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The holonomy group of a linear connection

Suppose Mm simply connected.

Let ∇ be a linear connection on M, p ∈ M and γ : [0, 1] −→ M a
curve such that γ(0) = p = γ(1).

The parallel transport along γ defines an endomorphism:
Pγ : TpM −→ TpM.

The holonomy group Holp(∇) of ∇ based at p:
{Pγ} ⊂ GL(m,R)

For all p, q ∈ M, Holp(∇) is conjugated to Holq(∇):

the holonomy group Hol(∇) of ∇.

In particular, if g is a Riemannian metric and ∇ = ∇g is the
Levi-Civita connection, then Hol(∇g ) ⊂ O(m)
(SO(m) if M is orientable).
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Riemannian holonomy

[Berger’55]: Some of the possible holonomy groups of a Riemannian,
simply connected, irreducible and nonsymmetric (M, g) are:

Hol(∇g ) ⊆ SU(n) in dimension m = 2n (Calabi-Yau);

Hol(∇g ) ⊆ G2 in dimension m = 7;

Hol(∇g ) ⊆ Spin(7) in dimension m = 8.

In these cases, the metric g is Ricci flat.

Question: “Are there Riemannian metrics g with special Hol(∇g )?”:
Affirmative answers: Bryant (1987), Bryant-Salamon (1989),

Joyce (1996), Hitchin (2001), Kovalev (2003)...
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G2-structures

A 7-dimensional manifold M has a G2-structure ⇐⇒ exists a global
3-form (fundamental form) σ ∈ Ω3(M) having the local expression

σ = e127 + e347 + e567 + e135 − e146 − e236 − e245

where {e1, . . . , e7} is a local coframe and e ij stands for e i ∧ e j .

I The metric induced by σ:

g(X ,Y )vol =
1

6
ιXσ ∧ ιYσ ∧ σ

for any X ,Y ∈ X(M).

I Volume form:

vol = e1234567

I The 4-form ψ = ∗σ:

ψ = ∗σ = e1234 + e1256 + e3456 + e1367 + e1457 + e2357 − e2467
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Fernández-Gray classification

[Fernández-Gray’82]

∇LCσ ∈ Ω1 ⊗ Ω3
7 = X .

Under the action of the group G2, X can be decomposed into 4
irreducible components

X = X1 ⊕ X2 ⊕ X3 ⊕ X4

Therefore, there exist 16 different classes of G2-structures, called
the Fernández-Gray classes. Some examples:

Type Class Conditions

Parallel P dσ = d ∗ σ = 0

Calibrated X2 dσ = 0

Cocalibrated X1 ⊕ X3 d(∗σ) = 0

Locally Conformal Parallel X4
dσ = 3τ1 ∧ σ,

d(∗σ) = 4τ1 ∧ (∗σ)

τ1 ∈ Ω1(M).
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Laplacian flow of a G2-structure
[Bryant’06] introduced the Laplacian flow (LF)

d

dt
σt = ∆tσt

where ∆ is the Hodge Laplacian ∆ = δd + dδ, with
δ : Ωp −→ Ωp−1 such that δ = (−1)p ∗ d∗.
Properties:

I

{
σt solution of (LF)

σ0 calibrated (dσ0 = 0)
=⇒ σt also calibrated.

I Laplacian flow can be considerate as the gradient flow of the
Hitchin’s volume functional.

I If there exist solution, it converges to a torsion-free (parallel)
G2-structure, i.e. Hol(∇g∞) = G2.

Results:

I [Bryant-Xu’11] Short time existence and uniqueness of
solution for compact manifolds (DeTurck’s Trick).

I [Lotay-Wei’15] Long time existence of solution starting near a
torsion free structure.

I [Fernández-Fino-Manero’16] First examples of long time
existence of solution.
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Laplacian coflow of a G2-structure

[Karigiannis-McKay-Tsui’12] introduced the Laplacian coflow (LcF)

d

dt
ψt = −∆tψt where ψ = ∗σ.

Properties:

I

{
σt solution of (LcF)

σ0 cocalibrated (d ∗ σ0 = 0)
=⇒ σt also cocalibrated.

I If there exist solution, it converges to a torsion-free (parallel)
G2-structure, i.e. Hol(∇g∞) = G2.

