Raquel Villacampa Gutiérrez

Motivation and G₂ background

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G₂-structure

Results

Solutions of the Laplacian flow and coflow of a Locally Conformal Parallel ${\rm G}_2\mbox{-}{\rm structure}$

Raquel Villacampa Gutiérrez

Centro Universitario de la Defensa de Zaragoza, IUMA.

Instituto Universitario de Investigación de Matemáticas y Aplicaciones Universidad Zaragoza

XXVII International Fall Workshop on Geometry and Physics

Sevilla, September 6th, 2018

Joint work with Victor Manero and Antonio Otal.

Available on arXiv:1711.08644v1

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \text{Motivation and} \\ \text{G}_2 \text{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Outline

- $1.\$ Motivation and ${\rm G}_2$ background.
- 2. Laplacian flow and coflow.
- 3. Laplacian flow and coflow of an LCP ${\rm G}_2\mbox{-structure}.$
- 4. Results.

> Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G₂-structure

Results

The holonomy group of a linear connection

Suppose M^m simply connected.

Let ∇ be a linear connection on M, $p \in M$ and $\gamma : [0,1] \longrightarrow M$ a curve such that $\gamma(0) = p = \gamma(1)$.

The parallel transport along γ defines an endomorphism: $P_{\gamma}: T_{\rho}M \longrightarrow T_{\rho}M.$

```
The holonomy group Hol_p(\nabla) of \nabla based at p: \{P_{\gamma}\} \subset GL(m, \mathbb{R})
```

```
For all p, q \in M, Hol_{\rho}(\nabla) is conjugated to Hol_{q}(\nabla):
the holonomy group Hol(\nabla) of \nabla.
```

In particular, if g is a Riemannian metric and $\nabla = \nabla^g$ is the Levi-Civita connection, then $Hol(\nabla^g) \subset O(m)$ (SO(m) if M is orientable).

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G₂-structure

Results

Riemannian holonomy

[Berger'55]: Some of the possible holonomy groups of a Riemannian, simply connected, irreducible and nonsymmetric (M, g) are:

 $Hol(\nabla^g) \subseteq SU(n)$ in dimension m = 2n (Calabi-Yau);

```
Hol(\nabla^g) \subseteq G_2 in dimension m = 7;
```

```
Hol(\nabla^g) \subseteq Spin(7) in dimension m = 8.
```

In these cases, the metric g is Ricci flat.

Question: "Are there Riemannian metrics g with special $Hol(\nabla^g)$?": Affirmative answers: Bryant (1987), Bryant-Salamon (1989), Joyce (1996), Hitchin (2001), Kovalev (2003)...

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G₂-structure

Results

$\mathrm{G}_2\text{-}\mathsf{structures}$

A 7-dimensional manifold M has a G₂-structure \iff exists a global 3-form (fundamental form) $\sigma \in \Omega^3(M)$ having the local expression

$$\sigma = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$$

where $\{e^1,\ldots,e^7\}$ is a local coframe and e^{ij} stands for $e^i \wedge e^j.$

• The metric induced by σ :

$$g(X,Y) vol = \frac{1}{6} \iota_X \sigma \wedge \iota_Y \sigma \wedge \sigma$$

for any $X, Y \in \mathfrak{X}(M)$.

Volume form:

$$vol = e^{1234567}$$

• The 4-form $\psi = *\sigma$:

 $\psi = *\sigma = e^{1234} + e^{1256} + e^{3456} + e^{1367} + e^{1457} + e^{2357} - e^{2467}$

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Fernández-Gray classification

[Fernández-Gray'82]

$$\nabla^{LC}\sigma\in\Omega^1\otimes\Omega^3_7=X.$$

Under the action of the group $\mathrm{G}_2,\ X$ can be decomposed into 4 irreducible components

$$X = X_1 \oplus X_2 \oplus X_3 \oplus X_4$$

Therefore, there exist 16 different classes of G_2 -structures, called the Fernández-Gray classes. Some examples:

Туре	Class	Conditions
Parallel	${\cal P}$	$d\sigma = d * \sigma = 0$
Calibrated	X_2	$d\sigma = 0$
Cocalibrated	$X_1 \oplus X_3$	$d(*\sigma) = 0$
Locally Conformal Parallel	X_4	$d\sigma=3\tau_1\wedge\sigma,$
Locally Comornial Faranci		$d(*\sigma) = 4\tau_1 \wedge (*\sigma)$

 $au_1 \in \Omega^1(M).$

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Laplacian flow of a $\mathrm{G}_2\text{-}\mathsf{structure}$

[Bryant'06] introduced the Laplacian flow (LF) $\left| \frac{d}{dt} \sigma_t = \Delta_t \sigma_t \right|$

where Δ is the Hodge Laplacian $\Delta = \delta d + d\delta$, with $\delta : \Omega^p \longrightarrow \Omega^{p-1}$ such that $\delta = (-1)^p * d*$.

