Quantum Control on the Boundary

Juan Manuel Pérez-Pardo

uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Joint work with: A. Balmaseda and A. Ibort

XXVII IFWGP September 2018

Outline

Controllability of Quantum Systems

Quantum Control on the boundary

Controllability for Quantum Systems

Time dependent Schrödinger Equation

 $i\frac{\partial\Psi}{\partial t}=H(t)\Psi$

- H(t) is a family of self-adjoint operators
- The solution of the equation is given in terms of a unitary propagator
 - $U: \mathbb{R} \times \mathbb{R} \to \mathcal{U}(\mathcal{H})$
 - $\bullet \quad U(t,t) = \mathbb{I}_{\mathcal{H}}$
 - U(t,s)U(s,r) = U(t,r)
- $\Psi(t) = U(t, t_0)\Psi_0$ is a solution of Schrödinger's Equation with initial value Ψ_0

XXVII IFWGP

Controllability of finite Dimensional Quantum Systems

- Finite dimensional quantum System $\mathcal{H} = \mathbb{C}^n$
- Simple situation. Linear controls:

$$i\frac{\partial\Psi}{\partial t} = (H_0 + c(t)H_1)\Psi$$

- H_0 , H_1 self-adjoint operators (Hermitean matrices).
- $c: \mathbb{R} \to \mathcal{C}$ Space of controls
- Use the controls to steer the state of the system from $\Psi_0 \rightarrow \Psi_f$.

XXVII IFWGP

Controllability of finite dimensional Quantum systems

Study the dynamical Lie algebra:

 $\mathfrak{Lie}{iH_0, iH_1}$

The reachable set of Ψ_0 is the orbit through Ψ_0 of the exponential map of the dynamical Lie algebra.

The finite dimensional quantum system is controllable if the dynamical Lie algebra is the Lie algebra of U(N).

XXVII IFWGP

Harmonic Oscillator

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\frac{\mathsf{d}^2\Psi}{\mathsf{d}x^2} + \frac{1}{2}x^2\Psi + c(t)x\Psi = \left[\frac{1}{2}(p^2 + q^2) + c(t)q\right]\Psi$$

$$p\Psi = -i\frac{\mathsf{d}\Psi}{\mathsf{d}x}$$

$$q\Psi = x\Psi(x)$$

XXVII IFWGP

Harmonic Oscillator algebra:

$$\begin{aligned} a^{\dagger} &= \frac{1}{\sqrt{2}}(q - ip) \\ n &= \frac{1}{\sqrt{2}}(q + ip) \\ n &= a^{\dagger}a \end{aligned}$$

$$\begin{aligned} N &= a^{\dagger}a \\ N &= a^{\dagger}a \\ n &= \sqrt{n+1}|n+1\rangle \end{aligned}$$

J.M. Pérez-Pardo

N

$$H_{0} \text{ Harmonic Oscillator}$$

$$i\frac{\partial\Psi}{\partial t} = -\frac{1}{2}\frac{\mathsf{d}^{2}\Psi}{\mathsf{d}x^{2}} + \frac{1}{2}x^{2}\Psi + c(t)x\Psi = \left[\frac{1}{2}(p^{2} + q^{2}) + c(t)q\right]\Psi$$

$$p\Psi = -i\frac{\mathsf{d}\Psi}{\mathsf{d}x}$$

$$q\Psi = x\Psi(x)$$
Harmonic Oscillator algebra:

$$\begin{aligned} a^{\dagger} &= \frac{1}{\sqrt{2}}(q - ip) \\ n \rangle &= n|n\rangle \end{aligned} \qquad \begin{aligned} a &= \frac{1}{\sqrt{2}}(q + ip) \\ a^{\dagger}|n\rangle &= \sqrt{n+1}|n+1\rangle \end{aligned} \qquad \begin{aligned} N &= a^{\dagger}a \\ a|n\rangle &= \sqrt{n}|n-1\rangle \end{aligned}$$

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$

$$H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$$

XXVII IFWGP

J.M. Pérez-Pardo

N

 Finite-dimensional approximation by the first n eigenstates

 $(H_0^n)_{ij} = \langle i | H_0 | j \rangle$

 $(H_1^n)_{ij} = \langle i | H_0 | j \rangle$

 Finite-dimensional approximation by the first n eigenstates

$$(H_0^n)_{ij} = \langle i | H_0 | j \rangle$$

$$(H_1^n)_{ij} = \langle i | H_0 | j \rangle$$

The finite dimensional approximation is controllable for all n

$$\dim\mathfrak{Lie}\{iH_0,iH_1\}=n^2$$

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$
 $H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$

Dynamical Lie Algebra of the Harmonic Oscillator

$$[a, a^{\dagger}] = \mathbb{I} \qquad [N, a] = -a \qquad [N, a^{\dagger}] = a^{\dagger}$$

$$[iH_0, iH_1] = -\frac{1}{\sqrt{2}}[N, a^{\dagger} + a] = -\frac{1}{\sqrt{2}}(a^{\dagger} - a) = ip = iH_2$$

XXVII IFWGP

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$
 $H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$

