# CURVES IN LORENTZ-MINKOWSKI PLANE WITH PRESCRIBED CURVATURE

#### Ildefonso Castro (Ildefonso Castro-Infantes and Jesús Castro-Infantes)





Partially supported by Geometric Analysis Project (MTM2017-89677-P)





#### Motivation

- 2 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
- $\textcircled{\sc 0}$  Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
- $\textcircled{\sc 0}$  Curves in  $\mathbb{L}^2$  whose curvature depends on Lorentzian pseudodistance from the origin

#### Motivation

- 2 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
- 3 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
- 4 Curves in  $\mathbb{L}^2$  whose curvature depends on Lorentzian pseudodistance from the origin

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Fundamental Theorem for plane curves

#### THEOREM

Prescribe  $\kappa = \kappa(s)$ :  $\theta(s) = \int \kappa(s) \, ds$ ,  $x(s) = \int \cos \theta(s) \, ds$ ,  $y(s) = \int \sin \theta(s) \, ds$  $\Rightarrow (x(s), y(s))$  unique up to rigid motions

### Fundamental Theorem for plane curves

#### THEOREM

Prescribe 
$$\kappa = \kappa(s)$$
:  
 $\theta(s) = \int \kappa(s) \, ds$ ,  $x(s) = \int \cos \theta(s) \, ds$ ,  $y(s) = \int \sin \theta(s) \, ds$   
 $\Rightarrow (x(s), y(s))$  unique up to rigid motions

# Example (Catenary)

$$x(s) = \frac{1}{1+s^2} \Rightarrow \theta(s) = \arctan s$$
  

$$x(s) = \log \left(s + \sqrt{s^2 + 1}\right), \ y(s) = \sqrt{1+s^2} \leftrightarrow y = \cosh x$$

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

*Can a plane curve be determined if its curvature is given in terms of its position?* 

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}} = \kappa(x(t), y(t))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

*Can a plane curve be determined if its curvature is given in terms of its position?* 

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}} = \kappa(x(t), y(t))$$

 $\kappa(x,y) = \sqrt{x^2 + y^2} \Leftrightarrow \kappa(r) = r$ 

[D. Singer: *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly **106** (1999), 835–841.]

*Can a plane curve be determined if its curvature is given in terms of its position?* 

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}} = \kappa(x(t), y(t))$$

$$\kappa(x, y) = \sqrt{x^2 + y^2} \Leftrightarrow \kappa(r) = r$$

Bernoulli lemniscate:  $r^2 = 3\sin 2\theta$ 

 $\square$ 

ヘロト 人間ト 人団ト 人団ト

**Elastica** under *tension*  $\sigma \in \mathbb{R}$ : Critical points of  $\int (\kappa^2 + \sigma) ds$ :  $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$ 

**Elastica** under *tension*  $\sigma \in \mathbb{R}$ : Critical points of  $\int (\kappa^2 + \sigma) ds$ :  $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$ 

$$\kappa(y)=2\lambda y,\,\lambda>0$$

$$\int \kappa(y) dy = \lambda y^2 + c$$
  
Tension  $\sigma = -4\lambda c$   
Maximum curvature  $k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1$ 

**Elastica** under *tension*  $\sigma \in \mathbb{R}$ : Critical points of  $\int (\kappa^2 + \sigma) ds$ :  $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$ 

$$\kappa(y)=2\lambda y,\,\lambda>0$$

$$\int \kappa(y) dy = \lambda y^2 + c$$
  
Tension  $\sigma = -4\lambda c$   
Maximum curvature  $k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1$ 

• 
$$c > -1$$
, wavelike:  
 $\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right),$   
 $p^2 = \frac{1-c}{2}, s \in \mathbb{R}$ 

**Elastica** under *tension*  $\sigma \in \mathbb{R}$ : Critical points of  $\int (\kappa^2 + \sigma) ds$ :  $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$ 

$$\kappa(y)=2\lambda y,\,\lambda>0$$

$$\int \kappa(y) dy = \lambda y^2 + c$$
  
Tension  $\sigma = -4\lambda c$   
Maximum curvature  $k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1$ 



• c = -1, borderline:  $\kappa(s) = k_0 \operatorname{sech} \frac{k_0 s}{2}$ ,  $s \in \mathbb{R}$ 

**Elastica** under *tension*  $\sigma \in \mathbb{R}$ : Critical points of  $\int (\kappa^2 + \sigma) ds$ :  $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$ 

$$\kappa(y) = 2\lambda y, \, \lambda > 0$$

$$\begin{aligned} \int &\kappa(y) dy = \lambda y^2 + c\\ &\text{Tension } \sigma = -4\lambda c\\ &\text{Maximum curvature } k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1 \end{aligned}$$



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

$$\kappa(x,y)=\kappa(y)$$

[I. Castro and I. Castro-Infantes: *Plane curves with curvature depending on distance to a line*. Diff. Geom. Appl. **44** (2016), 77–97.]

$$\kappa(x,y)=\kappa(y)$$

[I. Castro and I. Castro-Infantes: *Plane curves with curvature depending on distance to a line*. Diff. Geom. Appl. **44** (2016), 77–97.]

**Theorem**  $\kappa = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. The problem of determining a curve  $\gamma(s) = (x(s), y(s))$ -s arc lengthwith curvature  $\kappa(y)$  is solvable by three quadratures:

$$\kappa(x,y)=\kappa(y)$$

[I. Castro and I. Castro-Infantes: *Plane curves with curvature depending on distance to a line*. Diff. Geom. Appl. **44** (2016), 77–97.]

#### **Theorem** $\kappa = \kappa(y)$

Prescribe  $\kappa = \kappa(y)$  continuous. The problem of determining a curve  $\gamma(s) = (x(s), y(s))$ -s arc lengthwith curvature  $\kappa(y)$  is solvable by three quadratures:

• 
$$\int \kappa(y) dy = \mathcal{K}(y)$$
, geometric linear momentum.

$$\kappa(x,y)=\kappa(y)$$

[I. Castro and I. Castro-Infantes: *Plane curves with curvature depending on distance to a line*. Diff. Geom. Appl. **44** (2016), 77–97.]

#### **Theorem** $\kappa = \kappa(y)$

Prescribe  $\kappa = \kappa(y)$  continuous. The problem of determining a curve  $\gamma(s) = (x(s), y(s))$ -s arc lengthwith curvature  $\kappa(y)$  is solvable by three quadratures:

•  $\int \kappa(y) dy = \mathcal{K}(y)$ , geometric linear momentum.

• 
$$s = s(y) = \int \frac{dy}{\sqrt{1 - \mathcal{K}(y)^2}} \dashrightarrow y = y(s) \dashrightarrow \kappa = \kappa(s).$$

$$\kappa(x,y)=\kappa(y)$$

[I. Castro and I. Castro-Infantes: *Plane curves with curvature depending on distance to a line*. Diff. Geom. Appl. **44** (2016), 77–97.]