Properties:

- $\bullet \begin{cases} \sigma_t \text{ solution of (LF)} \\ \sigma_0 \text{ calibrated } (d\sigma_0 = 0) \end{cases} \implies \sigma_t \text{ also calibrated.}$
- Laplacian flow can be considerate as the gradient flow of the Hitchin's volume functional.
- If there exist solution, it converges to a torsion-free (parallel) G₂-structure, i.e. Hol(∇^{g∞}) = G₂.

Results:

- [Bryant-Xu'11] Short time existence and uniqueness of solution for compact manifolds (DeTurck's Trick).
- [Lotay-Wei'15] Long time existence of solution starting near a torsion free structure.
- [Fernández-Fino-Manero'16] First examples of long time existence of solution.

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Laplacian coflow of a $\mathrm{G}_2\mbox{-}\mathsf{structure}$

[Karigiannis-McKay-Tsui'12] introduced the Laplacian coflow (LcF) $\boxed{\frac{d}{dt}\psi_t = -\Delta_t\psi_t} \text{ where } \psi = *\sigma.$

Properties:

- $\bullet \begin{cases} \sigma_t \text{ solution of (LcF)} \\ \sigma_0 \text{ cocalibrated } (d * \sigma_0 = 0) \end{cases} \implies \sigma_t \text{ also cocalibrated.}$
- ▶ If there exist solution, it converges to a torsion-free (parallel) G_2 -structure, i.e. $Hol(\nabla^{g_{\infty}}) = G_2$.

Results:

- Short time existence and uniqueness of solution is not known.
- ► [Grigorian'13] Introduced the modified Laplacian coflow and proved short time existence and uniqueness of solution.
- [Bagaglini-Fernández-Fino'17] First examples of long time existence of solution for coflow and modified coflow.

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Laplacian flow and coflow of a Locally Conformal Parallel G_2 -structure

In [Manero-Otal-V.'17] we study the (LF) and (LcF) starting from an LCP $\mathsf{G}_2\text{-structure}.$

Questions:

- There exists solution for these flows?
- The solutions remain LCP?
- Is there any correspondence between solutions?

We want to solve:

 $\begin{cases} \frac{d}{dt}\sigma_t = \Delta_t \sigma_t, & \\ \sigma_0 = \sigma, & \\ d\sigma_t = 3\tau_1(t) \wedge \sigma_t, & \\ d *_t \sigma_t = 4\tau_1(t) \wedge *_t \sigma_t. & \end{cases} \begin{cases} \frac{d}{dt}\psi_t = -\Delta_t\psi_t, \\ \psi_0 = \psi, \\ d\psi_t = 4\tau_1(t) \wedge \psi_t, \\ d *_t \psi_t = 3\tau_1(t) \wedge *_t\psi_t. \end{cases}$

Let us study them independently for a particular ansatz.

> Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Our ansatz

Suppose that $\{e^1, \ldots, e^7\}$ is an orthonormal local coframe in a G_2 -manifold (M^7, σ) .

Defomation: Consider a time-dependent coframe $\{x^{1}(t), \dots, x^{7}(t)\}$ $x^{k}(t) = h_{k}(t)e^{k}$,

with $h_k(t)$ differentiable functions, $h_k(t) \neq 0$ and $h_k(0) = 1$. Notation: $x^k \equiv x^k(t)$.

We define a one-parameter family of G_2 -structures on M as:

$$\begin{split} \sigma_t &= x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}, \\ \psi_t &= x^{3456} + x^{1256} + x^{1234} - x^{2467} + x^{2357} + x^{1457} + x^{1367}. \end{split}$$
 In terms of the basis $\{e^1, \dots, e^7\}$:

$$\sigma_t = h_{127}e^{127} + h_{347}e^{347} + h_{567}e^{567} + h_{135}e^{135} - h_{146}e^{146} - h_{236}e^{236} - h_{245}e^{245},$$

$$\begin{split} \psi_t &= h_{3456} e^{3456} + h_{1256} e^{1256} + h_{1234} e^{1234} - h_{2467} e^{2467} \\ &+ h_{2357} e^{2357} + h_{1457} e^{1457} + h_{1367} e^{1367}, \end{split}$$
 where h_{ijk} stands for the product $h_i(t)h_j(t)h_k(t)$.

