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Fundamental Theorem for plane curves

THEOREM

Prescribe κ = κ(s):
θ(s) =

∫
κ(s) ds, x(s) =

∫
cos θ(s) ds, y(s) =

∫
sin θ(s) ds

⇒ (x(s), y(s)) unique up to rigid motions

Example (Catenary)

κ(s) = 1
1+s2

⇒ θ(s) = arctan s

x(s) = log
(
s +
√
s2 + 1

)
, y(s) =

√
1 + s2 ↔ y = cosh x



Fundamental Theorem for plane curves

THEOREM

Prescribe κ = κ(s):
θ(s) =

∫
κ(s) ds, x(s) =

∫
cos θ(s) ds, y(s) =

∫
sin θ(s) ds

⇒ (x(s), y(s)) unique up to rigid motions

Example (Catenary)

κ(s) = 1
1+s2

⇒ θ(s) = arctan s

x(s) = log
(
s +
√
s2 + 1

)
, y(s) =

√
1 + s2 ↔ y = cosh x



Singer’s Problem

[D. Singer: Curves whose curvature depends on distance from the origin.
Amer. Math. Monthly 106 (1999), 835–841.]

Can a plane curve be determined if
its curvature is given in terms of its position?

κ = κ(x , y),
x ′(t)y ′′(t)− y ′(t)x ′′(t)

(x ′(t)2 + y ′(t)2)3/2 = κ(x(t), y(t))

κ(x , y) =
√

x2 + y2 ⇔ κ(r) = r

Bernoulli lemniscate: r2 = 3 sin 2θ
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Euler elastic curves

Elastica under tension σ ∈ R:
Critical points of

∫
(κ2 + σ)ds: 2κ̈ + κ3 − σ κ = 0

κ(y) = 2λy , λ > 0

∫
κ(y)dy = λy2 + c

Tension σ = −4λc

Maximum curvature k0 = 2
√

λ
√

1− c , c < 1

• c > −1, wavelike:

κ(s) = k0 cn
(
k0s
2p , p

)
,

p2 = 1−c
2 , s ∈ R

• c = −1, borderline:

κ(s) = k0 sech k0s
2 ,

s ∈ R

• c < −1, orbitlike:

κ(s)=k0 dn
(
k0s
2 , p

)
,

p2 = 2
1−c , s ∈ R
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Plane curves with prescribed curvature I

κ(x , y) = κ(y)

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending
on distance to a line. Diff. Geom. Appl. 44 (2016), 77–97.]

Theorem κ = κ(y)

Prescribe κ = κ(y) continuous.
The problem of determining a curve γ(s) = (x(s), y(s)) -s arc length-
with curvature κ(y) is solvable by three quadratures:

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
1−K(y)2

99K y = y(s) 99K κ = κ(s).

3 x(s) = −
∫
K(y(s))ds.

I γ is uniquely determined, up to translations in x-direction, by K(y).
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Uniqueness results for plane curves I

The catenary y = cosh x , x ∈ R,
is the only plane curve (up to x-translations)
with geometric linear momentum K(y) = −1/y

(and curvature κ(y) = 1/y2 ).

The catenary x = − cosh y , y ∈ R,
is the only plane curve (up to x-translations)
with geometric linear momentum K(y) = tanh y

(and curvature κ(y) = 1/ cosh2 y ).
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Uniqueness results for plane curves II

The grim-reaper y = − log sin x , 0 < x < π,
is the only plane curve (up to x-translations)
with geometric linear momentum K(y) = −e−y

(and curvature κ(y) = e−y ).

The grim-reaper x = log cos y , y ∈ (−π
2 , π

2 ),
is the only plane curve (up to x-translations)
with geometric linear momentum K(y) = sin y

(and curvature κ(y) = cos y ).



Plane curves with prescribed curvature II

κ(x , y) = κ(
√

x2 + y2)

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves
with curvature depending on distance from the origin. Mediterr. J. Math.
14 (2017), 108:1–19.]