Results:

I Short time existence and uniqueness of solution is not known.

I [Grigorian’13] Introduced the modified Laplacian coflow and
proved short time existence and uniqueness of solution.

I [Bagaglini-Fernández-Fino’17] First examples of long time
existence of solution for coflow and modified coflow.
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Laplacian flow and coflow of a Locally
Conformal Parallel G2-structure

In [Manero-Otal-V.’17] we study the (LF) and (LcF) starting from
an LCP G2-structure.

Questions:

I There exists solution for these flows?

I The solutions remain LCP?

I Is there any correspondence between solutions?

We want to solve:


d

dt
σt = ∆tσt ,

σ0 = σ,

dσt = 3 τ1(t) ∧ σt ,

d ∗t σt = 4 τ1(t) ∧ ∗tσt .


d

dt
ψt = −∆tψt ,

ψ0 = ψ,

dψt = 4 τ1(t) ∧ ψt ,

d ∗t ψt = 3 τ1(t) ∧ ∗tψt .

Let us study them independently for a particular ansatz.
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Our ansatz
Suppose that {e1, . . . , e7} is an orthonormal local coframe in a
G2-manifold (M7, σ).

Defomation: Consider a time-dependent coframe {x1(t), . . . , x7(t)}

xk(t) = hk(t)ek ,

with hk(t) differentiable functions, hk(t) 6= 0 and hk(0) = 1.

Notation: xk ≡ xk(t).

We define a one-parameter family of G2-structures on M as:

σt = x127 + x347 + x567 + x135 − x146 − x236 − x245,

ψt = x3456 + x1256 + x1234 − x2467 + x2357 + x1457 + x1367.

In terms of the basis {e1, . . . , e7}:

σt = h127e127 + h347e347 + h567e567 + h135e135

− h146e146 − h236e236 − h245e245,

ψt = h3456e3456 + h1256e1256 + h1234e1234 − h2467e2467

+ h2357e2357 + h1457e1457 + h1367e1367,

where hijk stands for the product hi (t)hj(t)hk(t).
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LCP flow: Solving d
dtσt = ∆tσt

Our ansatz:
I xk = hk(t)ek , (hk(t) are the unknowns!!)
I σt = x127 + x347 + x567 + x135 − x146 − x236 − x245.
I {e1, . . . , e7} is orthonormal.

Direct computations:

d

dt
σt =

∑
(i,j,k)∈I

(
h′i
hi

+
h′j

hj
+

h′k
hk

)
x ijk −

∑
(i,j,k)∈J

(
h′i
hi

+
h′j

hj
+

h′k
hk

)
x ijk ,

where I = {(127), (135), (347), (567)} and J = {(146), (236), (245)}.

I Now, σt solves the evolution equation for the 3-form, if and only if
∆ has the following expression:

∆tσt =
∑

(i,j,k)∈I
∆ijkx

ijk −
∑

(i,j,k)∈J
∆ijkx

ijk ,

where

∆ijk =
h′i
hi

+
h′j

hj
+

h′k
hk
, (i , j , k) ∈ I ∪ J .

I Moreover:
∆abc = ∆pqr ⇒ hahbhc = hphqhr .
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Example
Consider a solvmanifold (compact quotient of solvable Lie group by
lattice of maximal rank, M = G/Γ) whose Lie algebra is defined by:

I Structure equations in terms of basis {e1, . . . , e7}:

cp1 = (−e17,−e27,−e37,−e47,−e57,−e67, 0) ( de1 = −e1 ∧ e7)

I (invariant) LCP G2-structure:

σ0 = e127 + e347 + e567 + e135 − e146 − e236 − e245.

I In terms of basis xk = hk(t)ek :

cp1 =

(
− 1

h7
x17,− 1

h7
x27,− 1

h7
x37,− 1

h7
x47,− 1

h7
x57,− 1

h7
x67, 0

)
.

I Family of G2-structures: (We do not know if they are LCP!!)

σt = x127 + x347 + x567 + x135 − x146 − x236 − x245.

