CURVES IN LORENTZ-MINKOWSKI PLANE WITH PRESCRIBED CURVATURE

Ildefonso Castro
(Ildefonso Castro-Infantes and Jesús Castro-Infantes)

Universidad
de Jaén

NQN $\left\lvert\, \begin{aligned} & \text { Universidad } \\ & \text { de Granada }\end{aligned}\right.$

Partially supported by Geometric Analysis Project (MTM2017-89677-P)

Index

(1) Motivation
(2) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
(3) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
(4) Curves in \mathbb{L}^{2} whose curvature depends on Lorentzian pseudodistance from the origin

Index

(1) Motivation
(2) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
(3) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a lightlike geodesic

4 Curves in \mathbb{L}^{2} whose curvature depends on Lorentzian pseudodistance from the origin

Fundamental Theorem for plane curves

THEOREM
Prescribe $\kappa=\kappa(s)$:
$\theta(s)=\int \kappa(s) d s, \quad x(s)=\int \cos \theta(s) d s, \quad y(s)=\int \sin \theta(s) d s$
$\Rightarrow(x(s), y(s))$ unique up to rigid motions

Fundamental Theorem for plane curves

THEOREM
Prescribe $\kappa=\kappa(s)$:
$\theta(s)=\int \kappa(s) d s, \quad x(s)=\int \cos \theta(s) d s, \quad y(s)=\int \sin \theta(s) d s$
$\Rightarrow(x(s), y(s))$ unique up to rigid motions
Example (Catenary)
$\kappa(s)=\frac{1}{1+s^{2}} \Rightarrow \theta(s)=\arctan s$

$$
x(s)=\log \left(s+\sqrt{s^{2}+1}\right), y(s)=\sqrt{1+s^{2}} \leftrightarrow y=\cosh x
$$

Singer's Problem

[D. Singer: Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.]

Singer's Problem

[D. Singer: Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.]

Can a plane curve be determined if its curvature is given in terms of its position?

$$
\kappa=\kappa(x, y), \quad \frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}=\kappa(x(t), y(t))
$$

Singer's Problem

[D. Singer: Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.]

Can a plane curve be determined if its curvature is given in terms of its position?

$$
\kappa=\kappa(x, y), \quad \frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}=\kappa(x(t), y(t))
$$

$$
\kappa(x, y)=\sqrt{x^{2}+y^{2}} \Leftrightarrow \kappa(r)=r
$$

Singer's Problem

[D. Singer: Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.]

Can a plane curve be determined if its curvature is given in terms of its position?

$$
\kappa=\kappa(x, y), \quad \frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}=\kappa(x(t), y(t))
$$

$\kappa(x, y)=\sqrt{x^{2}+y^{2}} \Leftrightarrow \kappa(r)=r$
Bernoulli lemniscate: $r^{2}=3 \sin 2 \theta$

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$:
Critical points of $\int\left(\kappa^{2}+\sigma\right) d s: 2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$:
Critical points of $\int\left(\kappa^{2}+\sigma\right) d s: 2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

$$
\kappa(y)=2 \lambda y, \lambda>0
$$

$$
\int \kappa(y) d y=\lambda y^{2}+c
$$

$$
\text { Tension } \sigma=-4 \lambda c
$$

Maximum curvature $k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1$

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$:
Critical points of $\int\left(\kappa^{2}+\sigma\right) d s: 2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

$$
\kappa(y)=2 \lambda y, \lambda>0
$$

$$
\int \kappa(y) d y=\lambda y^{2}+c
$$

$$
\text { Tension } \sigma=-4 \lambda c
$$

$$
\text { Maximum curvature } k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1
$$

- c >-1, wavelike:
$\kappa(s)=k_{0} \mathrm{cn}\left(\frac{k_{0} s}{2 p}, p\right)$,
$p^{2}=\frac{1-c}{2}, s \in \mathbb{R}$

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$:
Critical points of $\int\left(\kappa^{2}+\sigma\right) d s: 2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

$$
\kappa(y)=2 \lambda y, \lambda>0
$$

$$
\int \kappa(y) d y=\lambda y^{2}+c
$$

$$
\text { Tension } \sigma=-4 \lambda c
$$

$$
\text { Maximum curvature } k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1
$$

- c >-1, wavelike:
$\kappa(s)=k_{0} \mathrm{cn}\left(\frac{k_{0} s}{2 p}, p\right)$,
- $c=-1$, borderline:
$p^{2}=\frac{1-c}{2}, s \in \mathbb{R}$

$$
\kappa(s)=k_{0} \operatorname{sech} \frac{k_{0} s}{2},
$$

$$
s \in \mathbb{R}
$$

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$:
Critical points of $\int\left(\kappa^{2}+\sigma\right) d s: 2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

$$
\kappa(y)=2 \lambda y, \lambda>0
$$

$$
\int \kappa(y) d y=\lambda y^{2}+c
$$

$$
\text { Tension } \sigma=-4 \lambda c
$$

$$
\text { Maximum curvature } k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1
$$

- $c>-1$, wavelike:
$\kappa(s)=k_{0} \mathrm{cn}\left(\frac{k_{0} s}{2 p}, p\right)$, $p^{2}=\frac{1-c}{2}, s \in \mathbb{R}$

- $c=-1$, borderline:

$$
\kappa(s)=k_{0} \operatorname{sech} \frac{k_{0} s}{2},
$$

$s \in \mathbb{R}$

- $c<-1$, orbitlike: $\kappa(s)=k_{0} \operatorname{dn}\left(\frac{k_{0} s}{2}, p\right)$, $p^{2}=\frac{2}{1-c}, s \in \mathbb{R}$

Plane curves with prescribed curvature I

$$
\kappa(x, y)=\kappa(y)
$$

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending on distance to a line. Diff. Geom. Appl. 44 (2016), 77-97.]

Plane curves with prescribed curvature I

$$
\kappa(x, y)=\kappa(y)
$$

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending on distance to a line. Diff. Geom. Appl. 44 (2016), 77-97.]

Theorem $\kappa=\kappa(y)$
Prescribe $\kappa=\kappa(y)$ continuous.
The problem of determining a curve $\gamma(s)=(x(s), y(s))-s$ arc lengthwith curvature $\kappa(y)$ is solvable by three quadratures:

Plane curves with prescribed curvature I

$$
\kappa(x, y)=\kappa(y)
$$

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending on distance to a line. Diff. Geom. Appl. 44 (2016), 77-97.]

Theorem $\kappa=\kappa(y)$
Prescribe $\kappa=\kappa(y)$ continuous.
The problem of determining a curve $\gamma(s)=(x(s), y(s))-s$ arc lengthwith curvature $\kappa(y)$ is solvable by three quadratures:
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.

Plane curves with prescribed curvature I

$$
\kappa(x, y)=\kappa(y)
$$

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending on distance to a line. Diff. Geom. Appl. 44 (2016), 77-97.]

Theorem $\kappa=\kappa(y)$
Prescribe $\kappa=\kappa(y)$ continuous.
The problem of determining a curve $\gamma(s)=(x(s), y(s))$-s arc lengthwith curvature $\kappa(y)$ is solvable by three quadratures:
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(2) $s=s(y)=\int \frac{d y}{\sqrt{1-\mathcal{K}(y)^{2}}} \rightarrow y=y(s) \rightarrow \kappa=\kappa(s)$.