Theorem κ = κ(r)

Prescribe κ = κ(r) such that rκ(r) continuous.

The problem of determining a curve γ(s) = r(s) e iθ(s) -s arc length-
with curvature κ(r) is solvable by three quadratures:

1

∫
rκ(r)dr = K(r), geometric angular momentum.

2 s= s(r)=
∫

rdr√
r2 −K(r)2

99K r= r(s) 99K κ = κ(s).

3 θ(s)=
∫ K(r(s))

r(s)2
ds.

I γ is uniquely determined, up to rotations, by K(r).
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Uniqueness results for plane curves III

The Bernoulli lemniscate r2 = 3 sin 2θ
is the only plane curve (up to rotations)
with geometric angular momentum K(r) = r3/3

(and curvature κ(r) = r ).

The cardioid r = 1
2 (1 + cos θ)

is the only plane curve (up to rotations)
with geometric angular momentum K(r)= r

√
r

(and curvature κ(r)= 3
2
√
r

).

The Norwich spiral is the only (non circular)
plane curve (up to rotations) with curvature

κ(r) = 1/r .



Curves in Lorentz-Minkowski plane

L2 :=(R2, g=−dx2 + dy2)

• 0 6= v ∈ L2 spacelike if g(v , v) > 0, lightlike if g(v , v) = 0,
and timelike if g(v , v) < 0
• γ=(x , y) : I ⊆ R→ R2 spacelike (resp. timelike) if γ′(t) spacelike
(resp. timelike) ∀t ∈ I ; γ(t0) lightlike point if γ′(t0) lightlike vector
• γ=(x , y) unit-speed spacelike (resp. timelike) if g(γ̇(s), γ̇(s)) = ε,
∀s ∈ I (ε = 1 if γ spacelike, ε = −1 if γ timelike)
• T = γ̇ = (ẋ , ẏ), N = γ̇⊥ = (ẏ , ẋ), g(T ,T ) = ε, g(N,N) = −ε
Frenet frame and eqns: Ṫ (s) = κ(s)N(s), Ṅ(s) = κ(s)T (s)

Theorem

Prescribe κ = κ(s):
Any spacelike curve α(s) in L2 can be represented (up to isometries) by

α(s) =

(∫
sinh ϕ(s)ds,

∫
cosh ϕ(s)ds

)
with ϕ(s) =

∫
κ(s)ds.

Any timelike curve β(s) in L2 can be represented (up to isometries) by

β(s) =

(∫
cosh φ(s)ds,

∫
sinh φ(s)ds

)
with φ(s) =

∫
κ(s)ds.
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Frenet frame and eqns: Ṫ (s) = κ(s)N(s), Ṅ(s) = κ(s)T (s)

Theorem

Prescribe κ = κ(s):
Any spacelike curve α(s) in L2 can be represented (up to isometries) by

α(s) =

(∫
sinh ϕ(s)ds,

∫
cosh ϕ(s)ds

)
with ϕ(s) =

∫
κ(s)ds.

Any timelike curve β(s) in L2 can be represented (up to isometries) by

β(s) =

(∫
cosh φ(s)ds,

∫
sinh φ(s)ds

)
with φ(s) =

∫
κ(s)ds.



Curves in Lorentz-Minkowski plane

L2 :=(R2, g=−dx2 + dy2)