#### **Theorem** $\kappa = \kappa(y)$

Prescribe  $\kappa = \kappa(y)$  continuous. The problem of determining a curve  $\gamma(s) = (x(s), y(s))$ -s arc lengthwith curvature  $\kappa(y)$  is solvable by three quadratures:

• 
$$\int \kappa(y) dy = \mathcal{K}(y)$$
, geometric linear momentum.

• 
$$s = s(y) = \int \frac{dy}{\sqrt{1 - \mathcal{K}(y)^2}} \longrightarrow y = y(s) \longrightarrow \kappa = \kappa(s).$$
  
•  $\kappa(s) = -\int \mathcal{K}(y(s))ds.$ 

$$\kappa(x,y)=\kappa(y)$$

[I. Castro and I. Castro-Infantes: *Plane curves with curvature depending on distance to a line*. Diff. Geom. Appl. **44** (2016), 77–97.]

#### **Theorem** $\kappa = \kappa(y)$

Prescribe  $\kappa = \kappa(y)$  continuous. The problem of determining a curve  $\gamma(s) = (x(s), y(s))$ -s arc lengthwith curvature  $\kappa(y)$  is solvable by three quadratures:

• 
$$\int \kappa(y) dy = \mathcal{K}(y)$$
, geometric linear momentum.

• 
$$s = s(y) = \int \frac{dy}{\sqrt{1 - \mathcal{K}(y)^2}} \longrightarrow y = y(s) \longrightarrow \kappa = \kappa(s).$$
  
•  $x(s) = -\int \mathcal{K}(y(s))ds.$ 

▶  $\gamma$  is uniquely determined, up to translations in *x*-direction, by  $\mathcal{K}(y)$ .

# Uniqueness results for plane curves I

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 三 - のへで

#### Uniqueness results for plane curves I

The **catenary**  $y = \cosh x$ ,  $x \in \mathbb{R}$ , is the only plane curve (up to x-translations) with geometric linear momentum  $\mathcal{K}(y) = -1/y$ (and curvature  $\kappa(y) = 1/y^2$ ).

The **catenary**  $x = -\cosh y$ ,  $y \in \mathbb{R}$ , is the only plane curve (up to x-translations) with geometric linear momentum  $\mathcal{K}(y) = \tanh y$ (and curvature  $\kappa(y) = 1/\cosh^2 y$ ).





### Uniqueness results for plane curves II

The grim-reaper  $y = -\log \sin x$ ,  $0 < x < \pi$ , is the only plane curve (up to x-translations) with geometric linear momentum  $\mathcal{K}(y) = -e^{-y}$  (and curvature  $\kappa(y) = e^{-y}$ ).



The grim-reaper  $x = \log \cos y$ ,  $y \in (-\frac{\pi}{2}, \frac{\pi}{2})$ , is the only plane curve (up to x-translations) with geometric linear momentum  $\mathcal{K}(y) = \sin y$ (and curvature  $\kappa(y) = \cos y$ ).



$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

**Theorem**  $\kappa = \kappa(r)$ 

Prescribe  $\kappa = \kappa(r)$  such that  $r\kappa(r)$  continuous. The problem of determining a curve  $\gamma(s) = r(s) e^{i\theta(s)}$ -s arc lengthwith curvature  $\kappa(r)$  is solvable by three quadratures:

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

#### **Theorem** $\kappa = \kappa(r)$

Prescribe  $\kappa = \kappa(r)$  such that  $r\kappa(r)$  continuous. The problem of determining a curve  $\gamma(s) = r(s) e^{i\theta(s)}$ -s arc lengthwith curvature  $\kappa(r)$  is solvable by three quadratures:

• 
$$\int r\kappa(r)dr = \mathcal{K}(r)$$
, geometric angular momentum.

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

#### **Theorem** $\kappa = \kappa(r)$

Prescribe  $\kappa = \kappa(r)$  such that  $r\kappa(r)$  continuous. The problem of determining a curve  $\gamma(s) = r(s) e^{i\theta(s)}$ -s arc lengthwith curvature  $\kappa(r)$  is solvable by three quadratures:

• 
$$\int r\kappa(r)dr = \mathcal{K}(r)$$
, geometric angular momentum.

$$s = s(r) = \int \frac{rdr}{\sqrt{r^2 - \mathcal{K}(r)^2}} \dashrightarrow r = r(s) \dashrightarrow \kappa = \kappa(s).$$

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

#### **Theorem** $\kappa = \kappa(r)$

Prescribe  $\kappa = \kappa(r)$  such that  $r\kappa(r)$  continuous. The problem of determining a curve  $\gamma(s) = r(s) e^{i\theta(s)}$ -s arc lengthwith curvature  $\kappa(r)$  is solvable by three quadratures:

•  $\int r\kappa(r)dr = \mathcal{K}(r)$ , geometric angular momentum.

• 
$$s = s(r) = \int \frac{rdr}{\sqrt{r^2 - \mathcal{K}(r)^2}} \longrightarrow r = r(s) \longrightarrow \kappa = \kappa(s).$$
  
•  $\theta(s) = \int \frac{\mathcal{K}(r(s))}{r(s)^2} ds.$ 

$$\kappa(x,y) = \kappa(\sqrt{x^2 + y^2})$$

[I. Castro, I. Castro-Infantes and J. Castro-Infantes: *New plane curves with curvature depending on distance from the origin*. Mediterr. J. Math. **14** (2017), 108:1–19.]

#### **Theorem** $\kappa = \kappa(r)$

Prescribe  $\kappa = \kappa(r)$  such that  $r\kappa(r)$  continuous. The problem of determining a curve  $\gamma(s) = r(s) e^{i\theta(s)}$ -s arc lengthwith curvature  $\kappa(r)$  is solvable by three quadratures:

• 
$$\int r\kappa(r)dr = \mathcal{K}(r)$$
, geometric angular momentum.

• 
$$s = s(r) = \int \frac{rdr}{\sqrt{r^2 - \mathcal{K}(r)^2}} \longrightarrow r = r(s) \longrightarrow \kappa = \kappa(s).$$
  
•  $\theta(s) = \int \frac{\mathcal{K}(r(s))}{r(s)^2} ds.$ 

•  $\gamma$  is uniquely determined, up to rotations, by  $\mathcal{K}(r)$ .

# Uniqueness results for plane curves III

The **Bernoulli lemniscate**  $r^2 = 3 \sin 2\theta$ is the only plane curve (up to rotations) with geometric angular momentum  $\mathcal{K}(r) = r^3/3$ (and curvature  $\kappa(r) = r$ ).

The **cardioid** 
$$r = \frac{1}{2}(1 + \cos \theta)$$
  
is the only plane curve (up to rotations)  
with geometric angular momentum  $\mathcal{K}(r) = r\sqrt{2\pi/r}$   
(and curvature  $\kappa(r) = \frac{3}{2\pi/r}$ ).