Plane curves with prescribed curvature I

$$
\kappa(x, y)=\kappa(y)
$$

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending on distance to a line. Diff. Geom. Appl. 44 (2016), 77-97.]

Theorem $\kappa=\kappa(y)$
Prescribe $\kappa=\kappa(y)$ continuous.
The problem of determining a curve $\gamma(s)=(x(s), y(s))$-s arc lengthwith curvature $\kappa(y)$ is solvable by three quadratures:
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(2) $s=s(y)=\int \frac{d y}{\sqrt{1-\mathcal{K}(y)^{2}}} \rightarrow y=y(s) \rightarrow \kappa=\kappa(s)$.

0 $x(s)=-\int \mathcal{K}(y(s)) d s$.

Plane curves with prescribed curvature I

$$
\kappa(x, y)=\kappa(y)
$$

[I. Castro and I. Castro-Infantes: Plane curves with curvature depending on distance to a line. Diff. Geom. Appl. 44 (2016), 77-97.]

Theorem $\kappa=\kappa(y)$
Prescribe $\kappa=\kappa(y)$ continuous.
The problem of determining a curve $\gamma(s)=(x(s), y(s))$-s arc lengthwith curvature $\kappa(y)$ is solvable by three quadratures:
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(2) $s=s(y)=\int \frac{d y}{\sqrt{1-\mathcal{K}(y)^{2}}} \rightarrow y=y(s) \rightarrow \kappa=\kappa(s)$.
(0) $x(s)=-\int \mathcal{K}(y(s)) d s$.

- γ is uniquely determined, up to translations in x-direction, by $\mathcal{K}(y)$.

Uniqueness results for plane curves I

Uniqueness results for plane curves I

The catenary $y=\cosh x, x \in \mathbb{R}$, is the only plane curve (up to x-translations) with geometric linear momentum $\mathcal{K}(y)=-1 / y$ (and curvature $\kappa(y)=1 / y^{2}$).

The catenary $x=-\cosh y, y \in \mathbb{R}$, is the only plane curve (up to x-translations) with geometric linear momentum $\mathcal{K}(y)=\tanh y$ (and curvature $\kappa(y)=1 / \cosh ^{2} y$).

Uniqueness results for plane curves II

The grim-reaper $y=-\log \sin x, 0<x<\pi$, is the only plane curve (up to x-translations) with geometric linear momentum $\mathcal{K}(y)=-e^{-y}$ (and curvature $\kappa(y)=e^{-y}$).

The grim-reaper $x=\log \cos y, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, is the only plane curve (up to x-translations) with geometric linear momentum $\mathcal{K}(y)=\sin y$ (and curvature $\kappa(y)=\cos y$).

Plane curves with prescribed curvature II

$$
\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)
$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves with curvature depending on distance from the origin. Mediterr. J. Math. 14 (2017), 108:1-19.]

Plane curves with prescribed curvature II

$$
\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)
$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves with curvature depending on distance from the origin. Mediterr. J. Math. 14 (2017), 108:1-19.]

Theorem $\kappa=\kappa(r)$
Prescribe $\kappa=\kappa(r)$ such that $r \kappa(r)$ continuous.
The problem of determining a curve $\gamma(s)=r(s) e^{i \theta(s)}-s$ arc lengthwith curvature $\kappa(r)$ is solvable by three quadratures:

Plane curves with prescribed curvature II

$$
\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)
$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves with curvature depending on distance from the origin. Mediterr. J. Math. 14 (2017), 108:1-19.]

Theorem $\kappa=\kappa(r)$
Prescribe $\kappa=\kappa(r)$ such that $r \kappa(r)$ continuous.
The problem of determining a curve $\gamma(s)=r(s) e^{i \theta(s)}-s$ arc lengthwith curvature $\kappa(r)$ is solvable by three quadratures:
(1) $\int r \kappa(r) d r=\mathcal{K}(r)$, geometric angular momentum.

Plane curves with prescribed curvature II

$$
\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)
$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves with curvature depending on distance from the origin. Mediterr. J. Math. 14 (2017), 108:1-19.]

Theorem $\kappa=\kappa(r)$
Prescribe $\kappa=\kappa(r)$ such that $r \kappa(r)$ continuous.
The problem of determining a curve $\gamma(s)=r(s) e^{i \theta(s)}-s$ arc lengthwith curvature $\kappa(r)$ is solvable by three quadratures:
(1) $\int r \kappa(r) d r=\mathcal{K}(r)$, geometric angular momentum.
(2) $s=s(r)=\int \frac{r d r}{\sqrt{r^{2}-\mathcal{K}(r)^{2}}} \rightarrow r=r(s) \rightarrow \kappa=\kappa(s)$.

Plane curves with prescribed curvature II

$$
\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)
$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves with curvature depending on distance from the origin. Mediterr. J. Math. 14 (2017), 108:1-19.]

Theorem $\kappa=\kappa(r)$
Prescribe $\kappa=\kappa(r)$ such that $r \kappa(r)$ continuous.
The problem of determining a curve $\gamma(s)=r(s) e^{i \theta(s)}-s$ arc lengthwith curvature $\kappa(r)$ is solvable by three quadratures:
(1) $\int r \kappa(r) d r=\mathcal{K}(r)$, geometric angular momentum.
(2) $s=s(r)=\int \frac{r d r}{\sqrt{r^{2}-\mathcal{K}(r)^{2}}} \rightarrow r=r(s) \rightarrow \kappa=\kappa(s)$.

- $\theta(s)=\int \frac{\mathcal{K}(r(s))}{r(s)^{2}} d s$.

Plane curves with prescribed curvature II

$$
\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)
$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: New plane curves with curvature depending on distance from the origin. Mediterr. J. Math. 14 (2017), 108:1-19.]

Theorem $\kappa=\kappa(r)$
Prescribe $\kappa=\kappa(r)$ such that $r \kappa(r)$ continuous.
The problem of determining a curve $\gamma(s)=r(s) e^{i \theta(s)}-s$ arc lengthwith curvature $\kappa(r)$ is solvable by three quadratures:
(1) $\int r \kappa(r) d r=\mathcal{K}(r)$, geometric angular momentum.
(2) $s=s(r)=\int \frac{r d r}{\sqrt{r^{2}-\mathcal{K}(r)^{2}}} \rightarrow r=r(s) \rightarrow \kappa=\kappa(s)$.

- $\theta(s)=\int \frac{\mathcal{K}(r(s))}{r(s)^{2}} d s$.
- γ is uniquely determined, up to rotations, by $\mathcal{K}(r)$.

Uniqueness results for plane curves III

The Bernoulli lemniscate $r^{2}=3 \sin 2 \theta$
is the only plane curve (up to rotations) with geometric angular momentum $\mathcal{K}(r)=r^{3} / 3$ (and curvature $\kappa(r)=r$.

The cardioid $r=\frac{1}{2}(1+\cos \theta)$ is the only plane curve (up to rotations) with geometric angular momentum $\mathcal{K}(r)=r \sqrt{r}$ (and curvature $\kappa(r)=\frac{3}{2 \sqrt{r}}$.

The Norwich spiral is the only (non circular) plane curve (up to rotations) with curvature $\kappa(r)=1 / r$.