• 0 6= v ∈ L2 spacelike if g(v , v) > 0, lightlike if g(v , v) = 0,
and timelike if g(v , v) < 0
• γ=(x , y) : I ⊆ R→ R2 spacelike (resp. timelike) if γ′(t) spacelike
(resp. timelike) ∀t ∈ I ; γ(t0) lightlike point if γ′(t0) lightlike vector
• γ=(x , y) unit-speed spacelike (resp. timelike) if g(γ̇(s), γ̇(s)) = ε,
∀s ∈ I (ε = 1 if γ spacelike, ε = −1 if γ timelike)
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(resp. timelike) ∀t ∈ I ; γ(t0) lightlike point if γ′(t0) lightlike vector
• γ=(x , y) unit-speed spacelike (resp. timelike) if g(γ̇(s), γ̇(s)) = ε,
∀s ∈ I (ε = 1 if γ spacelike, ε = −1 if γ timelike)
• T = γ̇ = (ẋ , ẏ), N = γ̇⊥ = (ẏ , ẋ), g(T ,T ) = ε, g(N,N) = −ε
Frenet frame and eqns: Ṫ (s) = κ(s)N(s), Ṅ(s) = κ(s)T (s)

Theorem

Prescribe κ = κ(s):
Any spacelike curve α(s) in L2 can be represented (up to isometries) by

α(s) =

(∫
sinh ϕ(s)ds,

∫
cosh ϕ(s)ds

)
with ϕ(s) =

∫
κ(s)ds.

Any timelike curve β(s) in L2 can be represented (up to isometries) by

β(s) =

(∫
cosh φ(s)ds,

∫
sinh φ(s)ds

)
with φ(s) =

∫
κ(s)ds.
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Curves in Lorentz-Minkowski plane

Geodesics
The spacelike geodesics can be written as:

αϕ0(s) = (sinh ϕ0 s, cosh ϕ0 s), s ∈ R, ϕ0 ∈ R,

and the timelike geodesics can be written as:

βφ0(s) = (cosh φ0 s, sinh φ0 s), s ∈ R, φ0 ∈ R.



Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by

δ : L2 ×L2 → [0,+∞), δ(P,Q) =

√
|g(−→PQ,

−→
PQ)|

Fix the timelike geodesic β0, i.e. the x-axis.

P = (x , y) ∈ L2, y 6= 0; spacelike geodesics αm with slope m = coth ϕ0,
|m| > 1; P ′ = (x − y/m, 0)

0 < δ(P,P ′)2 =
(

1− 1
m2

)
y2 = y2

cosh2 ϕ0
≤ y2; “ = ”⇔ ϕ0 = 0

|y |: maximum Lorentzian pseudodistance through spacelike geodesics
from P=(x , y), y 6= 0, to the x-axis.
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Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by

δ : L2 ×L2 → [0,+∞), δ(P,Q) =

√
|g(−→PQ,

−→
PQ)|

Fix the lightlike geodesic x = y .

P = (x , y) ∈ L2, x 6= y ; spacelike and timelike geodesics γm,
m ∈ R∪ {∞}, m 6= 1; P ′ = (mx−y

m−1 , mx−y
m−1 )

0 < δ(P,P ′)2 = (y − x)2
∣∣∣m+1
m−1

∣∣∣; δ(P,P ′)2=(y − x)2⇔m = 0, m = ∞

|y − x |: Lorentzian pseudodistance from P=(x , y) ∈ L2, x 6= y ,
to the lightlike geodesic x = y through the horizontal timelike geodesic
or the vertical spacelike geodesic.
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Singer’s Problem in L2

Determine those (spacelike and timelike) curves γ = (x , y) in L2

whose curvature κ depends on some given function κ = κ(x , y)

I Curvature κ = κ(x , y) depending on:

1 Lorentzian pseudodistance to a fixed timelike geodesic:
κ(x , y) = κ(y).

2 Lorentzian pseudodistance to a fixed spacelike geodesic:
κ(x , y) = κ(x).

3 Lorentzian pseudodistance to a fixed lightlike geodesic:
κ(x , y) = κ(v), v = y − x .

4 Lorentzian pseudodistance to a fixed point:
κ(x , y) = κ(ρ), ρ =

√
| − x2 + y2|.