The **Norwich spiral** is the only (non circular) plane curve (up to rotations) with curvature

$$\kappa(r) = 1/r$$
.



$$\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$$

•  $0 \neq v \in \mathbb{L}^2$  spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0

$$\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$$

•  $0 \neq v \in \mathbb{L}^2$  spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0

•  $\gamma = (x, y) : I \subseteq \mathbb{R} \to \mathbb{R}^2$  spacelike (resp. timelike) if  $\gamma'(t)$  spacelike (resp. timelike)  $\forall t \in I$ ;  $\gamma(t_0)$  lightlike point if  $\gamma'(t_0)$  lightlike vector

$$\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$$

•  $0 \neq v \in \mathbb{L}^2$  spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0•  $\gamma = (x, y) : I \subseteq \mathbb{R} \to \mathbb{R}^2$  spacelike (resp. timelike) if  $\gamma'(t)$  spacelike (resp. timelike)  $\forall t \in I$ ;  $\gamma(t_0)$  lightlike point if  $\gamma'(t_0)$  lightlike vector •  $\gamma = (x, y)$  unit-speed spacelike (resp. timelike) if  $g(\dot{\gamma}(s), \dot{\gamma}(s)) = \epsilon$ ,  $\forall s \in I$  ( $\epsilon = 1$  if  $\gamma$  spacelike,  $\epsilon = -1$  if  $\gamma$  timelike)

$$\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$$

•  $0 \neq v \in \mathbb{L}^2$  spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0•  $\gamma = (x, y) : I \subseteq \mathbb{R} \to \mathbb{R}^2$  spacelike (resp. timelike) if  $\gamma'(t)$  spacelike (resp. timelike)  $\forall t \in I$ ;  $\gamma(t_0)$  lightlike point if  $\gamma'(t_0)$  lightlike vector •  $\gamma = (x, y)$  unit-speed spacelike (resp. timelike) if  $g(\dot{\gamma}(s), \dot{\gamma}(s)) = \epsilon$ ,  $\forall s \in I$  ( $\epsilon = 1$  if  $\gamma$  spacelike,  $\epsilon = -1$  if  $\gamma$  timelike) •  $T = \dot{\gamma} = (\dot{x}, \dot{y}), N = \dot{\gamma}^{\perp} = (\dot{y}, \dot{x}), g(T, T) = \epsilon, g(N, N) = -\epsilon$ Frenet frame and eqns:  $\dot{T}(s) = \kappa(s)N(s), \dot{N}(s) = \kappa(s)T(s)$ 

$$\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$$

•  $0 \neq v \in \mathbb{L}^2$  spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0•  $\gamma = (x, y) : I \subseteq \mathbb{R} \to \mathbb{R}^2$  spacelike (resp. timelike) if  $\gamma'(t)$  spacelike (resp. timelike)  $\forall t \in I$ ;  $\gamma(t_0)$  lightlike point if  $\gamma'(t_0)$  lightlike vector •  $\gamma = (x, y)$  unit-speed spacelike (resp. timelike) if  $g(\dot{\gamma}(s), \dot{\gamma}(s)) = \epsilon$ ,  $\forall s \in I$  ( $\epsilon = 1$  if  $\gamma$  spacelike,  $\epsilon = -1$  if  $\gamma$  timelike) •  $T = \dot{\gamma} = (\dot{x}, \dot{y}), N = \dot{\gamma}^{\perp} = (\dot{y}, \dot{x}), g(T, T) = \epsilon, g(N, N) = -\epsilon$ Frenet frame and eqns:  $\dot{T}(s) = \kappa(s)N(s), \dot{N}(s) = \kappa(s)T(s)$ 

#### Theorem

Prescribe 
$$\kappa = \kappa(s)$$
:  
Any *spacelike* curve  $\alpha(s)$  in  $\mathbb{L}^2$  can be represented (up to isometries) by  
 $\alpha(s) = \left(\int \sinh \varphi(s) ds, \int \cosh \varphi(s) ds\right)$  with  $\varphi(s) = \int \kappa(s) ds$ .  
Any *timelike* curve  $\beta(s)$  in  $\mathbb{L}^2$  can be represented (up to isometries) by  
 $\beta(s) = \left(\int \cosh \phi(s) ds, \int \sinh \phi(s) ds\right)$  with  $\phi(s) = \int \kappa(s) ds$ .
### Curves in Lorentz-Minkowski plane

### Geodesics

The *spacelike* geodesics can be written as:

$$\alpha_{\varphi_0}(s) = (\sinh \varphi_0 s, \cosh \varphi_0 s), s \in \mathbb{R}, \ \varphi_0 \in \mathbb{R},$$

and the *timelike* geodesics can be written as:

$$\beta_{\phi_0}(s) = (\cosh \phi_0 s, \sinh \phi_0 s), s \in \mathbb{R}, \phi_0 \in \mathbb{R}.$$



Define the Lorentzian pseudodistance by  $\delta : \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 

Fix the timelike geodesic  $\beta_0$ , i.e. the *x*-axis.



 $P = (x, y) \in \mathbb{L}^2$ ,  $y \neq 0$ ; spacelike geodesics  $\alpha_m$  with slope  $m = \operatorname{coth} \varphi_0$ , |m| > 1; P' = (x - y/m, 0)

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 

Fix the timelike geodesic  $\beta_0$ , i.e. the *x*-axis.



$$\begin{split} P &= (x, y) \in \mathbb{L}^2, \ y \neq 0; \text{ spacelike geodesics } \alpha_m \text{ with slope } m = \coth \varphi_0, \\ |m| > 1; \ P' &= (x - y/m, 0) \\ 0 &< \delta(P, P')^2 = \left(1 - \frac{1}{m^2}\right) y^2 = \frac{y^2}{\cosh^2 \varphi_0} \leq y^2; \ " = " \Leftrightarrow \varphi_0 = 0 \end{split}$$

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 

Fix the timelike geodesic  $\beta_0$ , i.e. the *x*-axis.



 $P = (x, y) \in \mathbb{L}^2, y \neq 0; \text{ spacelike geodesics } \alpha_m \text{ with slope } m = \coth \varphi_0, |m| > 1; P' = (x - y/m, 0)$  $0 < \delta(P, P')^2 = \left(1 - \frac{1}{m^2}\right) y^2 = \frac{y^2}{\cosh^2 \varphi_0} \le y^2; \text{ "} = \text{"} \Leftrightarrow \varphi_0 = 0$ 

|y|: maximum Lorentzian pseudodistance through spacelike geodesics from P = (x, y),  $y \neq 0$ , to the x-axis.

