-P_{2} \wedge K_{1}\right)+\frac{1}{\lambda} P_{1} \wedge P_{0}$	$\not \subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)
6	$P_{0} \wedge K_{2}+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)
7	$P_{2} \wedge J+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}-P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)

Table 2: The (2+1) Poincaré r-matrices and Poisson subgroup/coisotropy condition for each of the eight DD structures on $\mathfrak{p}(2+1)$ as well as the corresponding class in the Stachura classification.

Case	Classical r-matrix r_{i}^{\prime}	$\delta_{D}(\mathfrak{h})$	Stachura class.
0	$\frac{1}{2}\left(-P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$=0$	(IV)
1	$K_{1} \wedge J+K_{1} \wedge K_{2}+\left(-P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{h}$	(I)
2	$P_{2} \wedge J-P_{0} \wedge K_{2}-P_{2} \wedge K_{2}+\frac{1}{2}\left(P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{g}$	(IIa)
3	$-P_{2} \wedge J-P_{0} \wedge K_{2}-P_{2} \wedge K_{2}+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}-P_{2} \wedge K_{1}\right)$	$\not \subset \mathfrak{h} \wedge \mathfrak{g}$	(IIa)
	$\quad+\frac{1}{\lambda}\left(P_{0} \wedge P_{1}+2\left(P_{0} \wedge P_{2}+P_{2} \wedge P_{1}\right)\right)$		
4	$P_{2} \wedge J+\frac{1}{2}\left(P_{0} \wedge J-P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)+\lambda P_{0} \wedge P_{2}$	$\not \subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)
5	$P_{1} \wedge J+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}-P_{2} \wedge K_{1}\right)+\frac{1}{\lambda} P_{1} \wedge P_{0}$	$\not \subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)
6	$P_{0} \wedge K_{2}+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}+P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)
7	$P_{2} \wedge J+\frac{1}{2}\left(-P_{0} \wedge J+P_{1} \wedge K_{2}-P_{2} \wedge K_{1}\right)$	$\subset \mathfrak{h} \wedge \mathfrak{g}$	(IIIb)

Among the eight r-matrices generating the $(2+1)$ PL structures:

- We have five coisotropic cases with respect to the Lorentz isotropy subalgebra.
- Cases 0 and 1 are of Poisson subgroup type.
- All the r-matrices should be multiplied by a constant $\left(\lambda_{P}\right)$.

DD Poisson Minkowski spacetimes in $(2+1)$ dimensions

Case 0

$$
\left\{x^{0}, x^{1}\right\}=-x^{2}, \quad\left\{x^{0}, x^{2}\right\}=x^{1}, \quad\left\{x^{1}, x^{2}\right\}=x^{0}
$$

Case 1

$$
\begin{aligned}
& \left\{x^{0}, x^{1}\right\}=-x^{2}\left(x^{0}+x^{1}\right)+2 x^{2} \\
& \left\{x^{0}, x^{2}\right\}=x^{1}\left(x^{0}+x^{1}\right)-2 x^{1} \\
& \left\{x^{1}, x^{2}\right\}=x^{0}\left(x^{0}+x^{1}\right)-2 x^{0}
\end{aligned}
$$

Case 2

$$
\left\{x^{0}, x^{1}\right\}=0, \quad\left\{x^{0}, x^{2}\right\}=-\left(x^{0}-x^{2}\right), \quad\left\{x^{1}, x^{2}\right\}=-\left(x^{0}-x^{2}\right)
$$

Case 6

$$
\left\{x^{0}, x^{1}\right\}=0, \quad\left\{x^{0}, x^{2}\right\}=-x^{0}+x^{1}, \quad\left\{x^{1}, x^{2}\right\}=0
$$

Case 7

$$
\left\{x^{0}, x^{1}\right\}=0, \quad\left\{x^{0}, x^{2}\right\}=0, \quad\left\{x^{1}, x^{2}\right\}=-\left(x^{0}+x^{2}\right)
$$

Quantization is non-trivial for Case 2 (quadratic Poisson algebra).