γ = (x , y) spacelike (resp. timelike) with κ = κ(y)
⇒ γ̂ = (y , x) timelike (resp. spacelike) with κ = κ(x)
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Index

1 Motivation

2 Curves in L2 with curvature depending on Lorentzian pseudodistance
to a spacelike or timelike geodesic

3 Curves in L2 with curvature depending on Lorentzian pseudodistance
to a lightlike geodesic

4 Curves in L2 whose curvature depends on Lorentzian pseudodistance
from the origin



κ(x , y) = κ(y)

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining a spacelike or timelike curve
(x(s), y(s)) -s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a x-translation.
• K(y) will distinguish geometrically the curves inside a same family
by their relative position with respect to the x-axis.



κ(x , y) = κ(y)

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining a spacelike or timelike curve
(x(s), y(s)) -s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a x-translation.
• K(y) will distinguish geometrically the curves inside a same family
by their relative position with respect to the x-axis.



κ(x , y) = κ(y)

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining a spacelike or timelike curve
(x(s), y(s)) -s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a x-translation.
• K(y) will distinguish geometrically the curves inside a same family
by their relative position with respect to the x-axis.



κ(x , y) = κ(y)

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining a spacelike or timelike curve
(x(s), y(s)) -s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a x-translation.
• K(y) will distinguish geometrically the curves inside a same family
by their relative position with respect to the x-axis.



κ(x , y) = κ(y)

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining a spacelike or timelike curve
(x(s), y(s)) -s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a x-translation.

• K(y) will distinguish geometrically the curves inside a same family
by their relative position with respect to the x-axis.



κ(x , y) = κ(y)

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining a spacelike or timelike curve
(x(s), y(s)) -s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a x-translation.
• K(y) will distinguish geometrically the curves inside a same family
by their relative position with respect to the x-axis.



Example 1

Geodesics: κ ≡ 0

• K(y) = c ∈ R. s =
∫

dy√
c2 + ε

=
y√

c2 + ε
, c2 + ε > 0.

x(s) = c s, y(s) =
√
c2 + ε s, s ∈ R.

ε = 1: K ≡ c := sinh ϕ0 → spacelike geodesics αϕ0 .
c = 0 = ϕ0 corresponds to the y -axis.

ε = −1: K ≡ c := cosh φ0 → timelike geodesics βφ0 .
c = 1⇔ φ0 = 0 corresponds to the x-axis.
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Example 2

Circles: κ≡k0>0

• K(y) = k0y + c , c ∈ R. s =
∫ dy√

(k0y+c)2+ε
.

ε = 1: s = arcsinh(k0y + c)/k0.
x(s) = cosh(k0s)/k0, y(s) = (sinh(k0s)− c)/k0, s ∈ R.

ε = −1: s = arccosh(k0y + c)/k0
x(s) = sinh(k0s)/k0, y(s) = (cosh(k0s)− c)/k0, s ∈ R.

Spacelike and timelike pseudocircles in L2 of radius 1/k0.
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Elasticae in L2

Definition

γ, spacelike or timelike curve in L2, elastica under tension σ if

2κ̈ − κ3 − σκ = 0, σ ∈ R. Energy E := κ̇2 − 1

4
κ4 − σ

2
κ2.

κ(y) = 2ay + b, a 6= 0, b ∈ R

Proposition

γ spacelike or timelike curve in L2

(i) If κ(y) = 2ay + b, a 6= 0, b ∈ R, and K(y) = ay2 + by + c ,
a 6= 0, b, c ∈ R, then γ elastica under tension σ = 4ac − b2 and
energy E = 4εa2 + σ2/4
(where ε = 1 if γ is spacelike and ε = −1 if γ is timelike).

(ii) If γ elastica under tension σ and energy E , with E 6= σ2/4, then
κ(y) = 2ay + b, a 6= 0, b ∈ R.
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Elasticae in L2

Definition

γ, spacelike or timelike curve in L2, elastica under tension σ if

2κ̈ − κ3 − σκ = 0, σ ∈ R. Energy E := κ̇2 − 1

4
κ4 − σ

2
κ2.