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 



 $P = (x, y) \in \mathbb{L}^2$ ,  $x \neq y$ ; spacelike and timelike geodesics  $\gamma_m$ ,  $m \in \mathbb{R} \cup \{\infty\}$ ,  $m \neq 1$ ;  $P' = (\frac{mx-y}{m-1}, \frac{mx-y}{m-1})$ 

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 



$$\begin{split} &P = (x, y) \in \mathbb{L}^2, \, x \neq y; \text{spacelike and timelike geodesics } \gamma_m, \\ &m \in \mathbb{R} \cup \{\infty\}, \, m \neq 1; \, P' = \left(\frac{mx-y}{m-1}, \frac{mx-y}{m-1}\right) \\ &0 < \delta(P, P')^2 = (y-x)^2 \left|\frac{m+1}{m-1}\right|; \, \delta(P, P')^2 = (y-x)^2 \Leftrightarrow m = 0, \, m = \infty \end{split}$$

Define the Lorentzian pseudodistance by  $\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$ 



 $P = (x, y) \in \mathbb{L}^2$ ,  $x \neq y$ ; spacelike and timelike geodesics  $\gamma_m$ ,  $m \in \mathbb{R} \cup \{\infty\}$ ,  $m \neq 1$ ;  $P' = (\frac{mx-y}{m-1}, \frac{mx-y}{m-1})$ 

$$0 < \delta(P, P')^2 = (y - x)^2 \left| \frac{m + 1}{m - 1} \right|; \, \delta(P, P')^2 = (y - x)^2 \Leftrightarrow m = 0, \ m = \infty$$

|y - x|: Lorentzian pseudodistance from  $P = (x, y) \in \mathbb{L}^2$ ,  $x \neq y$ , to the lightlike geodesic x = y through the horizontal timelike geodesic or the vertical spacelike geodesic.

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$ whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$  whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

• Curvature  $\kappa = \kappa(x, y)$  depending on:

• Lorentzian pseudodistance to a fixed timelike geodesic:  $\kappa(x, y) = \kappa(y)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$  whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

• Curvature  $\kappa = \kappa(x, y)$  depending on:

Lorentzian pseudodistance to a fixed timelike geodesic:
 κ(x, y) = κ(y).

• Lorentzian pseudodistance to a fixed spacelike geodesic:  $\kappa(x, y) = \kappa(x)$ .

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$  whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

- Curvature  $\kappa = \kappa(x, y)$  depending on:
  - Lorentzian pseudodistance to a fixed timelike geodesic:
     κ(x, y) = κ(y).
  - Lorentzian pseudodistance to a fixed spacelike geodesic:
      $\kappa(x, y) = \kappa(x)$ .
  - Lorentzian pseudodistance to a fixed lightlike geodesic:  $\kappa(x, y) = \kappa(v), v = y - x.$

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$  whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

- Curvature  $\kappa = \kappa(x, y)$  depending on:
  - Lorentzian pseudodistance to a fixed timelike geodesic:
     κ(x, y) = κ(y).
  - Lorentzian pseudodistance to a fixed spacelike geodesic:
      $\kappa(x, y) = \kappa(x)$ .
  - Lorentzian pseudodistance to a fixed lightlike geodesic:  $\kappa(x, y) = \kappa(v), v = y x.$

• Lorentzian pseudodistance to a fixed point:  $\kappa(x, y) = \kappa(\rho), \ \rho = \sqrt{|-x^2 + y^2|}.$ 

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$  whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

- Curvature  $\kappa = \kappa(x, y)$  depending on:
  - Lorentzian pseudodistance to a fixed timelike geodesic:
     κ(x, y) = κ(y).
  - **②** Lorentzian pseudodistance to a fixed spacelike geodesic:  $\kappa(x, y) = \kappa(x)$ .
  - Lorentzian pseudodistance to a fixed lightlike geodesic:  $\kappa(x, y) = \kappa(v), v = y x.$

• Lorentzian pseudodistance to a fixed point:  $\kappa(x, y) = \kappa(\rho), \ \rho = \sqrt{|-x^2 + y^2|}.$ 

Determine those (spacelike and timelike) curves  $\gamma = (x, y)$  in  $\mathbb{L}^2$ whose curvature  $\kappa$  depends on some given function  $\kappa = \kappa(x, y)$ 

- Curvature  $\kappa = \kappa(x, y)$  depending on:
  - Lorentzian pseudodistance to a fixed timelike geodesic:
     κ(x, y) = κ(y).
  - Lorentzian pseudodistance to a fixed spacelike geodesic:
     κ(x, y) = κ(x).
  - Solution Decomposition of the second standard s

• Lorentzian pseudodistance to a fixed point:  $\kappa(x, y) = \kappa(\rho), \ \rho = \sqrt{|-x^2 + y^2|}.$ 

 $\gamma = (x, y)$  spacelike (resp. timelike) with  $\kappa = \kappa(y)$  $\Rightarrow \hat{\gamma} = (y, x)$  timelike (resp. spacelike) with  $\kappa = \kappa(x)$ 

#### Motivation

- 2 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
- 3 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
- 4 Curves in  $\mathbb{L}^2$  whose curvature depends on Lorentzian pseudodistance from the origin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\kappa(x, y) = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. Then the problem of determining a spacelike or timelike curve (x(s), y(s)) -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

 $\kappa(x, y) = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. Then the problem of determining a spacelike or timelike curve (x(s), y(s)) -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

• 
$$\int \kappa(y) dy = \mathcal{K}(y)$$
, geometric linear momentum

 $\kappa(x, y) = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. Then the problem of determining a spacelike or timelike curve (x(s), y(s)) -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

• 
$$\int \kappa(y) dy = \mathcal{K}(y)$$
, geometric linear momentum.  
•  $s = s(y) = \int \frac{dy}{\sqrt{\mathcal{K}(y)^2 + \epsilon}}$ ,  
where  $\mathcal{K}(y)^2 + \epsilon > 0$ ,  $\dashrightarrow y = y(s) \dashrightarrow \kappa(s)$ .

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

 $\kappa(x, y) = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. Then the problem of determining a spacelike or timelike curve (x(s), y(s)) -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● ○ ● ● ● ●

 $\kappa(x, y) = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. Then the problem of determining a spacelike or timelike curve (x(s), y(s)) -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

Such a curve is uniquely determined by  $\mathcal{K}(y)$  up to a x-translation.

 $\kappa(x, y) = \kappa(y)$ 

Prescribe  $\kappa = \kappa(y)$  continuous. Then the problem of determining a spacelike or timelike curve (x(s), y(s)) -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

► Such a curve is uniquely determined by K(y) up to a x-translation.
K(y) will distinguish geometrically the curves inside a same family by their relative position with respect to the x-axis.

#### **Geodesics:** $\kappa \equiv 0$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○ ◆

#### **Geodesics:** $\kappa \equiv 0$

• 
$$\mathcal{K}(y) = c \in \mathbb{R}$$
.  $s = \int \frac{dy}{\sqrt{c^2 + \epsilon}} = \frac{y}{\sqrt{c^2 + \epsilon}}, c^2 + \epsilon > 0$ .  
 $x(s) = c s, y(s) = \sqrt{c^2 + \epsilon} s, s \in \mathbb{R}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### **Geodesics:** $\kappa \equiv 0$ • $\mathcal{K}(y) = c \in \mathbb{R}$ . $s = \int \frac{dy}{\sqrt{c^2 + \epsilon}} = \frac{y}{\sqrt{c^2 + \epsilon}}, c^2 + \epsilon > 0$ . $x(s) = c s, y(s) = \sqrt{c^2 + \epsilon} s, s \in \mathbb{R}$ . $\epsilon = 1$ : $K \equiv c := \sinh \varphi_0 \rightarrow$ spacelike geodesics $\alpha_{\varphi_0}$ . $c = 0 = \varphi_0$ corresponds to the y-axis. $\epsilon = -1$ : $K \equiv c := \cosh \varphi_0 \rightarrow$ timelike geodesics $\beta_{\varphi_0}$ . $c = 1 \Leftrightarrow \phi_0 = 0$ corresponds to the x-axis.