Curves in Lorentz-Minkowski plane

$$
\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)
$$

Curves in Lorentz-Minkowski plane

$$
\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)
$$

- $0 \neq v \in \mathbb{L}^{2}$ spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$

Curves in Lorentz-Minkowski plane

$$
\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)
$$

- $0 \neq v \in \mathbb{L}^{2}$ spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$
- $\gamma=(x, y): I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ spacelike (resp. timelike) if $\gamma^{\prime}(t)$ spacelike (resp. timelike) $\forall t \in I ; \gamma\left(t_{0}\right)$ lightlike point if $\gamma^{\prime}\left(t_{0}\right)$ lightlike vector

Curves in Lorentz-Minkowski plane

$$
\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)
$$

- $0 \neq v \in \mathbb{L}^{2}$ spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$
- $\gamma=(x, y): I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ spacelike (resp. timelike) if $\gamma^{\prime}(t)$ spacelike (resp. timelike) $\forall t \in I ; \gamma\left(t_{0}\right)$ lightlike point if $\gamma^{\prime}\left(t_{0}\right)$ lightlike vector - $\gamma=(x, y)$ unit-speed spacelike (resp. timelike) if $g(\dot{\gamma}(s), \dot{\gamma}(s))=\epsilon$, $\forall s \in I(\epsilon=1$ if γ spacelike, $\epsilon=-1$ if γ timelike $)$

Curves in Lorentz-Minkowski plane

$$
\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)
$$

- $0 \neq v \in \mathbb{L}^{2}$ spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$
- $\gamma=(x, y): I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ spacelike (resp. timelike) if $\gamma^{\prime}(t)$ spacelike (resp. timelike) $\forall t \in I ; \gamma\left(t_{0}\right)$ lightlike point if $\gamma^{\prime}\left(t_{0}\right)$ lightlike vector
- $\gamma=(x, y)$ unit-speed spacelike (resp. timelike) if $g(\dot{\gamma}(s), \dot{\gamma}(s))=\epsilon$, $\forall s \in I(\epsilon=1$ if γ spacelike, $\epsilon=-1$ if γ timelike)
- $T=\dot{\gamma}=(\dot{x}, \dot{y}), N=\dot{\gamma}^{\perp}=(\dot{y}, \dot{x}), g(T, T)=\epsilon, g(N, N)=-\epsilon$

Frenet frame and eqns: $\quad \dot{T}(s)=\kappa(s) N(s), \dot{N}(s)=\kappa(s) T(s)$

Curves in Lorentz-Minkowski plane

$$
\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)
$$

- $0 \neq v \in \mathbb{L}^{2}$ spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$
- $\gamma=(x, y): I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ spacelike (resp. timelike) if $\gamma^{\prime}(t)$ spacelike (resp. timelike) $\forall t \in I ; \gamma\left(t_{0}\right)$ lightlike point if $\gamma^{\prime}\left(t_{0}\right)$ lightlike vector - $\gamma=(x, y)$ unit-speed spacelike (resp. timelike) if $g(\dot{\gamma}(s), \dot{\gamma}(s))=\epsilon$, $\forall s \in I(\epsilon=1$ if γ spacelike, $\epsilon=-1$ if γ timelike)
- $T=\dot{\gamma}=(\dot{x}, \dot{y}), N=\dot{\gamma}^{\perp}=(\dot{y}, \dot{x}), g(T, T)=\epsilon, g(N, N)=-\epsilon$

Frenet frame and eqns: $\quad \dot{T}(s)=\kappa(s) N(s), \dot{N}(s)=\kappa(s) T(s)$

Theorem

Prescribe $\kappa=\kappa(s)$:
Any spacelike curve $\alpha(s)$ in \mathbb{L}^{2} can be represented (up to isometries) by

$$
\alpha(s)=\left(\int \sinh \varphi(s) d s, \int \cosh \varphi(s) d s\right) \text { with } \varphi(s)=\int \kappa(s) d s
$$

Any timelike curve $\beta(s)$ in \mathbb{L}^{2} can be represented (up to isometries) by

$$
\beta(s)=\left(\int \cosh \phi(s) d s, \int \sinh \phi(s) d s\right) \text { with } \phi(s)=\int \kappa(s) d s
$$

Curves in Lorentz-Minkowski plane

Geodesics

The spacelike geodesics can be written as:

$$
\alpha_{\varphi_{0}}(s)=\left(\sinh \varphi_{0} s, \cosh \varphi_{0} s\right), s \in \mathbb{R}, \varphi_{0} \in \mathbb{R}
$$

and the timelike geodesics can be written as:

$$
\beta_{\phi_{0}}(s)=\left(\cosh \phi_{0} s, \sinh \phi_{0} s\right), s \in \mathbb{R}, \phi_{0} \in \mathbb{R} .
$$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$
Fix the timelike geodesic β_{0}, i.e. the x-axis.

$P=(x, y) \in \mathbb{L}^{2}, y \neq 0$; spacelike geodesics α_{m} with slope $m=\operatorname{coth} \varphi_{0}$, $|m|>1 ; P^{\prime}=(x-y / m, 0)$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$
Fix the timelike geodesic β_{0}, i.e. the x-axis.

$P=(x, y) \in \mathbb{L}^{2}, y \neq 0$; spacelike geodesics α_{m} with slope $m=\operatorname{coth} \varphi_{0}$, $|m|>1 ; P^{\prime}=(x-y / m, 0)$
$0<\delta\left(P, P^{\prime}\right)^{2}=\left(1-\frac{1}{m^{2}}\right) y^{2}=\frac{y^{2}}{\cosh ^{2} \varphi_{0}} \leq y^{2} ; "=" \Leftrightarrow \varphi_{0}=0$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$
Fix the timelike geodesic β_{0}, i.e. the x-axis.

$P=(x, y) \in \mathbb{L}^{2}, y \neq 0$; spacelike geodesics α_{m} with slope $m=\operatorname{coth} \varphi_{0}$, $|m|>1 ; P^{\prime}=(x-y / m, 0)$
$0<\delta\left(P, P^{\prime}\right)^{2}=\left(1-\frac{1}{m^{2}}\right) y^{2}=\frac{y^{2}}{\cosh ^{2} \varphi_{0}} \leq y^{2} ; "=" \Leftrightarrow \varphi_{0}=0$
$|y|:$ maximum Lorentzian pseudodistance through spacelike geodesics from $P=(x, y), y \neq 0$, to the x-axis.

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$
Fix the lightlike geodesic $x=y$.

$P=(x, y) \in \mathbb{L}^{2}, x \neq y$; spacelike and timelike geodesics γ_{m}, $m \in \mathbb{R} \cup\{\infty\}, m \neq 1 ; P^{\prime}=\left(\frac{m x-y}{m-1}, \frac{m x-y}{m-1}\right)$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$
Fix the lightlike geodesic $x=y$.

$P=(x, y) \in \mathbb{L}^{2}, x \neq y$; spacelike and timelike geodesics γ_{m},
$m \in \mathbb{R} \cup\{\infty\}, m \neq 1 ; P^{\prime}=\left(\frac{m x-y}{m-1}, \frac{m x-y}{m-1}\right)$
$0<\delta\left(P, P^{\prime}\right)^{2}=(y-x)^{2}\left|\frac{m+1}{m-1}\right| ; \delta\left(P, P^{\prime}\right)^{2}=(y-x)^{2} \Leftrightarrow m=0, m=\infty$

Lorentzian Pseudodistance

Define the Lorentzian pseudodistance by
$\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}$
Fix the lightlike geodesic $x=y$.