κ(y) = 2ay + b, a 6= 0, b ∈ R

Proposition

γ spacelike or timelike curve in L2

(i) If κ(y) = 2ay + b, a 6= 0, b ∈ R, and K(y) = ay2 + by + c ,
a 6= 0, b, c ∈ R, then γ elastica under tension σ = 4ac − b2 and
energy E = 4εa2 + σ2/4
(where ε = 1 if γ is spacelike and ε = −1 if γ is timelike).

(ii) If γ elastica under tension σ and energy E , with E 6= σ2/4, then
κ(y) = 2ay + b, a 6= 0, b ∈ R.



Spacelike elasticae: κ(y) = 2y , ε = 1

• K(y) = y2 + c , c = sinh η ∈ R

(sη = sinh η and cη = cosh η)

xη(s) = (sη + cη)s +
√
cη

(
cn(
√
cη s, kη)

(
k2

η sd(
√
cη s, kη)− ds(

√
cη s, kη)

)
− 2E (

√
cη s, kη)

)
yη(s)=

√
cη cs(

√
cη s, kη) nd(

√
cη s, kη), k2η = 1−tanh η

2

s ∈ (2mK (kη)/
√
cη , 2(m+ 1)K (kη)/

√
cη), m ∈N

κη(s) = 2
√
cη cs(

√
cη s, kη) nd(

√
cη s, kη).

Spacelike elastic curves αη = (xη , yη), (η = 0, 1,5,−1,5).
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Timelike elasticae: κ(y) = 2y , ε = −1

• K(y) = y2 + 1 (c = 1).

x1(s) = s −
√

2 coth(
√

2s),

y1(s) = −
√
2

sinh(
√
2s)

, s 6= 0.

κ1(s) = − 2
√
2

sinh(
√
2s)

.

• K(y) = y2 − 1 (c = −1).

x−1(s) =
√

2 tan(
√

2s)− s,

y−1(s) = ±
√
2

cos(
√
2s)

, |s | < π
2
√
2

.

κ−1(s) =
∓2
√
2

cos(
√
2s)

.
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2 coth(
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2s),

y1(s) = −
√
2

sinh(
√
2s)

, s 6= 0.

κ1(s) = − 2
√
2

sinh(
√
2s)

.

• K(y) = y2 − 1 (c = −1).

x−1(s) =
√

2 tan(
√

2s)− s,

y−1(s) = ±
√
2

cos(
√
2s)

, |s | < π
2
√
2

.

κ−1(s) =
∓2
√
2

cos(
√
2s)

.



Timelike elasticae: κ(y) = 2y , ε = −1

• K(y) = y2 + cosh2 δ, δ > 0 (c > 1)

xδ(s) = c2δ s +
√

c2δ + 1
(
dn(
√

c2δ + 1 s, kδ) tn(
√

c2δ + 1 s, kδ)− E (
√

c2δ + 1 s, kδ)
)

,

yδ(s) = sδ tn(
√

c2δ + 1 s, kδ), k2δ = 2
1+cosh2 δ

,

s ∈
(
(2m− 1)K (kδ)/

√
c2δ + 1, (2m+ 1)K (kδ)/

√
c2δ + 1

)
, m ∈N.

κδ(s) = 2sδ tn(
√

c2δ + 1 s, kδ).

Timelike elastic curves βδ = (xδ, yδ) (δ = 0,5, 1, 1,5).



Timelike elasticae: κ(y) = 2y , ε = −1

• K(y) = y2 + cosh2 δ, δ > 0 (c > 1)

xδ(s) = c2δ s +
√

c2δ + 1
(
dn(
√

c2δ + 1 s, kδ) tn(
√

c2δ + 1 s, kδ)− E (
√

c2δ + 1 s, kδ)
)

,

yδ(s) = sδ tn(
√

c2δ + 1 s, kδ), k2δ = 2
1+cosh2 δ

,

s ∈
(
(2m− 1)K (kδ)/

√
c2δ + 1, (2m+ 1)K (kδ)/

√
c2δ + 1

)
, m ∈N.