**Circles:**  $\kappa \equiv k_0 > 0$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# **Circles:** $\kappa \equiv k_0 > 0$ • $\mathcal{K}(y) = k_0 y + c, \ c \in \mathbb{R}.$ $s = \int \frac{dy}{\sqrt{(k_0 y + c)^2 + \epsilon}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





Spacelike and timelike pseudocircles in  $\mathbb{L}^2$  of radius  $1/k_0$ .

# Elasticae in $\mathbb{L}^2$

#### Definition

 $\gamma$ , spacelike or timelike curve in  $\mathbb{L}^2$ , elastica under tension  $\sigma$  if  $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$ ,  $\sigma \in \mathbb{R}$ . Energy  $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$ .

# Elasticae in $\mathbb{L}^2$

#### Definition

 $\gamma$ , spacelike or timelike curve in  $\mathbb{L}^2$ , *elastica under tension*  $\sigma$  if  $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$ ,  $\sigma \in \mathbb{R}$ . Energy  $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$ .

 $\kappa(y)=2ay+b,~a
eq 0,~b\in\mathbb{R}$ 

#### Definition

 $\gamma$ , spacelike or timelike curve in  $\mathbb{L}^2$ , elastica under tension  $\sigma$  if  $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$ ,  $\sigma \in \mathbb{R}$ . Energy  $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$ .

$$\kappa(y)=2$$
a $y+b$ , a $eq 0$ ,  $b\in\mathbb{R}$ 

#### Proposition

 $\gamma$  spacelike or timelike curve in  $\mathbb{L}^2$ 

(i) If  $\kappa(y) = 2ay + b$ ,  $a \neq 0$ ,  $b \in \mathbb{R}$ , and  $\mathcal{K}(y) = ay^2 + by + c$ ,  $a \neq 0$ ,  $b, c \in \mathbb{R}$ , then  $\gamma$  elastica under tension  $\sigma = 4ac - b^2$  and energy  $E = 4\epsilon a^2 + \sigma^2/4$ (where  $\epsilon = 1$  if  $\gamma$  is spacelike and  $\epsilon = -1$  if  $\gamma$  is timelike).

#### Definition

 $\gamma$ , spacelike or timelike curve in  $\mathbb{L}^2$ , elastica under tension  $\sigma$  if  $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$ ,  $\sigma \in \mathbb{R}$ . Energy  $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$ .

$$\kappa(y)=2$$
ay  $+$  b, a  $eq$  0, b  $\in \mathbb{R}$ 

#### Proposition

 $\gamma$  spacelike or timelike curve in  $\mathbb{L}^2$ 

(i) If κ(y) = 2ay + b, a ≠ 0, b ∈ ℝ, and K(y) = ay<sup>2</sup> + by + c, a ≠ 0, b, c ∈ ℝ, then γ elastica under tension σ = 4ac - b<sup>2</sup> and energy E = 4εa<sup>2</sup> + σ<sup>2</sup>/4 (where ε = 1 if γ is spacelike and ε = -1 if γ is timelike).
(ii) If γ elastica under tension σ and energy E, with E ≠ σ<sup>2</sup>/4, then κ(y) = 2ay + b, a ≠ 0, b ∈ ℝ.

Spacelike elasticae: 
$$\kappa(y)=2y$$
,  $\epsilon=1$ 

• 
$$\mathcal{K}(y) = y^2 + c$$
,  $c = \sinh \eta \in \mathbb{R}$ 

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

Spacelike elasticae:  $\kappa(y)=2y$ ,  $\epsilon=1$ 

•  $\mathcal{K}(y) = y^2 + c$ ,  $c = \sinh \eta \in \mathbb{R}$   $(s_\eta = \sinh \eta \text{ and } c_\eta = \cosh \eta)$   $x_\eta(s) = (s_\eta + c_\eta)s + \sqrt{c_\eta} \left( cn(\sqrt{c_\eta} s, k_\eta) \left( k_\eta^2 \operatorname{sd}(\sqrt{c_\eta} s, k_\eta) - \operatorname{ds}(\sqrt{c_\eta} s, k_\eta) \right) - 2E(\sqrt{c_\eta} s, k_\eta) \right)$   $y_\eta(s) = \sqrt{c_\eta} \operatorname{cs}(\sqrt{c_\eta} s, k_\eta) \operatorname{nd}(\sqrt{c_\eta} s, k_\eta), \ k_\eta^2 = \frac{1 - \tanh \eta}{2}$  $s \in (2mK(k_\eta)/\sqrt{c_\eta}, 2(m+1)K(k_\eta)/\sqrt{c_\eta}), \ m \in \mathbb{N}$ 



Spacelike elastic curves  $\alpha_{\eta} = (x_{\eta}, y_{\eta})$ ,  $(\eta = 0, 1, 5, -1, 5)$ .

# Timelike elasticae: $\kappa(y) = 2y$ , $\epsilon = -1$
Timelike elasticae:  $\kappa(y) = 2y$ ,  $\epsilon = -1$ 



・ロト・日本・モート モー うへぐ

# Timelike elasticae: $\kappa(y)=2y$ , $\epsilon=-1$

•  $\mathcal{K}(y) = y^2 + \cosh^2 \delta, \ \delta > 0 \ (c > 1)$ 



# Timelike elasticae: $\overline{\kappa(y)} = 2y$ , $\epsilon = -1$

• 
$$\mathcal{K}(y) = y^2 + \cosh^2 \delta, \ \delta > 0 \ (c > 1)$$
  
 $x_{\delta}(s) = c_{\delta}^2 s + \sqrt{c_{\delta}^2 + 1} \left( \operatorname{dn}(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}) \operatorname{tn}(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}) - E(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}) \right),$   
 $y_{\delta}(s) = s_{\delta} \operatorname{tn}(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}), \ k_{\delta}^2 = \frac{2}{1 + \cosh^2 \delta},$   
 $s \in \left( (2m - 1)\mathcal{K}(k_{\delta})/\sqrt{c_{\delta}^2 + 1}, (2m + 1)\mathcal{K}(k_{\delta})/\sqrt{c_{\delta}^2 + 1} \right), \ m \in \mathbb{N}.$   
 $\kappa_{\delta}(s) = 2s_{\delta} \operatorname{tn}(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}).$ 



Timelike elastic curves  $\beta_{\delta} = (x_{\delta}, y_{\delta})$  ( $\delta = 0, 5, 1, 1, 5$ ).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# Timelike elasticae: $\overline{\kappa(y) = 2y}$ , $\epsilon = -1$

•  $\mathcal{K}(y) = y^2 + \sin \psi$ ,  $|\psi| < \pi/2$  (|c| < 1)

# Timelike elasticae: $\overline{\kappa(y)} = 2y$ , $\epsilon = -1$

• 
$$\mathcal{K}(y) = y^2 + \sin \psi$$
,  $|\psi| < \pi/2$  ( $|c| < 1$ )  
 $x_{\psi}(s) = s + \sqrt{2} \left( dn(\sqrt{2}s, k_{\psi}) tn(\sqrt{2}s, k_{\psi}) - E(\sqrt{2}s, k_{\psi}) \right)$ ,  
 $y_{\psi}(s) = \sqrt{1 - s_{\psi}} nc(\sqrt{2}s, k_{\psi})$ ,  $k_{\psi}^2 = \frac{1 + \sin \psi}{2}$ ,  
 $s \in \left( (2m - 1)K(k_{\psi})/\sqrt{2}, (2m + 1)K(k_{\psi})/\sqrt{2} \right)$ ,  $m \in \mathbb{N}$ .  
 $\kappa_{\psi}(s) = 2\sqrt{1 - s_{\psi}} nc(\sqrt{2}s, k_{\psi})$ .