$P=(x, y) \in \mathbb{L}^{2}, x \neq y$; spacelike and timelike geodesics γ_{m},
$m \in \mathbb{R} \cup\{\infty\}, m \neq 1 ; P^{\prime}=\left(\frac{m x-y}{m-1}, \frac{m x-y}{m-1}\right)$
$0<\delta\left(P, P^{\prime}\right)^{2}=(y-x)^{2}\left|\frac{m+1}{m-1}\right| ; \delta\left(P, P^{\prime}\right)^{2}=(y-x)^{2} \Leftrightarrow m=0, m=\infty$
$|y-x|$: Lorentzian pseudodistance from $P=(x, y) \in \mathbb{L}^{2}, x \neq y$,
to the lightlike geodesic $x=y$ through the horizontal timelike geodesic
or the vertical spacelike geodesic.

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

- Curvature $\kappa=\kappa(x, y)$ depending on:
(1) Lorentzian pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

- Curvature $\kappa=\kappa(x, y)$ depending on:
(1) Lorentzian pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(3) Lorentzian pseudodistance to a fixed spacelike geodesic:

$$
\kappa(x, y)=\kappa(x) .
$$

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

- Curvature $\kappa=\kappa(x, y)$ depending on:
(1) Lorentzian pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(2) Lorentzian pseudodistance to a fixed spacelike geodesic:
$\kappa(x, y)=\kappa(x)$.
(3) Lorentzian pseudodistance to a fixed lightlike geodesic:

$$
\kappa(x, y)=\kappa(v), v=y-x
$$

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

- Curvature $\kappa=\kappa(x, y)$ depending on:
(1) Lorentzian pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(3) Lorentzian pseudodistance to a fixed spacelike geodesic:
$\kappa(x, y)=\kappa(x)$.
(3) Lorentzian pseudodistance to a fixed lightlike geodesic:
$\kappa(x, y)=\kappa(v), v=y-x$.
(9) Lorentzian pseudodistance to a fixed point:
$\kappa(x, y)=\kappa(\rho), \rho=\sqrt{\left|-x^{2}+y^{2}\right|}$.

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

- Curvature $\kappa=\kappa(x, y)$ depending on:
(1) Lorentzian pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(2) Lorentzian pseudodistance to a fixed spacelike geodesic:
$\kappa(x, y)=\kappa(x)$.
(3) Lorentzian pseudodistance to a fixed lightlike geodesic:

$$
\kappa(x, y)=\kappa(v), v=y-x
$$

(1) Lorentzian pseudodistance to a fixed point:

$$
\kappa(x, y)=\kappa(\rho), \rho=\sqrt{\left|-x^{2}+y^{2}\right|} .
$$

Singer's Problem in \mathbb{L}^{2}

Determine those (spacelike and timelike) curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$

- Curvature $\kappa=\kappa(x, y)$ depending on:
(1) Lorentzian pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(2) Lorentzian pseudodistance to a fixed spacelike geodesic:
$\kappa(x, y)=\kappa(x)$.
(3) Lorentzian pseudodistance to a fixed lightlike geodesic:
$\kappa(x, y)=\kappa(v), v=y-x$.
(Lorentzian pseudodistance to a fixed point:

$$
\kappa(x, y)=\kappa(\rho), \rho=\sqrt{\left|-x^{2}+y^{2}\right|} .
$$

$\gamma=(x, y)$ spacelike (resp. timelike) with $\kappa=\kappa(y)$
$\Rightarrow \hat{\gamma}=(y, x)$ timelike (resp. spacelike) with $\kappa=\kappa(x)$

Index

(1) Motivation
(2) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
(3) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a lightlike geodesic

4 Curves in \mathbb{L}^{2} whose curvature depends on Lorentzian pseudodistance from the origin

$$
\kappa(x, y)=\kappa(y)
$$

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining a spacelike or timelike curve $(x(s), y(s))$-s arc length- is solvable by three quadratures ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):

$\kappa(x, y)=\kappa(y)$

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining a spacelike or timelike curve $(x(s), y(s))$-s arc length- is solvable by three quadratures ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.

$$
\kappa(x, y)=\kappa(y)
$$

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining a spacelike or timelike curve $(x(s), y(s))$-s arc length- is solvable by three quadratures ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(3) $s=s(y)=\int \frac{d y}{\sqrt{\mathcal{K}(y)^{2}+\epsilon}}$,
where $\mathcal{K}(y)^{2}+\epsilon>0, \rightarrow y=y(s) \longrightarrow \kappa(s)$.

$$
\kappa(x, y)=\kappa(y)
$$

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining a spacelike or timelike curve $(x(s), y(s))$-s arc length- is solvable by three quadratures ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(3) $s=s(y)=\int \frac{d y}{\sqrt{\mathcal{K}(y)^{2}+\epsilon}}$,
where $\mathcal{K}(y)^{2}+\epsilon>0, \rightarrow y=y(s) \longrightarrow \kappa(s)$.
(0) $x(s)=\int \mathcal{K}(y(s)) d s$.

$$
\kappa(x, y)=\kappa(y)
$$

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining a spacelike or timelike curve $(x(s), y(s))$-s arc length- is solvable by three quadratures ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(3) $s=s(y)=\int \frac{d y}{\sqrt{\mathcal{K}(y)^{2}+\epsilon}}$,
where $\mathcal{K}(y)^{2}+\epsilon>0, \rightarrow y=y(s) \longrightarrow \kappa(s)$.
(3) $x(s)=\int \mathcal{K}(y(s)) d s$.

- Such a curve is uniquely determined by $\mathcal{K}(y)$ up to a x-translation.

$$
\kappa(x, y)=\kappa(y)
$$

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining a spacelike or timelike curve $(x(s), y(s))$-s arc length- is solvable by three quadratures ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(3) $s=s(y)=\int \frac{d y}{\sqrt{\mathcal{K}(y)^{2}+\epsilon}}$,
where $\mathcal{K}(y)^{2}+\epsilon>0, \rightarrow y=y(s) \rightarrow \kappa(s)$.
(3) $x(s)=\int \mathcal{K}(y(s)) d s$.

- Such a curve is uniquely determined by $\mathcal{K}(y)$ up to a x-translation.
- $\mathcal{K}(y)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the x-axis.

Example 1

Geodesics: $\kappa \equiv 0$

Example 1

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(y)=c \in \mathbb{R} . s=\int \frac{d y}{\sqrt{c^{2}+\epsilon}}=\frac{y}{\sqrt{c^{2}+\epsilon}}, c^{2}+\epsilon>0$.

$$
x(s)=c s, y(s)=\sqrt{c^{2}+\epsilon} s, s \in \mathbb{R}
$$

Example 1

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(y)=c \in \mathbb{R} . s=\int \frac{d y}{\sqrt{c^{2}+\epsilon}}=\frac{y}{\sqrt{c^{2}+\epsilon}}, c^{2}+\epsilon>0$.

$$
x(s)=c s, y(s)=\sqrt{c^{2}+\epsilon} s, s \in \mathbb{R} .
$$

$\epsilon=1: K \equiv c:=\sinh \varphi_{0} \rightarrow$ spacelike geodesics $\alpha_{\varphi_{0}}$.
$c=0=\varphi_{0}$ corresponds to the y-axis.
$\epsilon=-1: K \equiv c:=\cosh \phi_{0} \rightarrow$ timelike geodesics $\beta_{\phi_{0}}$.
$c=1 \Leftrightarrow \phi_{0}=0$ corresponds to the x-axis.