κδ(s) = 2sδ tn(
√

c2δ + 1 s, kδ).

Timelike elastic curves βδ = (xδ, yδ) (δ = 0,5, 1, 1,5).



Timelike elasticae: κ(y) = 2y , ε = −1

• K(y) = y2 + sin ψ, |ψ| < π/2 (|c | < 1)

xψ(s) = s +
√

2
(

dn(
√

2 s, kψ) tn(
√

2 s, kψ)− E (
√

2 s, kψ)
)

,

yψ(s) =
√

1− sψ nc(
√

2 s, kψ), k2ψ = 1+sinψ
2 ,

s ∈
(
(2m− 1)K (kψ)/

√
2, (2m+ 1)K (kψ)/

√
2
)
, m ∈N.

κψ(s) = 2
√

1− sψ nc(
√

2 s, kψ).

Timelike elastic curves βψ = (xψ, yψ) (ψ = −π/4, 0,π/6).
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Timelike elasticae: κ(y) = 2y , ε = −1

• K(y) = y2 − cosh2 τ, τ > 0, (c < −1)

xτ(s) = = s+
√

1+c2τ

(
dn(
√

1+c2τ s, kτ) tn(
√

1+c2τ s, kτ)−E (
√

1+c2τ s, kτ)
)

,

yτ(s) =
√

1 + c2τ dc(
√

1 + c2τ s, kτ), k2τ = sinh2 τ
1+cosh2 τ

,

s ∈
(
(2m− 1)K (kτ)/

√
1+ c2τ , (2m+ 1)K (kτ)/

√
1+ c2τ

)
, m ∈N.

κτ(s) = 2
√

1 + c2τ dc(
√

1 + c2τ s, kτ).

Timelike elastic curves βτ = (xτ, yτ), (τ = 1, 2, 3).
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κ(y) = 1/y 2

• K(y) = −1/y
ε = 1. Spacelike case:
x(s) = ∓ arccosh s, s > 1.

y(s) = ±
√
s2 − 1, |s | > 1.

κ(s) = 1
s2−1 , s > 1.

y = − sinh x , x ∈ R.

ε = −1. Timelike case:
x(s) = ∓ arcsin s, |s | < 1.

y(s) = ±
√

1− s2, |s | < 1.

κ(s) = 1
1−s2 , |s | < 1.

y = ± cos x , |x | < π/2.

“Lorentzian catenaries”
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Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in L3,
the catenoid of the first kind with equation y2 + z2 − sinh2 x = 0
and the catenoid of the second kind with equation x2 − z2 = cos2 y .

The generatrix curves of both
catenoids coincide with the graph
y = − sinh x , x ∈ R and the
bigraph x = ± cos y , |y | < π/2.

1 The Lorentzian catenary of the first kind y = − sinh x , x ∈ R,
is the only spacelike curve (up to translations in the x-direction)
with geometric linear momentum K(y) = −1/y .

2 The Lorentzian catenary of the second kind x = ± cos y , |y | < π/2,
is the only spacelike curve (up to translations in the y -direction)
with geometric linear momentum K(x) = −1/x .



Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in L3,
the catenoid of the first kind with equation y2 + z2 − sinh2 x = 0
and the catenoid of the second kind with equation x2 − z2 = cos2 y .

The generatrix curves of both
catenoids coincide with the graph
y = − sinh x , x ∈ R and the
bigraph x = ± cos y , |y | < π/2.

1 The Lorentzian catenary of the first kind y = − sinh x , x ∈ R,
is the only spacelike curve (up to translations in the x-direction)
with geometric linear momentum K(y) = −1/y .

2 The Lorentzian catenary of the second kind x = ± cos y , |y | < π/2,
is the only spacelike curve (up to translations in the y -direction)
with geometric linear momentum K(x) = −1/x .



Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in L3,
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κ(y) = 1/y 2

• K(y) = c − 1/y , c 6= 0.