4. A Lorentzian PHS in (3+1) dimensions

The (3+1)D AdS $_{\omega}$ Lie algebra $(\omega=-\Lambda)$:

$$
\begin{array}{lll}
{\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J_{c},} & {\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P_{c},} & {\left[J_{a}, K_{b}\right]=\epsilon_{a b c} K_{c},} \\
{\left[K_{a}, P_{0}\right]=P_{a},} & {\left[K_{a}, P_{b}\right]=\delta_{a b} P_{0},} & {\left[K_{a}, K_{b}\right]=-\epsilon_{a b c} J_{c},} \\
{\left[P_{0}, P_{a}\right]=\omega K_{a},} & {\left[P_{a}, P_{b}\right]=-\omega \epsilon_{a b c} J_{c},} & {\left[P_{0}, J_{a}\right]=0 .}
\end{array}
$$

The (3+1)D AdS $_{\omega}$ Lie algebra $(\omega=-\Lambda)$:

$$
\begin{array}{lll}
{\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J_{c},} & {\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P_{c},} & {\left[J_{a}, K_{b}\right]=\epsilon_{a b c} K_{c},} \\
{\left[K_{a}, P_{0}\right]=P_{a},} & {\left[K_{a}, P_{b}\right]=\delta_{a b} P_{0},} & {\left[K_{a}, K_{b}\right]=-\epsilon_{a b c} J_{c},} \\
{\left[P_{0}, P_{a}\right]=\omega K_{a},} & {\left[P_{a}, P_{b}\right]=-\omega \epsilon_{a b c} J_{c},} & {\left[P_{0}, J_{a}\right]=0 .}
\end{array}
$$

Explicilty, $\mathbf{A d S}_{\omega}^{3+1}$ comprises the three following Lorentzian spacetimes:

- $\omega>0, \Lambda<0$: AdS spacetime AdS $^{3+1} \equiv \mathrm{SO}(3,2) / \mathrm{SO}(3,1)$.
- $\omega<0, \Lambda>0$: dS spacetime $\mathbf{d S}^{3+1} \equiv \mathrm{SO}(4,1) / \mathrm{SO}(3,1)$.
- $\omega=\Lambda=0$: Minkowski spacetime $\mathbf{M}^{3+1} \equiv \operatorname{ISO}(3,1) / \mathrm{SO}(3,1)$.

The (3+1)D AdS $_{\omega}$ Lie algebra $(\omega=-\Lambda)$:

$$
\begin{array}{lll}
{\left[J_{a}, J_{b}\right]=\epsilon_{a b c} J_{c},} & {\left[J_{a}, P_{b}\right]=\epsilon_{a b c} P_{c},} & {\left[J_{a}, K_{b}\right]=\epsilon_{a b c} K_{c},} \\
{\left[K_{a}, P_{0}\right]=P_{a},} & {\left[K_{a}, P_{b}\right]=\delta_{a b} P_{0},} & {\left[K_{a}, K_{b}\right]=-\epsilon_{a b c} J_{c},} \\
{\left[P_{0}, P_{a}\right]=\omega K_{a},} & {\left[P_{a}, P_{b}\right]=-\omega \epsilon_{a b c} J_{c},} & {\left[P_{0}, J_{a}\right]=0}
\end{array}
$$

Explicilty, $\mathbf{A d S}_{\omega}^{3+1}$ comprises the three following Lorentzian spacetimes:

- $\omega>0, \Lambda<0$: AdS spacetime AdS $^{3+1} \equiv \mathrm{SO}(3,2) / \mathrm{SO}(3,1)$.
- $\omega<0, \Lambda>0$: dS spacetime $\mathbf{d S}^{3+1} \equiv \mathrm{SO}(4,1) / \mathrm{SO}(3,1)$.
- $\omega=\Lambda=0$: Minkowski spacetime $\mathbf{M}^{3+1} \equiv \operatorname{ISO}(3,1) / \mathrm{SO}(3,1)$.