Example 2

Circles: $\mathcal{\kappa} \equiv k_{0}>0$

Example 2

Circles: $\kappa \equiv k_{0}>0$

- $\mathcal{K}(y)=k_{0} y+c, c \in \mathbb{R} . \quad s=\int \frac{d y}{\sqrt{\left(k_{0} y+c\right)^{2}+\epsilon}}$.

Example 2

Circles: $\kappa \equiv k_{0}>0$

- $\mathcal{K}(y)=k_{0} y+c, c \in \mathbb{R} . \quad s=\int \frac{d y}{\sqrt{\left(k_{0} y+c\right)^{2}+\epsilon}}$.
$\epsilon=1: s=\operatorname{arcsinh}\left(k_{0} y+c\right) / k_{0}$.

$$
x(s)=\cosh \left(k_{0} s\right) / k_{0}, y(s)=\left(\sinh \left(k_{0} s\right)-c\right) / k_{0}, s \in \mathbb{R}
$$

$\epsilon=-1: s=\operatorname{arccosh}\left(k_{0} y+c\right) / k_{0}$
$x(s)=\sinh \left(k_{0} s\right) / k_{0}, y(s)=\left(\cosh \left(k_{0} s\right)-c\right) / k_{0}, s \in \mathbb{R}$.

Spacelike and timelike pseudocircles in \mathbb{L}^{2} of radius $1 / k_{0}$.

Elasticae in \mathbb{L}^{2}

Definition

γ, spacelike or timelike curve in \mathbb{L}^{2}, elastica under tension σ if $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$. Energy $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

Elasticae in \mathbb{L}^{2}

Definition

γ, spacelike or timelike curve in \mathbb{L}^{2}, elastica under tension σ if $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$. Energy $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

$$
\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}
$$

Elasticae in \mathbb{L}^{2}

Definition

γ, spacelike or timelike curve in \mathbb{L}^{2}, elastica under tension σ if
$2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$. Energy $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

$$
\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}
$$

Proposition

γ spacelike or timelike curve in \mathbb{L}^{2}
(i) If $\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}$, and $\mathcal{K}(y)=a y^{2}+b y+c$, $a \neq 0, b, c \in \mathbb{R}$, then γ elastica under tension $\sigma=4 a c-b^{2}$ and energy $E=4 \epsilon a^{2}+\sigma^{2} / 4$
(where $\epsilon=1$ if γ is spacelike and $\epsilon=-1$ if γ is timelike).

Elasticae in \mathbb{L}^{2}

Definition

γ, spacelike or timelike curve in \mathbb{L}^{2}, elastica under tension σ if
$2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$. Energy $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

$$
\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}
$$

Proposition

γ spacelike or timelike curve in \mathbb{L}^{2}
(i) If $\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}$, and $\mathcal{K}(y)=a y^{2}+b y+c$, $a \neq 0, b, c \in \mathbb{R}$, then γ elastica under tension $\sigma=4 a c-b^{2}$ and energy $E=4 \epsilon a^{2}+\sigma^{2} / 4$
(where $\epsilon=1$ if γ is spacelike and $\epsilon=-1$ if γ is timelike).
(ii) If γ elastica under tension σ and energy E, with $E \neq \sigma^{2} / 4$, then $\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}$.

Spacelike elasticae: $\kappa(y)=2 y, \epsilon=1$

- $\mathcal{K}(y)=y^{2}+c, c=\sinh \eta \in \mathbb{R}$

Spacelike elasticae: $\kappa(y)=2 y, \epsilon=1$

- $\mathcal{K}(y)=y^{2}+c, c=\sinh \eta \in \mathbb{R} \quad\left(s_{\eta}=\sinh \eta\right.$ and $\left.c_{\eta}=\cosh \eta\right)$
$x_{\eta}(s)=\left(s_{\eta}+c_{\eta}\right) s+\sqrt{c_{\eta}}\left(\operatorname{cn}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)\left(k_{\eta}^{2} \operatorname{sd}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)-\operatorname{ds}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)\right)-2 E\left(\sqrt{c_{\eta}} s, k_{\eta}\right)\right)$
$y_{\eta}(s)=\sqrt{c_{\eta}} \operatorname{cs}\left(\sqrt{c_{\eta}} s, k_{\eta}\right) \operatorname{nd}\left(\sqrt{c_{\eta}} s, k_{\eta}\right), k_{\eta}^{2}=\frac{1-\tanh \eta}{2}$
$s \in\left(2 m K\left(k_{\eta}\right) / \sqrt{c_{\eta}}, 2(m+1) K\left(k_{\eta}\right) / \sqrt{c_{\eta}}\right), m \in \mathbb{N}$
$\kappa_{\eta}(s)=2 \sqrt{c_{\eta}} \operatorname{cs}\left(\sqrt{c_{\eta}} s, k_{\eta}\right) \operatorname{nd}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)$.

Spacelike elastic curves $\alpha_{\eta}=\left(x_{\eta}, y_{\eta}\right),(\eta=0,1,5,-1,5)$.

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

$$
\begin{array}{ll}
\bullet \mathcal{K}(y)=y^{2}+1(c=1) . & \bullet \mathcal{K}(y)=y^{2}-1(c=-1) . \\
x_{1}(s)=s-\sqrt{2} \operatorname{coth}(\sqrt{2} s), & x_{-1}(s)=\sqrt{2} \tan (\sqrt{2} s)-s, \\
y_{1}(s)=-\frac{\sqrt{2}}{\sinh (\sqrt{2} s)}, s \neq 0 . & y_{-1}(s)= \pm \frac{\sqrt{2}}{\cos (\sqrt{2} s)},|s|<\frac{\pi}{2 \sqrt{2}} . \\
\kappa_{1}(s)=-\frac{2 \sqrt{2}}{\sinh (\sqrt{2} s)} .
\end{array}
$$

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

- $\mathcal{K}(y)=y^{2}+\cosh ^{2} \delta, \delta>0(c>1)$

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

Timelike elastic curves $\beta_{\delta}=\left(x_{\delta}, y_{\delta}\right)(\delta=0,5,1,1,5)$.

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

- $\mathcal{K}(y)=y^{2}+\sin \psi,|\psi|<\pi / 2(|c|<1)$

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

- $\mathcal{K}(y)=y^{2}+\sin \psi,|\psi|<\pi / 2 \quad(|c|<1)$
$x_{\psi}(s)=s+\sqrt{2}\left(\operatorname{dn}\left(\sqrt{2} s, k_{\psi}\right) \operatorname{tn}\left(\sqrt{2} s, k_{\psi}\right)-E\left(\sqrt{2} s, k_{\psi}\right)\right)$,
$y_{\psi}(s)=\sqrt{1-s_{\psi}} \mathrm{nc}\left(\sqrt{2} s, k_{\psi}\right), k_{\psi}^{2}=\frac{1+\sin \psi}{2}$,
$s \in\left((2 m-1) K\left(k_{\psi}\right) / \sqrt{2},(2 m+1) K\left(k_{\psi}\right) / \sqrt{2}\right), m \in \mathbb{N}$.
$\kappa_{\psi}(s)=2 \sqrt{1-s_{\psi}} \mathrm{nc}\left(\sqrt{2} s, k_{\psi}\right)$.

Timelike elastic curves $\beta_{\psi}=\left(x_{\psi}, y_{\psi}\right)(\psi=-\pi / 4,0, \pi / 6)$.