I Laplacian:

∆tσt = − 1

h2
7

[
8 (x127 + x347 + x567) + 9 (x135 − x146 − x236 − x245)

]
.
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Laplacian:

∆tσt = − 1

h2
7

8 (x127 + x347 + x567)︸ ︷︷ ︸
Group I

+9 (x135 − x146 − x236 − x245)

 .
Laplacian:

∆tσt = − 1

h2
7

8 (x127 + x347 + x567)︸ ︷︷ ︸
Group I

+9 (x135 − x146 − x236 − x245)︸ ︷︷ ︸
Group II

 .
Thus:

I ∆127 = ∆347 = ∆567 =
−8

h2
7

=⇒ h1h2h7 = h3h4h7 = h5h6h7.

I ∆135 = ∆146 = ∆236 = ∆245 =
−9

h2
7

=⇒

h1h3h5 = h1h4h6 = h2h3h6 = h2h4h5.

Solving the blue system: h1 = h2 = h3 = h4 = h5 = h6 = h(t).

The evolution equation is equivalent to the system

∆ijk =
h′i
hi

+
h′j
hj

+
h′k
hk
⇐⇒


−8

h2
7

= 2
h′

h
+

h′7
h7

−9

h2
7

= 3
h′

h

⇐⇒


−2

h2
7

=
h′7
h7

−3

h2
7

=
h′

h
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The evolution equation is equivalent to the system
−2
h2

7
=

h′7
h7

−3
h2

7
= h′

h

Solution:
=⇒ h(t) = (1− 4 t)3/4 and h7(t) = (1− 4 t)1/2.

Conclusion:

σt = (1− 4t)2(e127 + e347 + e567) + (1− 4t)
9
4 (e135 − e146 − e236 − e245)

for t ∈ (−∞, 1
4
) solves the evolution equation d

dt
σt = ∆tσt .

Moreover, can be checked that it remains LCP for any t:{
dσt = 3τ1(t) ∧ σt ,

d ∗ σt = 4τ1(t) ∧ (∗σt),
with τ1(t) = e7.

Therefore, it is a solution for the LCP Laplacian flow

Finally, observe that the metric gt remains Einstein for all
t ∈ (−∞, 1

4
) since

Ric(gt) = − 6

1− 4t
gt .
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LCP coflow: Solving d
dtψt = −∆tψt

Similarly as the LCP flow, using xk = hk(t)ek , and taking into
account that

ψt = x3456 + x1256 + x1234 − x2467 + x2357 + x1457 + x1367 :

d

dt
ψt =

∑
(l,m,n,o)∈K

(
h′l
hl

+
h′m
hm

+
h′n
hn

+
h′o
ho

)
x lmno −

(
h′2
h2

+
h′4
h4

+
h′6
h6

+
h′7
h7

)
x2467,

where K = {(1234), (1256), (1367), (1457), (2357), (3456)}.

I Now, σt solves the evolution equation for the 4-form, if and only if
∆ has the following expression:

∆tψt =
∑

(l,m,n,o)∈K
∆lmnox

lmno −∆2467x
2467,

where

∆lmno =
h′l
hl

+
h′m
hm

+
h′n
hn

+
h′o
ho
, (l ,m, n, o) ∈ K ∪ (2467).

I Moreover:

∆lmno = ∆pqrs ⇒ hlhmhnho = hphqhrhs .
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Solvmanifolds with an LCP G2-structure
[Chiossi-Fino’06] Obtained a family of solvmanifolds endowed with
an LCP G2-structure as a rank one solvable extension of 6-dim
nilpotent Lie groups endowed with SU(3)-structure.

cp1 =(−e17
,−e27

,−e37
,−e47

,−e57
,−e67

, 0);

cp2 =

(
−

4

3
e17 +

2

3
e36
,−e27

,−
2

3
e37
,−e47

,−e57
,−

2

3
e67
, 0

)
;

cp3 =

(
−

3

2
e17 +

1

2
e36 +

1

2
e45
,−e27

,−
3

4
e37
,−

3

4
e47
,−

3

4
e57
,−

3

4
e67
, 0

)
;

cp4 =

(
−

7

5
e17 +

2

5
e36 +

2

5
e45
,−

6

5
e27 −

2

5
e46
,−

4

5
e37
,−

3

5
e47
,−

4

5
e57
,−

3

5
e67
, 0

)
;