Timelike elastic curves  $\beta_{\psi} = (x_{\psi}, y_{\psi})$  ( $\psi = -\pi/4, 0, \pi/6$ ).

# Timelike elasticae: $\kappa(y)=2y$ , $\epsilon=-1$

•  $\mathcal{K}(y) = y^2 - \cosh^2 \tau$ ,  $\tau > 0$ , (c < -1)

# Timelike elasticae: $\overline{\kappa(y)} = 2y, \ \epsilon = -1$

• 
$$\mathcal{K}(y) = y^2 - \cosh^2 \tau, \ \tau > 0, \ (c < -1)$$
  
 $x_{\tau}(s) = -s + \sqrt{1 + c_{\tau}^2} \left( dn(\sqrt{1 + c_{\tau}^2} s, k_{\tau}) tn(\sqrt{1 + c_{\tau}^2} s, k_{\tau}) - E(\sqrt{1 + c_{\tau}^2} s, k_{\tau}) \right),$   
 $y_{\tau}(s) = \sqrt{1 + c_{\tau}^2} dc(\sqrt{1 + c_{\tau}^2} s, k_{\tau}), \ k_{\tau}^2 = \frac{\sinh^2 \tau}{1 + \cosh^2 \tau},$   
 $s \in \left( (2m - 1)K(k_{\tau})/\sqrt{1 + c_{\tau}^2}, (2m + 1)K(k_{\tau})/\sqrt{1 + c_{\tau}^2} \right), \ m \in \mathbb{N}.$   
 $\kappa_{\tau}(s) = 2\sqrt{1 + c_{\tau}^2} dc(\sqrt{1 + c_{\tau}^2} s, k_{\tau}).$ 



Timelike elastic curves  $\beta_{\tau} = (x_{\tau}, y_{\tau})$ , ( $\tau = 1, 2, 3$ ).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $\kappa(y) = 1/y^2$ 

 $\kappa(y) = 1/y^2$ 

•  $\mathcal{K}(y) = -1/y$   $\epsilon = 1$ . Spacelike case:  $x(s) = \mp \operatorname{arccosh} s, s > 1$ .  $y(s) = \pm \sqrt{s^2 - 1}, |s| > 1$ .  $\kappa(s) = \frac{1}{s^2 - 1}, s > 1$ .

$$\begin{split} \epsilon &= -1. \text{ Timelike case:} \\ x(s) &= \mp \arcsin s, |s| < 1. \\ y(s) &= \pm \sqrt{1 - s^2}, |s| < 1. \\ \kappa(s) &= \frac{1}{1 - s^2}, |s| < 1. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



 $\kappa(y) = 1/y^2$ 

•  $\mathcal{K}(y) = -1/y$   $\epsilon = 1$ . Spacelike case:  $x(s) = \mp \operatorname{arccosh} s, s > 1$ .  $y(s) = \pm \sqrt{s^2 - 1}, |s| > 1$ .  $\kappa(s) = \frac{1}{s^2 - 1}, s > 1$ .

$$\begin{split} & \epsilon = -1. \text{ Timelike case:} \\ & x(s) = \mp \arcsin s, |s| < 1. \\ & y(s) = \pm \sqrt{1 - s^2}, |s| < 1. \\ & \kappa(s) = \frac{1}{1 - s^2}, |s| < 1. \end{split}$$



## Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in  $\mathbb{L}^3$ , the catenoid of the first kind with equation  $y^2 + z^2 - \sinh^2 x = 0$  and the catenoid of the second kind with equation  $x^2 - z^2 = \cos^2 y$ .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ



## Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in  $\mathbb{L}^3$ , the catenoid of the first kind with equation  $y^2 + z^2 - \sinh^2 x = 0$  and the catenoid of the second kind with equation  $x^2 - z^2 = \cos^2 y$ .



The generatrix curves of both <sup>x</sup> catenoids coincide with the graph  $y = -\sinh x$ ,  $x \in \mathbb{R}$  and the bigraph  $x = \pm \cos y$ ,  $|y| < \pi/2$ .

## Lorentzian catenaries.

Kobayashi introduced in 1993, studying maximal rotation surfaces in  $\mathbb{L}^3$ , the catenoid of the first kind with equation  $y^2 + z^2 - \sinh^2 x = 0$  and the catenoid of the second kind with equation  $x^2 - z^2 = \cos^2 y$ .



The generatrix curves of both <sup>x</sup> catenoids coincide with the graph  $y = -\sinh x$ ,  $x \in \mathbb{R}$  and the bigraph  $x = \pm \cos y$ ,  $|y| < \pi/2$ .

The Lorentzian catenary of the first kind y = − sinh x, x ∈ ℝ, is the only *spacelike* curve (up to translations in the x-direction) with geometric linear momentum K(y) = −1/y.

The Lorentzian catenary of the second kind x = ± cos y, |y| < π/2, is the only *spacelike* curve (up to translations in the y-direction) with geometric linear momentum K(x) = -1/x.

 $\kappa(y) = 1/y^2$ 

•  $\mathcal{K}(y) = c - 1/y$ ,  $c \neq 0$ .



 $\kappa(y) = 1/y^2$ 

• 
$$\mathcal{K}(y) = c - 1/y$$
,  $c \neq 0$ .  $\epsilon = 1$ , Spacelike case:

$$x = \frac{1}{c^2 + 1} \left( c \sqrt{(c^2 + 1)y^2 - 2cy + 1} - \frac{1}{\sqrt{c^2 + 1}} \operatorname{arcsinh}((c^2 + 1)y - c) \right).$$



Curves with  $\mathcal{K}(y) = c - 1/y$ ;  $c \leq 0$  (left) and  $c \geq 0$  (right).