ε = 1, Spacelike case:

x = 1
c2+1

(
c
√
(c2 + 1)y2 − 2cy + 1− 1√

c2+1
arcsinh((c2 + 1)y − c)

)
.

Curves with K(y) = c − 1/y ; c ≤ 0 (left) and c ≥ 0 (right).



κ(y) = 1/y 2

• K(y) = c − 1/y , c 6= 0. ε = 1, Spacelike case:

x = 1
c2+1

(
c
√
(c2 + 1)y2 − 2cy + 1− 1√
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arcsinh((c2 + 1)y − c)

)
.
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κ(y) = 1/y 2

• K(y) = c − 1/y , c 6= 0. ε = −1, Timelike case:

· K(y) = 1− 1/y :

x = (2−y )
√
1−2y

3 , y < 1/2.

· K(y) = −1− 1/y :

x = − (2+y )
√
1+2y

3 , y > −1/2.

· K(y) = c − 1/y , |c | > 1:

x = 1
c2−1

(
c
√
(c2 − 1)y2 − 2cy + 1+

log
(
2(
√
c2−1
√

(c2−1)y2−2cy+1+(c2−1)y−c)
)

√
c2−1

)
.

· K(y) = c − 1/y , |c | < 1:
x = 1

c2−1

(
c
√
(c2 − 1)y2 − 2cy + 1− 1√

1−c2
arcsin((c2 − 1)y − c)

)



κ(y) = ey

• K(y) = ey

ε = 1. Spacelike case:
x(s) =
− log tanh(−s/2), s < 0.
y(s) = log(− csch s), s < 0.

κ(s) = − csch s, s < 0.

y = log(sinh x), x > 0.

ε = −1. Timelike case:
x(s) =
log(sec s + tan s), |s | < π/2.
y(s) = log sec s, |s | < π/2.

κ(s) = sec s, |s | < π/2.

y = log(cosh x), x ∈ R.

“Lorentzian grim-reapers”
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Lorentzian grim-reapers

Both curves satisfy the translating-type soliton equation:

κ = g((0, 1),N)

1 The Lorentzian grim-reaper y = log(sinh x), x > 0,
is the only spacelike curve (up to x-translations) in L2

with geometric linear momentum K(y) = ey .

2 The Lorentzian grim-reaper y = log(cosh x), x ∈ R,
is the only timelike curve (up to x-translations) in L2

with geometric linear momentum K(y) = ey .



Lorentzian grim-reapers

Both curves satisfy the translating-type soliton equation:

κ = g((0, 1),N)

1 The Lorentzian grim-reaper y = log(sinh x), x > 0,
is the only spacelike curve (up to x-translations) in L2

with geometric linear momentum K(y) = ey .

2 The Lorentzian grim-reaper y = log(cosh x), x ∈ R,
is the only timelike curve (up to x-translations) in L2

with geometric linear momentum K(y) = ey .



κ(y) = ey

• K(y) = ey + c , c 6= 0.

Spacelike case (ε = 1):
x = arcsinh(ey + c)−

c√
c2+1

arcsinh
(
c + (c2 + 1)e−y

)
.

Timelike case (ε = −1):
·K(y) = ey + 1:
x = 2 log(

√
ey +

√
ey + 2)−

√
1+ 2e−y .

·K(y) = ey + c , |c | > 1:
x = log

(
2(
√

P(ey ) + ey + c)
)
−

c log
(
2e−y (

√
c2−1

√
P(ey )+cey+c2−1)

)
√

c2−1

·K(y) = ey − 1:
x = 2 log(

√
ey +

√
ey − 2)−

√
1− 2e−y .

·K(y) = ey + c , |c | < 1:
x = log

(
2(
√

P(ey ) + ey + c)
)
+ c√

1−c2
arcsin

(
c + (c2 − 1)e−y

)
.