Casimir operators: the quadratic one

$$
\mathcal{C}=P_{0}^{2}-\mathbf{P}^{2}+\omega\left(\mathbf{J}^{2}-\mathbf{K}^{2}\right)
$$

and the quartic one (Pauli-Lubanski)

$$
\begin{aligned}
& \mathcal{W}=W_{0}^{2}-\mathbf{W}^{2}+\omega(\mathbf{J} \cdot \mathbf{K})^{2} \\
& W_{0}=\mathbf{J} \cdot \mathbf{P} \quad W_{a}=-J_{a} P_{0}+\epsilon_{a b c} K_{b} P_{c}
\end{aligned}
$$

The classical r-matrix for the AdS κ-deformation is ${ }^{2}$

$$
r=z\left(K_{1} \wedge P_{1}+K_{2} \wedge P_{2}+K_{3} \wedge P_{3}+\sqrt{\omega} J_{1} \wedge J_{2}\right), \quad z=1 / \kappa
$$

[^1]The classical r-matrix for the AdS κ-deformation is ${ }^{2}$

$$
r=z\left(K_{1} \wedge P_{1}+K_{2} \wedge P_{2}+K_{3} \wedge P_{3}+\sqrt{\omega} J_{1} \wedge J_{2}\right), \quad z=1 / \kappa
$$

and the cocommutator map reads

$$
\begin{aligned}
\delta\left(P_{0}\right) & =0, \quad \delta\left(J_{3}\right)=0, \\
\delta\left(J_{1}\right) & =z \sqrt{\omega} J_{1} \wedge J_{3}, \quad \delta\left(J_{2}\right)=z \sqrt{\omega} J_{2} \wedge J_{3}, \\
\delta\left(P_{1}\right) & =z\left(P_{1} \wedge P_{0}-\omega J_{2} \wedge K_{3}+\omega J_{3} \wedge K_{2}+\sqrt{\omega} J_{1} \wedge P_{3}\right), \\
\delta\left(P_{2}\right) & =z\left(P_{2} \wedge P_{0}-\omega J_{3} \wedge K_{1}+\omega J_{1} \wedge K_{3}+\sqrt{\omega} J_{2} \wedge P_{3}\right), \\
\delta\left(P_{3}\right) & =z\left(P_{3} \wedge P_{0}-\omega J_{1} \wedge K_{2}+\omega J_{2} \wedge K_{1}-\sqrt{\omega} J_{1} \wedge P_{1}-\sqrt{\omega} J_{2} \wedge P_{2}\right), \\
\delta\left(K_{1}\right) & =z\left(K_{1} \wedge P_{0}+J_{2} \wedge P_{3}-J_{3} \wedge P_{2}+\sqrt{\omega} J_{1} \wedge K_{3}\right), \\
\delta\left(K_{2}\right) & =z\left(K_{2} \wedge P_{0}+J_{3} \wedge P_{1}-J_{1} \wedge P_{3}+\sqrt{\omega} J_{2} \wedge K_{3}\right), \\
\delta\left(K_{3}\right) & =z\left(K_{3} \wedge P_{0}+J_{1} \wedge P_{2}-J_{2} \wedge P_{1}-\sqrt{\omega} J_{1} \wedge K_{1}-\sqrt{\omega} J_{2} \wedge K_{2}\right) .
\end{aligned}
$$

The coisotropy condition holds $\delta(\mathfrak{h}) \subset \mathfrak{h} \wedge \mathfrak{g}$.