・ロト・日本・モト・モート ヨー うへで

# $\kappa(y) = 1/y^2$

•  $\mathcal{K}(y) = c - 1/y, \ c \neq 0.$   $\epsilon = -1$ , Timelike case: •  $\mathcal{K}(y) = 1 - 1/y:$  ·  $\mathcal{K}(y) = -1 - 1/y:$  $x = \frac{(2-y)\sqrt{1-2y}}{3}, \ y < 1/2.$   $x = -\frac{(2+y)\sqrt{1+2y}}{3}, \ y > -1/2.$ 



$$\begin{split} \cdot & \mathcal{K}(y) = c - 1/y, \ |c| > 1; \\ & x = \frac{1}{c^{2} - 1} \left( c \sqrt{(c^{2} - 1)y^{2} - 2cy + 1} + \frac{\log \left( 2(\sqrt{c^{2} - 1}\sqrt{(c^{2} - 1)y^{2} - 2cy + 1} + (c^{2} - 1)y - c) \right)}{\sqrt{c^{2} - 1}} \right). \\ \cdot & \mathcal{K}(y) = c - 1/y, \ |c| < 1; \\ & x = \frac{1}{c^{2} - 1} \left( c \sqrt{(c^{2} - 1)y^{2} - 2cy + 1} - \frac{1}{\sqrt{1 - c^{2}}} \arcsin((c^{2} - 1)y - c) \right) \end{split}$$

 $\kappa(y) = e^{y}$ 

•  $\mathcal{K}(\mathbf{y}) = \mathbf{e}^{\mathbf{y}}$ 

# $\kappa(y) = e^{y}$

•  $\mathcal{K}(y) = e^{y}$   $\epsilon = 1$ . Spacelike case: x(s) =  $-\log \tanh(-s/2), s < 0.$   $y(s) = \log(-\operatorname{csch} s), s < 0.$  $\kappa(s) = -\operatorname{csch} s, s < 0.$ 

$$\begin{aligned} \epsilon &= -1. \text{ Timelike case:} \\ x(s) &= \\ \log(\sec s + \tan s), |s| < \pi/2. \\ y(s) &= \log\sec s, |s| < \pi/2. \\ \kappa(s) &= \sec s, |s| < \pi/2. \end{aligned}$$



# $\kappa(y) = e^{y}$

•  $\mathcal{K}(\mathbf{y}) = \mathbf{e}^{\mathbf{y}}$  $\epsilon = 1$ . Spacelike case:  $\epsilon = -1$ . Timelike case: x(s) =x(s) = $-\log \tanh(-s/2), s < 0.$  $\log(\sec s + \tan s), |s| < \pi/2.$  $y(s) = \log(-\operatorname{csch} s), s < 0.$  $y(s) = \log \sec s, |s| < \pi/2.$  $\kappa(s) = \sec s, |s| < \pi/2.$  $\kappa(s) = -\operatorname{csch} s, \ s < 0.$  $y = \log(\sinh x), x > 0.$  $y = \log(\cosh x), x \in \mathbb{R}.$ 

"Lorentzian grim-reapers"

## Lorentzian grim-reapers



Both curves satisfy the translating-type soliton equation:  $\kappa = g((0,1), \textit{N})$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Lorentzian grim-reapers



Both curves satisfy the translating-type soliton equation:  $\kappa = g((0,1), N)$ 

- The Lorentzian grim-reaper y = log(sinh x), x > 0, is the only spacelike curve (up to x-translations) in L<sup>2</sup> with geometric linear momentum K(y) = e<sup>y</sup>.
- On the Lorentzian grim-reaper y = log(cosh x), x ∈ ℝ, is the only *timelike* curve (up to x-translations) in L<sup>2</sup> with geometric linear momentum K(y) = e<sup>y</sup>.

# $\kappa(y) = e^{y}$

•  $\mathcal{K}(y) = e^y + c, \ c \neq 0.$ 

Spacelike case ( $\epsilon = 1$ ):  $x = \operatorname{arcsinh}(e^{y} + c) - \frac{c}{\sqrt{c^{2}+1}} \operatorname{arcsinh}(c + (c^{2} + 1)e^{-y}).$ 



Timelike case (
$$\epsilon = -1$$
):  
 $\cdot \mathcal{K}(y) = e^{y} + 1$ :  
 $x = 2\log(\sqrt{e^{y}} + \sqrt{e^{y}+2}) - \sqrt{1+2e^{-y}}$ .  
 $\cdot \mathcal{K}(y) = e^{y} + c, |c| > 1$ :  
 $x = \log(2(\sqrt{P(e^{y})} + e^{y} + c)) - \frac{c\log(2e^{-y}(\sqrt{c^{2}-1}\sqrt{P(e^{y})} + ce^{y} + c^{2}-1))}{\sqrt{c^{2}-1}}$ 







### Motivation

- 2 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
- $\ensuremath{\textcircled{}}$  Surves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
- 4 Curves in  $\mathbb{L}^2$  whose curvature depends on Lorentzian pseudodistance from the origin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\kappa(x, y) = \kappa(v), v := y - x$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

 $\kappa(x, y) = \kappa(v), v := y - x$ 

Prescribe  $\kappa = \kappa(v)$  continuous. Then the problem of determining a spacelike or timelike curve  $\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)$ -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ :

 $\kappa(x, y) = \kappa(v), v := v - x$ 

Prescribe  $\kappa = \kappa(v)$  continuous. Then the problem of determining a spacelike or timelike curve  $\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)$ -s arc length- is solvable by three quadratures ( $\epsilon = 1$  spacelike,  $\epsilon = -1$  timelike): •  $\int \kappa(v) dv = \frac{-\epsilon}{\mathcal{K}(v)}$ , geometric linear momentum.

 $\kappa(x, y) = \kappa(y), \ v := y - x$ 

Prescribe  $\kappa = \kappa(v)$  continuous. Then the problem of determining a spacelike or timelike curve  $\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)$ -s arc length- is solvable by three quadratures ( $\epsilon = 1$  spacelike,  $\epsilon = -1$  timelike):  $\int \kappa(v) dv = \frac{-\epsilon}{\mathcal{K}(v)}$ , geometric linear momentum.  $s = s(v) = \epsilon \int \mathcal{K}(v) dv \longrightarrow v = v(s) \longrightarrow \kappa = \kappa(s)$ .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $\kappa(x, y) = \kappa(y), \ v := y - x$ 

Prescribe  $\kappa = \kappa(v)$  continuous. Then the problem of determining a spacelike or timelike curve  $\left(\frac{u(s)-v(s)}{2},\frac{u(s)+v(s)}{2}\right)$ -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike})$ : •  $\int \kappa(v) dv = \frac{-\epsilon}{\mathcal{K}(v)}$ , geometric linear momentum.  $s = s(v) = \epsilon \int \mathcal{K}(v) dv \dashrightarrow v = v(s) \dashrightarrow \kappa = \kappa(s).$  $u(s) = \int K(v(s)) ds.$ 

 $\kappa(x, y) = \kappa(y), \ v := y - x$ 

Prescribe  $\kappa = \kappa(v)$  continuous. Then the problem of determining a spacelike or timelike curve  $\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)$ -s arc length- is solvable by three quadratures  $(\epsilon = 1 \text{ spacelike}, \epsilon = -1 \text{ timelike}):$ •  $\int \kappa(v) dv = \frac{-\epsilon}{\mathcal{K}(v)}$ , geometric linear momentum.  $s = s(v) = \epsilon \int \mathcal{K}(v) dv \dashrightarrow v = v(s) \dashrightarrow \kappa = \kappa(s).$  $u(s) = \int K(v(s)) ds.$ Such a curve is uniquely determined by  $\mathcal{K}(v)$  up to a *u*-translation.