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

- $\mathcal{K}(y)=y^{2}-\cosh ^{2} \tau, \tau>0,(c<-1)$

Timelike elasticae: $\kappa(y)=2 y, \epsilon=-1$

- $\mathcal{K}(y)=y^{2}-\cosh ^{2} \tau, \tau>0,(c<-1)$
$x_{\tau}(s)=s+\sqrt{1+c_{\tau}^{2}}\left(\operatorname{dn}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right) \operatorname{tn}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right)-E\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right)\right)$,
$y_{\tau}(s)=\sqrt{1+c_{\tau}^{2}} \mathrm{dc}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right), k_{\tau}^{2}=\frac{\sinh ^{2} \tau}{1+\cosh ^{2} \tau}$,
$s \in\left((2 m-1) K\left(k_{\tau}\right) / \sqrt{1+c_{\tau}^{2}},(2 m+1) K\left(k_{\tau}\right) / \sqrt{1+c_{\tau}^{2}}\right), m \in \mathbb{N}$.
$\kappa_{\tau}(s)=2 \sqrt{1+c_{\tau}^{2}} \mathrm{dc}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right)$.

Timelike elastic curves $\beta_{\tau}=\left(x_{\tau}, y_{\tau}\right),(\tau=1,2,3)$.
$\kappa(y)=1 / y^{2}$

$\kappa(y)=1 / y^{2}$

- $\mathcal{K}(y)=-1 / y$
$\epsilon=1$. Spacelike case:
$x(s)=\mp \operatorname{arccosh} s, s>1$.
$\epsilon=-1$. Timelike case:
$x(s)=\mp \arcsin s,|s|<1$.
$y(s)= \pm \sqrt{s^{2}-1},|s|>1$.
$y(s)= \pm \sqrt{1-s^{2}},|s|<1$.
$\kappa(s)=\frac{1}{s^{2}-1}, s>1$.
$\kappa(s)=\frac{1}{1-s^{2}},|s|<1$.
$y=-\sinh x, x \in \mathbb{R}$.
$y= \pm \cos x,|x|<\pi / 2$.

- $\mathcal{K}(y)=-1 / y$
$\epsilon=1$. Spacelike case:
$x(s)=\mp \operatorname{arccosh} s, s>1$.
$y(s)= \pm \sqrt{s^{2}-1},|s|>1$.
$\kappa(s)=\frac{1}{s^{2}-1}, s>1$.
$y=-\sinh x, x \in \mathbb{R}$.

$$
\begin{aligned}
& \epsilon=-1 . \text { Timelike case: } \\
& x(s)=\mp \arcsin s,|s|<1 \\
& y(s)= \pm \sqrt{1-s^{2}},|s|<1 \\
& \kappa(s)=\frac{1}{1-s^{2}},|s|<1
\end{aligned}
$$

$$
y= \pm \cos x,|x|<\pi / 2
$$

"Lorentzian catenaries"

Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in \mathbb{L}^{3}, the catenoid of the first kind with equation $y^{2}+z^{2}-\sinh ^{2} x=0$ and the catenoid of the second kind with equation $x^{2}-z^{2}=\cos ^{2} y$.

Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in \mathbb{L}^{3}, the catenoid of the first kind with equation $y^{2}+z^{2}-\sinh ^{2} x=0$ and the catenoid of the second kind with equation $x^{2}-z^{2}=\cos ^{2} y$.

The generatrix curves of both

* catenoids coincide with the graph $y=-\sinh x, x \in \mathbb{R}$ and the bigraph $x= \pm \cos y,|y|<\pi / 2$.

Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in \mathbb{L}^{3}, the catenoid of the first kind with equation $y^{2}+z^{2}-\sinh ^{2} x=0$ and the catenoid of the second kind with equation $x^{2}-z^{2}=\cos ^{2} y$.

The generatrix curves of both

* catenoids coincide with the graph $y=-\sinh x, x \in \mathbb{R}$ and the bigraph $x= \pm \cos y,|y|<\pi / 2$.
(1) The Lorentzian catenary of the first kind $y=-\sinh x, x \in \mathbb{R}$, is the only spacelike curve (up to translations in the x-direction) with geometric linear momentum $\mathcal{K}(y)=-1 / y$.
(2) The Lorentzian catenary of the second kind $x= \pm \cos y,|y|<\pi / 2$, is the only spacelike curve (up to translations in the y-direction) with geometric linear momentum $\mathcal{K}(x)=-1 / x$.

$\kappa(y)=1 / y^{2}$

- $\mathcal{K}(y)=c-1 / y, c \neq 0$.

$\kappa(y)=1 / y^{2}$

- $\mathcal{K}(y)=c-1 / y, c \neq 0 . \quad \epsilon=1$, Spacelike case:
$x=\frac{1}{c^{2}+1}\left(c \sqrt{\left(c^{2}+1\right) y^{2}-2 c y+1}-\frac{1}{\sqrt{c^{2}+1}} \operatorname{arcsinh}\left(\left(c^{2}+1\right) y-c\right)\right)$.

Curves with $\mathcal{K}(y)=c-1 / y ; c \leq 0$ (left) and $c \geq 0$ (right).

$\kappa(y)=1 / y^{2}$

- $\mathcal{K}(y)=c-1 / y, c \neq 0 . \quad \epsilon=-1$, Timelike case:

$$
\begin{aligned}
& \mathcal{K}(y)=1-1 / y: \\
& x=\frac{(2-y) \sqrt{1-2 y}}{3}, y<1 / 2 .
\end{aligned}
$$

$$
\cdot \mathcal{K}(y)=-1-1 / y:
$$

$$
x=-\frac{(2+y) \sqrt{1+2 y}}{3}, y>-1 / 2
$$

- $\mathcal{K}(y)=c-1 / y,|c|>1$:
$x=\frac{1}{c^{2}-1}\left(c \sqrt{\left(c^{2}-1\right) y^{2}-2 c y+1}+\frac{\log \left(2\left(\sqrt{c^{2}-1} \sqrt{\left(c^{2}-1\right) y^{2}-2 c y+1}+\left(c^{2}-1\right) y-c\right)\right)}{\sqrt{c^{2}-1}}\right)$.
- $\mathcal{K}(y)=c-1 / y,|c|<1$:
$x=\frac{1}{c^{2}-1}\left(c \sqrt{\left(c^{2}-1\right) y^{2}-2 c y+1}-\frac{1}{\sqrt{1-c^{2}}} \arcsin \left(\left(c^{2}-1\right) y-c\right)\right)$
$\kappa(y)=e^{y}$
- $\mathcal{K}(y)=e^{y}$

$\kappa(y)=e^{y}$

- $\mathcal{K}(y)=e^{y}$
$\epsilon=1$. Spacelike case:
$\epsilon=-1$. Timelike case:
$x(s)=$
$-\log \tanh (-s / 2), s<0$.
$y(s)=\log (-\operatorname{csch} s), s<0$.
$x(s)=$
$\log (\sec s+\tan s),|s|<\pi / 2$.
$y(s)=\log \sec s,|s|<\pi / 2$.
$\kappa(s)=-\operatorname{csch} s, s<0$.
$y=\log (\sinh x), x>0$.
$\kappa(s)=\sec s,|s|<\pi / 2$.
$y=\log (\cosh x), x \in \mathbb{R}$.