[^2]By computing the Sklyanin bracket for the r-matrix and by taking the canonical projection onto the spacetime Poisson subalgebra we get the $(3+1) \kappa$-AdS noncommutative spacetime ${ }^{3}$

$$
\begin{array}{lll}
\left\{x_{0}, x_{1}\right\}=-\frac{z \tanh \left(\sqrt{\omega} x_{1}\right) \operatorname{sech}^{2}\left(\sqrt{\omega} x_{2}\right) \operatorname{sech}^{2}\left(\sqrt{\omega} x_{3}\right)}{\sqrt{\omega}} & \omega \rightarrow 0 & -z x_{1} \\
\left\{x_{0}, x_{2}\right\}=-\frac{z \tanh \left(\sqrt{\omega} x_{2}\right) \operatorname{sech}^{2}\left(\sqrt{\omega} x_{3}\right)}{\sqrt{\omega}} & \omega \rightarrow 0 & -z x_{2} \\
\left\{x_{0}, x_{3}\right\}=-\frac{z \tanh \left(\sqrt{\omega} x_{3}\right)}{\sqrt{\omega}} & \omega \rightarrow 0 & -z x_{3} \\
\left\{x_{1}, x_{2}\right\}=-\frac{z \cosh \left(\sqrt{\omega} x_{1}\right) \tanh ^{2}\left(\sqrt{\omega} x_{3}\right)}{\sqrt{\omega}} & \omega \rightarrow 0 & 0 \\
\left\{x_{1}, x_{3}\right\}=\frac{z \cosh \left(\sqrt{\omega} x_{1}\right) \tanh \left(\sqrt{\omega} x_{2}\right) \tanh \left(\sqrt{\omega} x_{3}\right)}{\sqrt{\omega}} & \omega \rightarrow 0 & 0 \\
\left\{x_{2}, x_{3}\right\}=-\frac{z \sinh \left(\sqrt{\omega} x_{1}\right) \tanh \left(\sqrt{\omega} x_{3}\right)}{\sqrt{\omega}} & \omega \rightarrow 0 & 0
\end{array}
$$

With respect to the Minkowski limit $\omega=-\Lambda \rightarrow 0$, space coordinates do not commute and space isotropy is lost.

[^3]
The $(2+1) \kappa$-AdS ω_{ω} noncommutative spacetime

The classical r-matrix in the $(2+1)$ case reads ${ }^{4}$

$$
r=z\left(K_{1} \wedge P_{1}+K_{2} \wedge P_{2}\right)
$$

and the Lie bialgebra $\left(\operatorname{AdS}_{\omega}, \delta\right)$ is

$$
\begin{aligned}
& \delta\left(P_{0}\right)=\delta(J)=0, \\
& \delta\left(P_{1}\right)=z\left(P_{1} \wedge P_{0}-\omega K_{2} \wedge J\right), \\
& \delta\left(P_{2}\right)=z\left(P_{2} \wedge P_{0}+\omega K_{1} \wedge J\right), \\
& \delta\left(K_{1}\right)=z\left(K_{1} \wedge P_{0}+P_{2} \wedge J\right), \\
& \delta\left(K_{2}\right)=z\left(K_{2} \wedge P_{0}-P_{1} \wedge J\right) .
\end{aligned}
$$

This Lie bialgebra fulfills the coisotropy condition with $\mathfrak{h}=\left\{J, K_{1}, K_{2}\right\}$:

$$
\delta(\mathfrak{h}) \subset \mathfrak{h} \wedge \mathfrak{g} .
$$

[^4]Poisson-Lie group relations among spacetime x_{μ} group coordinates:

$$
\begin{array}{lll}
\left\{x_{0}, x_{1}\right\}=-z \frac{\tanh \sqrt{\omega} x_{1}}{\sqrt{\omega} \cosh ^{2} \sqrt{\omega} x_{2}} & \omega \rightarrow 0 & -z x_{1} \\
\left\{x_{0}, x_{2}\right\}=-z \frac{\tanh \sqrt{\omega} x_{2}}{\sqrt{\omega}} & \omega \rightarrow 0 & -z x_{2} \\
\left\{x_{1}, x_{2}\right\}=0 & &
\end{array}
$$