> Raquel Villacampa Gutiérrez

 $\begin{array}{l} \text{Motivation and} \\ \mathrm{G}_2 \text{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

LCP flow: Solving $\frac{d}{dt}\sigma_t = \Delta_t \sigma_t$

Our ansatz:

• $x^{k} = h_{k}(t)e^{k}$, $(h_{k}(t) \text{ are the unknowns!!})$ • $\sigma_{t} = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}$. • $\{e^{1}, \dots, e^{7}\}$ is orthonormal.

Direct computations:

$$\frac{d}{dt}\sigma_t = \sum_{(i,j,k)\in\mathcal{I}} \left(\frac{h'_i}{h_i} + \frac{h'_j}{h_j} + \frac{h'_k}{h_k}\right) x^{ijk} - \sum_{(i,j,k)\in\mathcal{J}} \left(\frac{h'_i}{h_i} + \frac{h'_j}{h_j} + \frac{h'_k}{h_k}\right) x^{ijk},$$

where $\mathcal{I} = \{(127), (135), (347), (567)\}$ and $\mathcal{J} = \{(146), (236), (245)\}.$

Now, σ_t solves the evolution equation for the 3-form, if and only if Δ has the following expression:

$$\Delta_t \sigma_t = \sum_{(i,j,k) \in \mathcal{I}} \Delta_{ijk} x^{ijk} - \sum_{(i,j,k) \in \mathcal{J}} \Delta_{ijk} x^{ijk}$$

where

$$\Delta_{ijk} = rac{h'_i}{h_i} + rac{h'_j}{h_j} + rac{h'_k}{h_k}, \quad (i,j,k) \in \mathcal{I} \cup \mathcal{J}.$$

Moreover:

$$\Delta_{abc} = \Delta_{pqr} \Rightarrow h_a h_b h_c = h_p h_q h_r.$$

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ G_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Example

Consider a solvmanifold (compact quotient of solvable Lie group by lattice of maximal rank, $M = G/\Gamma$) whose Lie algebra is defined by:

• Structure equations in terms of basis $\{e^1, \ldots, e^7\}$:

$$\mathfrak{cp}_1 = \left(-e^{17}, -e^{27}, -e^{37}, -e^{47}, -e^{57}, -e^{67}, 0\right) \quad \left(\leadsto \ de^1 = -e^1 \wedge e^7 \right)$$

► (invariant) LCP G₂-structure:

$$\sigma_0 = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}.$$

• In terms of basis
$$x^k = h_k(t)e^k$$
:

$$\mathfrak{cp}_1 = \left(-\frac{1}{h_7} x^{17}, -\frac{1}{h_7} x^{27}, -\frac{1}{h_7} x^{37}, -\frac{1}{h_7} x^{47}, -\frac{1}{h_7} x^{57}, -\frac{1}{h_7} x^{67}, 0 \right)$$

▶ Family of G₂-structures: (We do not know if they are LCP!!)

$$\sigma_t = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}$$

Laplacian:

$$\Delta_t \sigma_t = -\frac{1}{h_7^2} \left[8 \left(x^{127} + x^{347} + x^{567} \right) + 9 \left(x^{135} - x^{146} - x^{236} - x^{245} \right) \right]_{12/19}.$$

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Example

Laplacian:

$$\Delta_t \sigma_t = -\frac{1}{h_7^2} \left[8 \underbrace{(x^{127} + x^{347} + x^{567})}_{\text{Group I}} + 9 (x^{135} - x^{146} - x^{236} - x^{245}) \right]$$

Laplacian:

$$\Delta_t \sigma_t = -\frac{1}{h_7^2} \left[8 \underbrace{(x^{127} + x^{347} + x^{567})}_{\text{Group I}} + 9 \underbrace{(x^{135} - x^{146} - x^{236} - x^{245})}_{\text{Group II}} \right]$$

Thus:

•
$$\Delta_{127} = \Delta_{347} = \Delta_{567} = \frac{-8}{h_7^2} \Longrightarrow h_1 h_2 h_7 = h_3 h_4 h_7 = h_5 h_6 h_7.$$

• $\Delta_{135} = \Delta_{146} = \Delta_{236} = \Delta_{245} = \frac{-9}{h_7^2} \Longrightarrow h_1 h_3 h_5 = h_1 h_4 h_6 = h_2 h_3 h_6 = h_2 h_4 h_5.$

Solving the blue system: $h_1 = h_2 = h_3 = h_4 = h_5 = h_6 = h(t)$.