Index

1 Motivation

2 Curves in L2 with curvature depending on Lorentzian pseudodistance
to a spacelike or timelike geodesic

3 Curves in L2 with curvature depending on Lorentzian pseudodistance
to a lightlike geodesic

4 Curves in L2 whose curvature depends on Lorentzian pseudodistance
from the origin



κ(x , y) = κ(v), v := y − x

Theorem

Prescribe κ = κ(v) continuous.
Then the problem of determining a spacelike or timelike curve(

u(s)−v (s)
2 ,

u(s)+v (s)
2

)
-s arc length- is solvable by three quadratures
(ε = 1 spacelike, ε = −1 timelike):

1

∫
κ(v)dv =

−ε

K(v) , geometric linear momentum.

2 s = s(v) = ε
∫
K(v)dv 99K v = v(s) 99K κ = κ(s).

3 u(s) =
∫

K (v(s))ds.

I Such a curve is uniquely determined by K(v) up to a u-translation.
• K(v) will distinguish geometrically the curves inside a same family by
their relative position with respect to the u-axis.
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Examples: constant curvature

Geodesics: κ ≡ 0

• K(v) = −ε/c , c 6= 0. u(s) = −εs/c , v(s) = −cs, s ∈ R

(lines passing through the origin with slope m = ε+c2

ε−c2 ).
ε = 1⇒ |m| > 1 spacelike geodesics, ε = −1⇒ |m| < 1 timelike geodesics.

Circles: κ≡k0>0

• K(v) = −ε
c+k0v

, c ∈ R. u(s) = −εek0s/k0, v(s) = (e−k0s − c)/k0.
ε = 1 ⇒ x(s) = (− cosh(k0s) + c/2)/k0, y(s) = −(sinh(k0s) + c/2)/k0.
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κ(v) = 1/v 2

• K(v) = εv (ε = 1 spacelike, ε = −1 timelike)

u(s) = 2ε
√

2s
√
s/3, v(s) =

√
2s, κ(s) =

1

2s
, s > 0.

Graphs u = ε v3/3, v > 0 for ε = ±1.

Spacelike (blue) and timelike (red) curve in L2

with K(v) = εv , ε = ±1.
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Generatrix of Enneper’s surface of second kind

Kobayashi, 1993: Enneper’s surface of second kind.
Rotation surface with lightlike axis (1, 0, 1) and generatrix curve
x = λ(−t + t3/3), z = λ(t + t3/3), λ > 0, at the xz-plane.

x

y

z

The generatrix curve of Enneper’s
surface for λ = 1/2 coincide with
the graph u = v3/3, v > 0.

The generatrix curve of the Enneper’s surface of second kind, u = v3/3,
v > 0, is the only spacelike curve (up to dilations and u-translations) with
geometric linear momentum K(v) = v (and curvature κ(v) = 1/v2)
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κ(v) = 1/v 2

• K(v) = −εv
c v−1 , c 6= 0 (ε = 1 spacelike, ε = −1 timelike)

u = u(v) = ε
c3

(
c v − 1− 1

c v−1 + 2 log(c v − 1)
)

,

v > 1/c if c > 0, v < 1/c if c < 0.

Spacelike curves with K(v) = − v
c v−1 (left) and

timelike curves with K(v) = v
c v−1 (right).
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κ(v) = ev

• K(v) = − ε
ev+c , c ∈ R (ε = 1 spacelike, ε = −1 timelike)

1 c = 0: u(s) = −εs2/2, v(s) = − log s, κ(s) = 1/s, s > 0.

Graph u = −ε e−2v/2, v ∈ R.
Translating-type soliton equation: κ = g((1, 1),N).

Spacelike (blue) and timelike (red)

Lorentzian grim-reapers, K(v) = − ε
ev

2 c 6= 0: u(s) = − ε
c

(
s + 1

c ecs

)
, v(s) = log c

ecs−1 ,

κ(s) = c
ecs−1 , s > 0

Spacelike curves (blue) and timelike curves (red)

with K(v) = − ε
ev+c , c 6= 0
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