Poisson-Lie group relations among spacetime x_{μ} group coordinates:

$$
\begin{array}{lll}
\left\{x_{0}, x_{1}\right\}=-z \frac{\tanh \sqrt{\omega} x_{1}}{\sqrt{\omega} \cosh ^{2} \sqrt{\omega} x_{2}} & \omega \rightarrow 0 & -z x_{1} \\
\left\{x_{0}, x_{2}\right\}=-z \frac{\tanh \sqrt{\omega} x_{2}}{\sqrt{\omega}} & \omega \rightarrow 0 & -z x_{2} \\
\left\{x_{1}, x_{2}\right\}=0 & &
\end{array}
$$

The quantum $A d S_{\omega}$ group in 'local coordinates' would be the quantization of the above nonlinear PL bracket. In particular, since $\left\{x_{1}, x_{2}\right\}=0$ we could write:

$$
\begin{aligned}
& {\left[\hat{x}_{0}, \hat{x}_{1}\right]=-z \frac{\tanh \sqrt{\omega} \hat{x}_{1}}{\sqrt{\omega} \cosh ^{2} \sqrt{\omega} \hat{x}_{2}}=-z\left(\hat{x}_{1}-\frac{1}{3} \omega \hat{x}_{1}^{3}-\omega \hat{x}_{1} \hat{x}_{2}^{2}\right)+\mathcal{O}\left(\omega^{2}\right)} \\
& {\left[\hat{x}_{0}, \hat{x}_{2}\right]=-z \frac{\tanh \sqrt{\omega} \hat{x}_{2}}{\sqrt{\omega}}=-z\left(\hat{x}_{2}-\frac{1}{3} \omega \hat{x}_{2}^{3}\right)+\mathcal{O}\left(\omega^{2}\right)} \\
& {\left[\hat{x}_{1}, \hat{x}_{2}\right]=0}
\end{aligned}
$$

Open problems

- Construction of the coisotropic PHS for AdS $^{2+1}$.
- Construction of the coisotropic PHS for AdS $^{2+1}$.
- Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.
- Construction of the coisotropic PHS for AdS $^{2+1}$.
- Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.
- The Minkowski and (A)dS ${ }^{3+1}$ PHS: the H subgroup is $S O(3,1)$. The complete classification of coisotropic and Poisson subgroup Lie bialgebra structures on $S O(3,2), S O(4,1)$ and $P(3+1)$.
- Construction of the coisotropic PHS for AdS $^{2+1}$.
- Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.
- The Minkowski and (A)dS ${ }^{3+1}$ PHS: the H subgroup is $S O(3,1)$. The complete classification of coisotropic and Poisson subgroup Lie bialgebra structures on $S O(3,2), S O(4,1)$ and $P(3+1)$.
- Construction of PHS of time-like worldlines:

$$
\mathfrak{h}=\left\{J_{1}, J_{2}, J_{3}, P_{0}\right\}
$$

$\omega=-\Lambda \quad$ Space of time-like worldlines $\mathbb{S}_{(2)} \equiv\left\{x_{1}, x_{2}, x_{3}, \xi_{1}, \xi_{2}, \xi_{3}\right\}$

$$
\begin{array}{ll}
\omega>0, \Lambda<0 & \operatorname{LAdS}^{3 \times 3}=S O(3,2) /(S O(3) \otimes S O(2)) \\
\omega=\Lambda=0 & \mathbf{L M}^{3 \times 3}=\operatorname{ISO}(3,1) /(S O(3) \otimes \mathbb{R}) \\
\omega<0, \Lambda>0 & \operatorname{LdS}^{2 \times 2}=S O(4,1) /(S O(3) \otimes S O(2,1))
\end{array}
$$