$\kappa(y)=e^{y}$

- $\mathcal{K}(y)=e^{y}$
$\epsilon=1$. Spacelike case:
$\epsilon=-1$. Timelike case:
$x(s)=$
$-\log \tanh (-s / 2), s<0$.
$y(s)=\log (-\operatorname{csch} s), s<0$.
$x(s)=$
$\log (\sec s+\tan s),|s|<\pi / 2$.
$y(s)=\log \sec s,|s|<\pi / 2$.
$\kappa(s)=-\operatorname{csch} s, s<0$.
$y=\log (\sinh x), x>0$.
$\kappa(s)=\sec s,|s|<\pi / 2$.
$y=\log (\cosh x), x \in \mathbb{R}$.

"Lorentzian grim-reapers"

Lorentzian grim-reapers

Both curves satisfy the translating-type soliton equation:

$$
\kappa=g((0,1), N)
$$

Lorentzian grim-reapers

Both curves satisfy the translating-type soliton equation:

$$
\kappa=g((0,1), N)
$$

(1) The Lorentzian grim-reaper $y=\log (\sinh x), x>0$, is the only spacelike curve (up to x-translations) in \mathbb{L}^{2} with geometric linear momentum $\mathcal{K}(y)=e^{y}$.
(2) The Lorentzian grim-reaper $y=\log (\cosh x), x \in \mathbb{R}$, is the only timelike curve (up to x-translations) in \mathbb{L}^{2} with geometric linear momentum $\mathcal{K}(y)=e^{y}$.

$\kappa(y)=e^{y}$

- $\mathcal{K}(y)=e^{y}+c, c \neq 0$.

Spacelike case ($\epsilon=1$):
$x=\operatorname{arcsinh}\left(e^{y}+c\right)-$
$\frac{c}{\sqrt{c^{2}+1}} \operatorname{arcsinh}\left(c+\left(c^{2}+1\right) e^{-y}\right)$.

Timelike case $(\epsilon=-1)$:

- $\mathcal{K}(y)=e^{y}+1$:
$x=2 \log \left(\sqrt{e^{y}}+\sqrt{e^{y}+2}\right)-\sqrt{1+2 e^{-y}}$.
$\cdot \mathcal{K}(y)=e^{y}+c,|c|>1$:
$x=\log \left(2\left(\sqrt{P\left(e^{y}\right)}+e^{y}+c\right)\right)-$
$\frac{c \log \left(2 e^{-y}\left(\sqrt{c^{2}-1} \sqrt{P\left(e^{y}\right)}+c e^{y}+c^{2}-1\right)\right)}{\sqrt{c^{2}-1}}$
$\cdot \mathcal{K}(y)=e^{y}-1$:
$x=2 \log \left(\sqrt{e^{y}}+\sqrt{e^{y}-2}\right)-\sqrt{1-2 e^{-y}}$.
$\cdot \mathcal{K}(y)=e^{y}+c,|c|<1$:
$x=\log \left(2\left(\sqrt{P\left(e^{y}\right)}+e^{y}+c\right)\right)+\frac{c}{\sqrt{1-c^{2}}} \arcsin \left(c+\left(c^{2}-1\right) e^{-y}\right)$.

Index

(1) Motivation
(2) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
(3) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
(4) Curves in \mathbb{L}^{2} whose curvature depends on Lorentzian pseudodistance from the origin

$$
\kappa(x, y)=\kappa(v), v:=y-x
$$

$$
\kappa(x, y)=\kappa(v), v:=y-x
$$

Theorem

Prescribe $\kappa=\kappa(v)$ continuous.
Then the problem of determining a spacelike or timelike curve

$$
\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)
$$

$-s$ arc length- is solvable by three quadratures
($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):

$$
\kappa(x, y)=\kappa(v), v:=y-x
$$

Theorem

Prescribe $\kappa=\kappa(v)$ continuous.
Then the problem of determining a spacelike or timelike curve

$$
\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)
$$

$-s$ arc length- is solvable by three quadratures
($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(v) d v=\frac{-\epsilon}{\mathcal{K}(v)}$, geometric linear momentum.

$$
\kappa(x, y)=\kappa(v), v:=y-x
$$

Theorem

Prescribe $\kappa=\kappa(v)$ continuous.
Then the problem of determining a spacelike or timelike curve

$$
\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)
$$

$-s$ arc length- is solvable by three quadratures
($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \mathcal{K}(v) d v=\frac{-\epsilon}{\mathcal{K}(v)}$, geometric linear momentum.
(2) $s=s(v)=\epsilon \int \mathcal{K}(v) d v \rightarrow v=v(s) \rightarrow \kappa=\mathcal{K}(s)$.

$$
\kappa(x, y)=\kappa(v), v:=y-x
$$

Theorem

Prescribe $\kappa=\kappa(v)$ continuous.
Then the problem of determining a spacelike or timelike curve

$$
\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)
$$

$-s$ arc length- is solvable by three quadratures
($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \mathcal{K}(v) d v=\frac{-\epsilon}{\mathcal{K}(v)}$, geometric linear momentum.
(2) $s=s(v)=\epsilon \int \mathcal{K}(v) d v \rightarrow v=v(s) \rightarrow \mathcal{K}=\mathcal{K}(s)$.
(0) $u(s)=\int K(v(s)) d s$.

$$
\kappa(x, y)=\kappa(v), v:=y-x
$$

Theorem

Prescribe $\kappa=\kappa(v)$ continuous.
Then the problem of determining a spacelike or timelike curve

$$
\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)
$$

$-s$ arc length- is solvable by three quadratures
($\epsilon=1$ spacelike, $\epsilon=-1$ timelike):
(1) $\int \kappa(v) d v=\frac{-\epsilon}{\mathcal{K}(v)}$, geometric linear momentum.
(2) $s=s(v)=\epsilon \int \mathcal{K}(v) d v \rightarrow v=v(s) \rightarrow \mathcal{K}=\kappa(s)$.
(0) $u(s)=\int K(v(s)) d s$.

- Such a curve is uniquely determined by $\mathcal{K}(v)$ up to a u-translation.
- $\mathcal{K}(v)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the u-axis.

Examples: constant curvature

Examples: constant curvature

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(v)=-\epsilon / c, c \neq 0 . u(s)=-\epsilon s / c, v(s)=-c s, s \in \mathbb{R}$ (lines passing through the origin with slope $m=\frac{\epsilon+c^{2}}{\epsilon-c^{2}}$).
$\epsilon=1 \Rightarrow|m|>1$ spacelike geodesics, $\epsilon=-1 \Rightarrow|m|<1$ timelike geodesics.

Examples: constant curvature

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(v)=-\epsilon / c, c \neq 0 . u(s)=-\epsilon s / c, v(s)=-c s, s \in \mathbb{R}$ (lines passing through the origin with slope $m=\frac{\epsilon+c^{2}}{\epsilon-c^{2}}$).
$\epsilon=1 \Rightarrow|m|>1$ spacelike geodesics, $\epsilon=-1 \Rightarrow|m|<1$ timelike geodesics.
Circles: $\kappa \equiv k_{0}>0$
- $\mathcal{K}(v)=\frac{-\epsilon}{c+k_{0} v}, c \in \mathbb{R} . u(s)=-\epsilon e^{k_{0} s} / k_{0}, v(s)=\left(e^{-k_{0} s}-c\right) / k_{0}$.
$\epsilon=1 \Rightarrow x(s)=\left(-\cosh \left(k_{0} s\right)+c / 2\right) / k_{0}, y(s)=-\left(\sinh \left(k_{0} s\right)+c / 2\right) / k_{0}$.
$\epsilon=-1 \Rightarrow x(s)=\left(\sinh \left(k_{0} s\right)+c / 2\right) / k_{0}, y(s)=\left(\cosh \left(k_{0} s\right)-c / 2\right) / k_{0}$.