cp5 =

(
−

5

4
e17 +

1

2
e45
,−

5

4
e27 −

1

2
e45
,−e37

,−
1

2
e47
,−

3

4
e57
,−

3

4
e67
, 0

)
;

cp6 =

(
−

4

3
e17 +

1

3
e36 +

1

3
e45
,−

4

3
e27 +

1

3
e35 −

1

3
e46
,−

2

3
e37
,−

2

3
e47
,−

2

3
e57
,−

2

3
e67
, 0

)
;

cp7 =

(
−

6

5
e17 +

2

5
e36
,−

3

5
e27
,−

3

5
e37
,

2

5
e26 −

6

5
e47
,

2

5
e23 −

6

5
e57
,−

3

5
e67
, 0

)
;

Main result: Every 7-dimensional rank-one solvable extension of a
nilpotent Lie group with a Locally Conformal Parallel G2-structure
admits

I a long time LCP solution to the Laplacian flow.

I a long time LCP solution to the Laplacian coflow.
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More solutions to the LCP Laplacian flow &
coflow

For the rest of the cases cpi with i = {2, . . . , 7}, we consider a basis
{x1, . . . , x7} of 1-forms given by xk = hk(t)ek , and a particular type
of functions hk(t), inspired by the previous example:

flow⇒ hk(t) = (1− αt)βk , coflow⇒ hk(t) = (1− γt)δk .

cpi α (β1, . . . , β7) γ (δ1, . . . , δ7)

cp1 4
(

3
4
, 3

4
, 3

4
, 3

4
, 3

4
, 3

4
, 1

2

)
−6

(
1
3
, 1

3
, 1

3
, 1

3
, 1

3
, 1

3
, 1

2

)
cp2

10
3

(
9

10
, 4

5
, 7

10
, 4

5
, 4

5
, 7

10
, 1

2

) −16
3

(
1
4
, 5

16
, 3

8
, 5

16
, 5

16
, 3

8
, 1

2

)
cp3 3

(
1, 5

6
, 3

4
, 3

4
, 3

4
, 3

4
, 1

2

)
−5

(
1
5
, 3

10
, 7

20
, 7

20
, 7

20
, 7

20
, 1

2

)
cp4

14
5

(
1, 13

14
, 11

14
, 5

7
, 11

14
, 5

7
, 1

2

)
− 24

5

(
5

24
, 1

4
, 1

3
, 3

8
, 1

3
, 3

8
, 1

2

)
cp5 3

(
11
12
, 11

12
, 5

6
, 2

3
, 3

4
, 3

4
, 1

2

)
−5

(
1
4
, 1

4
, 3

10
, 2

5
, 7

20
, 7

20
, 1

2

)
cp6

8
3

(
1, 1, 3

4
, 3

4
, 3

4
, 3

4
, 1

2

)
− 14

3

(
3

14
, 3

14
, 5

14
, 5

14
, 5

14
, 5

14
, 1

2

)
cp7

14
5

(
13
14
, 10

14
, 10

14
, 13

14
, 13

14
, 10

14
, 1

2

)
− 24

5

(
1
4
, 3

8
, 3

8
, 1

4
, 1

4
, 3

8
, 1

2

)
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Relation Theorem

The founded solutions for the LCP flow and the LCP coflow are
related, as the following Theorem shows:

Theorem
Let σt and σ̃t be two different families of G2 structures on cpi with
i = 1, . . . , 7, where

hk(t) = (1−α t)βk , β7 =
1

2
, and h̃k(t) = (1−γ t)δk , δ7 =

1

2
.

If the defining parameters of the functions hi (t) and h̃i (t) are
related by:

γ = α

(
2−
∑7

j=1 βj

2

)
, δk = 1

2
+ 1−2βk
−2+

∑7
j=1 βj

for k ∈ {1, . . . , 7}.

Then:

(i) σt is LCP if and only if σ̃t is LCP.

(ii) σt solves the Laplacian flow if and only if ψ̃t = ∗σ̃σ̃t solves the
Laplacian coflow.
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Open problems

We have obtained some long-time solutions to the LCP flow and
coflow.

Open problems:

I Study short time-existence and uniqueness of solution.

I Study the behavior of limit of solutions. Are they parallel
structures?

Thank you!!
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