•  $\mathcal{K}(v)$  will distinguish geometrically the curves inside a same family by their relative position with respect to the *u*-axis.

## Examples: constant curvature

### Examples: constant curvature

**Geodesics:**  $\kappa \equiv 0$ •  $\mathcal{K}(v) = -\epsilon/c, c \neq 0. \ u(s) = -\epsilon s/c, v(s) = -cs, s \in \mathbb{R}$ (lines passing through the origin with slope  $m = \frac{\epsilon + c^2}{\epsilon - c^2}$ ).  $\epsilon = 1 \Rightarrow |m| > 1$  spacelike geodesics,  $\epsilon = -1 \Rightarrow |m| < 1$  timelike geodesics.

### Examples: constant curvature

**Geodesics:**  $\kappa \equiv 0$ •  $\mathcal{K}(v) = -\epsilon/c, \ c \neq 0. \ u(s) = -\epsilon s/c, \ v(s) = -cs, \ s \in \mathbb{R}$ (lines passing through the origin with slope  $m = \frac{\epsilon + c^2}{\epsilon - c^2}$ ).  $\epsilon = 1 \Rightarrow |m| > 1$  spacelike geodesics,  $\epsilon = -1 \Rightarrow |m| < 1$  timelike geodesics.



$$\sigma$$
-elastica:  $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0, \ \sigma \in \mathbb{R}.$   
Energy  $E \in \mathbb{R}$ :  $E = \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2.$ 

$$E = \sigma^2 / 4$$
 ?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

$$\sigma\text{-elastica: } 2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0, \ \sigma \in \mathbb{R}.$$
  
Energy  $E \in \mathbb{R}$ :  $E = \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2.$   $E = \sigma^2/4$ ?

•  $\mathcal{K}(v) = -\frac{\epsilon}{v^2 + c}$ ,  $c \in \mathbb{R}$  ( $\epsilon = 1$  spacelike,  $\epsilon = -1$  timelike).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○



with  $\sigma = 4c > 0$  and  $E = 4c^2$  (c = 1, 2, 3)
## $\kappa(\mathbf{v}) = 2\mathbf{v}$



Spacelike (blue) and timelike (red) elastic curves with  $\sigma = 4c < 0$  and  $E = 4c^2$  (c = -1, -2, -3)

$$\kappa(\mathbf{v}) = 1/\mathbf{v}^2$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

$$\kappa(\mathbf{v}) = 1/\mathbf{v}^2$$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

#### Generatrix of Enneper's surface of second kind

Kobayashi, 1993: Enneper's surface of second kind. Rotation surface with lightlike axis (1, 0, 1) and generatrix curve  $x = \lambda(-t + t^3/3)$ ,  $z = \lambda(t + t^3/3)$ ,  $\lambda > 0$ , at the *xz*-plane.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト



## Generatrix of Enneper's surface of second kind

Kobayashi, 1993: Enneper's surface of second kind. Rotation surface with lightlike axis (1, 0, 1) and generatrix curve  $x = \lambda(-t + t^3/3)$ ,  $z = \lambda(t + t^3/3)$ ,  $\lambda > 0$ , at the *xz*-plane.



The generatrix curve of Enneper's surface for  $\lambda = 1/2$  coincide with the graph  $u = v^3/3$ , v > 0.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

## Generatrix of Enneper's surface of second kind

Kobayashi, 1993: Enneper's surface of second kind. Rotation surface with lightlike axis (1, 0, 1) and generatrix curve  $x = \lambda(-t + t^3/3), z = \lambda(t + t^3/3), \lambda > 0$ , at the *xz*-plane.



The generatrix curve of Enneper's surface for  $\lambda = 1/2$  coincide with the graph  $u = v^3/3$ , v > 0.

The generatrix curve of the Enneper's surface of second kind,  $u = v^3/3$ , v > 0, is the only *spacelike* curve (up to dilations and *u*-translations) with geometric linear momentum  $\mathcal{K}(v) = v$  (and curvature  $\kappa(v) = 1/v^2$ )

$$\kappa(\mathbf{v}) = 1/\mathbf{v}^2$$

•  $\mathcal{K}(v) = \frac{-\epsilon v}{c v - 1}$ ,  $c \neq 0$  ( $\epsilon = 1$  spacelike,  $\epsilon = -1$  timelike)



 $\kappa(v) = 1/v^2$ 

•  $\mathcal{K}(v) = \frac{-\epsilon v}{c v - 1}$ ,  $c \neq 0$  ( $\epsilon = 1$  spacelike,  $\epsilon = -1$  timelike)

$$u = u(v) = \frac{c}{c^3} \left( c v - 1 - \frac{1}{c v - 1} + 2 \log(c v - 1) \right),$$
  
v > 1/c if c > 0, v < 1/c if c < 0.



$$\kappa(\mathbf{v}) = e^{\mathbf{v}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

 $\kappa(\mathbf{v}) = e^{\mathbf{v}}$ 

#### • $\mathcal{K}(v) = -\frac{\epsilon}{e^v + c}$ , $c \in \mathbb{R}$ ( $\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)

(ロト・日本)・(日本・日本)の(の)

 $\kappa(\mathbf{v}) = e^{\mathbf{v}}$ 



 $\kappa(\mathbf{v}) = e^{\mathbf{v}}$ 

• 
$$\mathcal{K}(v) = -\frac{\epsilon}{e^v + c}$$
,  $c \in \mathbb{R}$  ( $\epsilon = 1$  spacelike,  $\epsilon = -1$  timelike)

$$c \neq 0: u(s) = -\frac{\epsilon}{c} \left( s + \frac{1}{c e^{cs}} \right), \ v(s) = \log \frac{c}{e^{cs} - 1}, \\ \kappa(s) = \frac{c}{e^{cs} - 1}, \ s > 0$$



Spacelike curves (blue) and timelike curves (red) with  $\mathcal{K}(v)=-\frac{e}{e^v+c}$  ,  $c\neq 0$ 

#### Motivation

- 2 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a spacelike or timelike geodesic
- 3 Curves in  $\mathbb{L}^2$  with curvature depending on Lorentzian pseudodistance to a lightlike geodesic
- $\textcircled{\sc 0}$  Curves in  $\mathbb{L}^2$  whose curvature depends on Lorentzian pseudodistance from the origin

I. Castro, I. Castro-Infantes and J. Castro-Infantes: *Curves in Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers.* Open Math. **16** (2018), 747–776.

I. Castro, I. Castro-Infantes and J. Castro-Infantes: *Curves in Lorentz-Minkowski plane with curvature depending on their position*. Preprint 2018. arXiv:1806.09187 [math.DG].

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

I. Castro, I. Castro-Infantes and J. Castro-Infantes: *Curves in Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers.* Open Math. **16** (2018), 747–776.

I. Castro, I. Castro-Infantes and J. Castro-Infantes: *Curves in Lorentz-Minkowski plane with curvature depending on their position*. Preprint 2018. arXiv:1806.09187 [math.DG].

# Thank you very much for your attention!