- Construction of the coisotropic PHS for AdS $^{2+1}$.
- Classification of Poisson-Lie (A)dS groups in (3+1) dimensions.
- The Minkowski and (A)dS ${ }^{3+1}$ PHS: the H subgroup is $S O(3,1)$. The complete classification of coisotropic and Poisson subgroup Lie bialgebra structures on $S O(3,2), S O(4,1)$ and $P(3+1)$.
- Construction of PHS of time-like worldlines:

$$
\mathfrak{h}=\left\{J_{1}, J_{2}, J_{3}, P_{0}\right\}
$$

$$
\omega=-\Lambda \quad \text { Space of time-like worldlines } \mathbb{S}_{(2)} \equiv\left\{x_{1}, x_{2}, x_{3}, \xi_{1}, \xi_{2}, \xi_{3}\right\}
$$

$$
\begin{array}{ll}
\omega>0, \Lambda<0 & \text { LAdS }^{3 \times 3}=S O(3,2) /(S O(3) \otimes S O(2)) \\
\omega=\Lambda=0 & \text { LM }^{3 \times 3}=I S O(3,1) /(S O(3) \otimes \mathbb{R}) \\
\omega<0, \Lambda>0 & \text { LdS }^{2 \times 2}=S O(4,1) /(S O(3) \otimes S O(2,1))
\end{array}
$$

- Quantization of PHS and representation theory of the associated spacetime algebras.

THANKS FOR YOUR ATTENTION

Quantized Space-Time

Hartland S. Snyder
Department of Physics, Northwestern University, Evanston, Illinois

(Received May 13, 1946)
It is usually assumed that space-time is a continuum. This assumption is not required by Lorentz invariance. In this paper we give an example of a Lorentz invariant discrete space-time.
for transformations from one inertial frame to another. It is usually assumed that the variables x, y, z, and t take on a continuum of values and that they may take on these values simultaneously. This last assumption we change to the following:
x, y, z, and t are Hermitian operators for the space-time coordinates of a particular Lorentz frame; the spectrum of each of the operators x, y, z, and t is composed of the possible results of a measurement of the corresponding quantity; the operators x, y, z, and t shall be such that the spectra of the operators $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ formed by taking linear combinations of x, y, z, and t, which leave the quadratic form (1) invariant, shall be the same as the spectra of x, y, z, and t.

The ten operators defined in (3) and (4) have a total of forty-five commutators. Only six of these commutators differ from the ordinary ones and these six are

$$
\begin{array}{ll}
{[x, y]=\left(i a^{2} / \hbar\right) L_{z},} & {[t, x]=\left(i a^{2} / \hbar c\right) M_{x},} \\
{[y, z]=\left(i a^{2} / \hbar\right) L_{x},} & {[t, y]=\left(i a^{2} / \hbar c\right) M_{y},} \tag{5}\\
{[z, x]=\left(i a^{2} / \hbar\right) L_{y},} & {[t, z]=\left(i a^{2} / \hbar c\right) M_{z} .}
\end{array}
$$

We see from these commutators that if we take the limit $a \rightarrow 0$ keeping \hbar and c fixed, our quantized space-time changes to the ordinary continuous space-time.

[^0]: ${ }^{1}$ A.B., F.J. Herranz, C. Meusburger, Class. Quantum Grav. 30 (2013), 155012

[^1]: ${ }^{2}$ A.B., F.J. Herranz, F. Musso, P. Naranjo, PLB (2017); arXiv:1612.03169

[^2]: ${ }^{2}$ A.B., F.J. Herranz, F. Musso, P. Naranjo, PLB (2017); arXiv:1612.03169

[^3]: ${ }^{3}$ A.B., I. Gutiérrez-Sagredo, F.J. Herranz, The κ-AdS Poisson homogeneous spacetime, preprint.

[^4]: ${ }^{4}$ A.B., F.J. Herranz, M.A. del Olmo, M. Santander, J. Phys. A 27 (1994) 1283.