Spacelike and timelike pseudocircles in \mathbb{L}^{2} of radius $1 / k_{0}$.

$$
\kappa(v)=2 v
$$

σ-elastica: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}: E=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2} . \quad E=\sigma^{2} / 4$?

$\kappa(v)=2 v$

σ-elastica: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}: E=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2} . \quad E=\sigma^{2} / 4$?

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$.

$\kappa(v)=2 v$

σ-elastica: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}: E=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2} . \quad E=\sigma^{2} / 4$?

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$.
(1) $c=0: \quad u(s)=-\epsilon s^{3} / 3, v(s)=1 / s, \quad \kappa(s)=2 / s, s \neq 0$.

Spacelike (blue) and timelike (red) elastic curve with $\sigma=E=0$

$\kappa(v)=2 v$

σ-elastica: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}: E=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2} . \quad E=\sigma^{2} / 4$?

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$.
(2) $c>0: u(s)=-\frac{\epsilon}{c}\left(\frac{s}{2}+\frac{\sin (2 \sqrt{c} s)}{4 \sqrt{c}}\right), v(s)=-\sqrt{c} \tan (\sqrt{c} s)$.

$$
\kappa(s)=-2 \sqrt{c} \tan (\sqrt{c} s),|s|<\pi / 2 \sqrt{c} .
$$

Spacelike (blue) and timelike (red) elastic curves with $\sigma=4 c>0$ and $E=4 c^{2}(c=1,2,3)$

$\kappa(v)=2 v$

σ-elastica: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0, \sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}: E=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2} . \quad E=\sigma^{2} / 4$?

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$.
(0) $c<0: u(s)=\frac{\epsilon}{c}\left(-\frac{s}{2}+\frac{\sinh (2 \sqrt{-c} s)}{4 \sqrt{-c}}\right), v(s)=\sqrt{-c} \operatorname{coth}(\sqrt{-c} s)$. $\kappa(s)=2 \sqrt{-c} \operatorname{coth}(\sqrt{-c} s), s \neq 0$.

Spacelike (blue) and timelike (red) elastic curves with $\sigma=4 c<0$ and $E=4 c^{2}(c=-1,-2,-3)$
$\kappa(v)=1 / v^{2}$

$\kappa(v)=1 / v^{2}$

- $\mathcal{K}(v)=\epsilon v \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$ $u(s)=2 \epsilon \sqrt{2} s \sqrt{s} / 3, \quad v(s)=\sqrt{2 s}, \quad \kappa(s)=\frac{1}{2 s}, s>0$. Graphs $u=\epsilon v^{3} / 3, v>0$ for $\epsilon= \pm 1$.

Spacelike (blue) and timelike (red) curve in \mathbb{L}^{2} with $\mathcal{K}(v)=\epsilon v, \epsilon= \pm 1$.

Generatrix of Enneper's surface of second kind

Kobayashi, 1993: Enneper's surface of second kind.
Rotation surface with lightlike axis $(1,0,1)$ and generatrix curve $x=\lambda\left(-t+t^{3} / 3\right), z=\lambda\left(t+t^{3} / 3\right), \lambda>0$, at the $x z$-plane.

Generatrix of Enneper's surface of second kind

Kobayashi, 1993: Enneper's surface of second kind.
Rotation surface with lightlike axis $(1,0,1)$ and generatrix curve $x=\lambda\left(-t+t^{3} / 3\right), z=\lambda\left(t+t^{3} / 3\right), \lambda>0$, at the $x z$-plane.

The generatrix curve of Enneper's surface for $\lambda=1 / 2$ coincide with the graph $u=v^{3} / 3, v>0$.

Generatrix of Enneper's surface of second kind

Kobayashi, 1993: Enneper's surface of second kind.
Rotation surface with lightlike axis $(1,0,1)$ and generatrix curve $x=\lambda\left(-t+t^{3} / 3\right), z=\lambda\left(t+t^{3} / 3\right), \lambda>0$, at the $x z$-plane.

The generatrix curve of Enneper's surface for $\lambda=1 / 2$ coincide with the graph $u=v^{3} / 3, v>0$.

The generatrix curve of the Enneper's surface of second kind, $u=v^{3} / 3$, $v>0$, is the only spacelike curve (up to dilations and u-translations) with geometric linear momentum $\mathcal{K}(v)=v$ (and curvature $\kappa(v)=1 / v^{2}$)

$\kappa(v)=1 / v^{2}$

- $\mathcal{K}(v)=\frac{-\epsilon v}{c v-1}, c \neq 0$ ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$

$\kappa(v)=1 / v^{2}$

- $\mathcal{K}(v)=\frac{-\epsilon v}{c v-1}, c \neq 0 \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$

$$
\begin{gathered}
u=u(v)=\frac{\epsilon}{c^{3}}\left(c v-1-\frac{1}{c v-1}+2 \log (c v-1)\right), \\
v>1 / c \text { if } c>0, v<1 / c \text { if } c<0 .
\end{gathered}
$$

Spacelike curves with $\mathcal{K}(v)=-\frac{v}{c v-1}$ (left) and timelike curves with $\mathcal{K}(v)=\frac{v}{c v-1}$ (right).
$\kappa(v)=e^{v}$

$$
\kappa(v)=e^{v}
$$

- $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
$\kappa(v)=e^{v}$
- $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
(1) $c=0: u(s)=-\epsilon s^{2} / 2, v(s)=-\log s, \kappa(s)=1 / s, s>0$.

Graph $u=-\epsilon e^{-2 v} / 2, v \in \mathbb{R}$.
Translating-type soliton equation: $\kappa=g((1,1), N)$.

Spacelike (blue) and timelike (red)
Lorentzian grim-reapers, $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}}$

$\kappa(v)=e^{v}$

- $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \in \mathbb{R} \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
(2) $c \neq 0: u(s)=-\frac{\epsilon}{c}\left(s+\frac{1}{c e^{c s}}\right), v(s)=\log \frac{c}{e^{c s}-1}$,

$$
\kappa(s)=\frac{c}{e^{c s}-1}, s>0
$$

Spacelike curves (blue) and timelike curves (red) with $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \neq 0$

Index

(1) Motivation
(2) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
(3) Curves in \mathbb{L}^{2} with curvature depending on Lorentzian pseudodistance to a lightlike geodesic

4 Curves in \mathbb{L}^{2} whose curvature depends on Lorentzian pseudodistance from the origin

References

I. Castro, I. Castro-Infantes and J. Castro-Infantes: Curves in Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers.
Open Math. 16 (2018), 747-776.
I. Castro, I. Castro-Infantes and J. Castro-Infantes: Curves in Lorentz-Minkowski plane with curvature depending on their position. Preprint 2018. arXiv:1806.09187 [math.DG].

References

I. Castro, I. Castro-Infantes and J. Castro-Infantes: Curves in Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers. Open Math. 16 (2018), 747-776.
I. Castro, I. Castro-Infantes and J. Castro-Infantes: Curves in Lorentz-Minkowski plane with curvature depending on their position. Preprint 2018. arXiv:1806.09187 [math.DG].

Thank you very much for your attention!