Dynamical Lie Algebra of the Harmonic Oscillator

$$[a, a^{\dagger}] = \mathbb{I}$$
 $[N, a] = -a$ $[N, a^{\dagger}] = a^{\dagger}$
 $iH_0, iH_1] = iH_2$ $[iH_0, iH_2] = iH_1$ $[iH_1, iH_2] = i\mathbb{I} = iH_3$

Generators of the dynamic:

$$H_0 = N + \frac{1}{2}$$
 $H_1 = \frac{1}{\sqrt{2}}(a^{\dagger} + a)$

Dynamical Lie Algebra of the Harmonic Oscillator

$$[a, a^{\dagger}] = \mathbb{I}$$
 $[N, a] = -a$ $[N, a^{\dagger}] = a^{\dagger}$

 $[iH_0, iH_1] = iH_2$ $[iH_0, iH_2] = iH_1$ $[iH_1, iH_2] = i\mathbb{I} = iH_3$

Four dimensional Lie algebra!

The infinite dimensional Harmonic Oscillator is not controllable.

XXVII IFWGP

- Why is it controllable for finite dimensions?
- Consider the 3-level truncation (n = 0, 1, 2)

$$a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle \qquad \qquad a|n\rangle = \sqrt{n}|n-1\rangle$$
$$a^{\dagger} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \qquad \qquad a = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix}$$

What happens with the dynamical Lie algebra?

$$q = \frac{1}{\sqrt{2}}(a^{\dagger} + a) \qquad p = \frac{i}{\sqrt{2}}(a^{\dagger} - a)$$
$$[q, p] = i \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

XXVII IFWGP

Approximate Controllability: A linear control system is approximately controllable if for every Ψ_0 , $\Psi_1 \in S$ and every $\epsilon > 0$ there exist T > 0 and $c(t) \subset C$ such that

 $\left\|\Psi_1 - U(T, t_0)\Psi_0\right\| < \epsilon$

- Reasonable for infinite dimensions
- Hilbert Space is defined as equivalence classes of convergent sequences
- Is natural to expect this if one has exact controllability of every finite dimensional subsystem

XXVII IFWGP

Consider the Linear Control System:

$$i\frac{\partial\Psi}{\partial t} = \left(H_0 + c(t)H_1\right)\Psi$$

- H_0 , H_1 are self-adjoint.
- $\{\Phi_n\}_{n\in\mathbb{N}}$ O.N.B of eigenvectors of H_0
- $\Phi_n \in \mathcal{D}(H_1)$ for every $n \in \mathbb{N}$
- The linear control system is approximately controllable with piecewise constant controls if [Chambrion, Mason, Sigalotti, Boscain 2009]:

XXVII IFWGP

- $(\lambda_{n+1} \lambda_n)_{n \in \mathbb{N}}$ are \mathbb{Q} -linearly independent.
- $\langle H_1 \Phi_n, \Phi_{n+1} \rangle \neq 0$ for any $n \in \mathbb{N}$

Outline

Controllability of Quantum Systems

Quantum Control on the boundary

Time dependent Schrödinger Equation

$$i\frac{\partial\Psi}{\partial t} = H(t)\Psi$$

H(*t*) is a family of different self-adjoint extension of the same operator

 $\left(H, \mathcal{D}\left(c(t)\right)\right)$

- Advantage: There is no need to apply an external field
- Problem: Even the existence of solutions of the dynamics is compromised.

XXVII IFWGP

Example: Varying Quasiperiodic Boundary Conditions

$$H_0 = -\frac{\mathsf{d}^2}{\mathsf{d}x^2} \qquad \mathcal{D}_\alpha = \left\{ \phi \in \mathcal{L}^2 \Big| \| \frac{\mathsf{d}^2 \phi}{\mathsf{d}x^2} \| < \infty, \quad \begin{array}{l} \phi(0) = e^{i2\pi\alpha} \phi(2\pi) \\ \phi'(0) = e^{i2\pi\alpha} \phi'(2\pi) \end{array} \right\}$$

This is a family of self-adjoint operators depending on α

- Eigenvalues: $(n \alpha)^2$
- Eigenfunctions: $\phi_n(x) = e^{i\alpha x} e^{inx}$
- Assuming that the parameter α depends smoothly with time this is unitarily equivalent to:

$$H(t) = \left[i\frac{\mathrm{d}}{\mathrm{d}x} - \alpha(t)\right]^2 + \dot{\alpha}(t)x$$

 $\mathcal{D}_0 =$ "Periodic Boundary Conditions"

XXVII IFWGP

Example: Varying Quasiperiodic Boundary Conditions

Theorem [Balmaseda, Ibort, P.P]:

The one-dimensional Laplacian with quasi-periodic boundary conditions is approximately controllable.

XXVII IFWGP

Magnetic Laplacian on planar graphs

- One can generalise this to more general planar graphs.
- There is a correspondence between families of self-adjoint extensions of the Laplacian and Magnetic Laplacians on graphs.

References

- M. Barbero-Liñán, A. Ibort, JMPP. Boundary dynamics and topology change in quantum mechanics. Int. J. Geom. Methods in Modern Phys. **12** 156011, (2015).
- A. Ibort, JMPP. Quantum control and representation theory.
 J. Phys. A: Math. Theor. 42 205301, (2009).
- A.P. Balachandran, G. Bimonte, G. Marmo, A. Simoni. Nucl. Phys. B 446 299-214, (1995).