The evolution equation is equivalent to the system

.

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ G_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Example

The evolution equation is equivalent to the system

$$\begin{cases} \frac{-2}{h_7^2} = \frac{h_7'}{h_7} \\ \frac{-3}{h_7^2} = \frac{h'}{h} \end{cases} \xrightarrow{\text{Solution:}} h(t) = (1 - 4t)^{3/4} \text{ and } h_7(t) = (1 - 4t)^{1/2}. \end{cases}$$

Conclusion:

 $\sigma_t = (1-4t)^2 (e^{127} + e^{347} + e^{567}) + (1-4t)^{\frac{9}{4}} (e^{135} - e^{146} - e^{236} - e^{245})$ for $t \in (-\infty, \frac{1}{4})$ solves the evolution equation $\frac{d}{dt}\sigma_t = \Delta_t\sigma_t$. Moreover, can be checked that it remains LCP for any t: $\int d\sigma_t = 3\tau_1(t) \wedge \sigma_t,$ with $= (t) = \sqrt{2}$

$$d\sigma_t = 3\tau_1(t) \wedge \sigma_t,$$

 $d * \sigma_t = 4\tau_1(t) \wedge (*\sigma_t),$ with $\tau_1(t) = e^7$

Therefore, it is a solution for the LCP Laplacian flow

Finally, observe that the metric g_t remains Einstein for all $t \in (-\infty, \frac{1}{4})$ since

$$\operatorname{Ric}(g_t) = -rac{6}{1-4t}g_t.$$
 14/19

> Raquel Villacampa Gutiérrez

 $\begin{array}{l} \text{Motivation and} \\ \text{G}_2 \text{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

LCP coflow: Solving $\frac{d}{dt}\psi_t = -\Delta_t\psi_t$

Similarly as the LCP flow, using $x^k = h_k(t)e^k$, and taking into account that

where $\mathcal{K} = \{(1234), (1256), (1367), (1457), (2357), (3456)\}.$

Now, σ_t solves the evolution equation for the 4-form, if and only if Δ has the following expression:

$$\Delta_t \psi_t = \sum_{(l,m,n,o) \in \mathcal{K}} \Delta_{lmno} x^{lmno} - \Delta_{2467} x^{2467},$$

where

4

$$\Delta_{lmno} = \frac{h'_l}{h_l} + \frac{h'_m}{h_m} + \frac{h'_n}{h_n} + \frac{h'_o}{h_o}, \quad (l, m, n, o) \in \mathcal{K} \cup (2467).$$

Moreover:

$$\Delta_{lmno} = \Delta_{pqrs} \Rightarrow h_l h_m h_n h_o = h_p h_q h_r h_s.$$

15/19

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \text{Motivation and} \\ \mathrm{G}_2 \text{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

Solvmanifolds with an LCP $\operatorname{G}_2\operatorname{-structure}$

[Chiossi-Fino'06] Obtained a family of solvmanifolds endowed with an LCP G_2 -structure as a rank one solvable extension of 6-dim nilpotent Lie groups endowed with SU(3)-structure.

$$\begin{split} \mathfrak{cp}_1 = & (-\mathbf{e}^{17}, -\mathbf{e}^{27}, -\mathbf{e}^{37}, -\mathbf{e}^{47}, -\mathbf{e}^{57}, -\mathbf{e}^{67}, 0); \\ \mathfrak{cp}_2 = & \left(-\frac{4}{3}\mathbf{e}^{17} + \frac{2}{3}\mathbf{e}^{36}, -\mathbf{e}^{27}, -\frac{2}{3}\mathbf{e}^{37}, -\mathbf{e}^{47}, -\mathbf{e}^{57}, -\frac{2}{3}\mathbf{e}^{67}, 0\right); \\ \mathfrak{cp}_3 = & \left(-\frac{3}{2}\mathbf{e}^{17} + \frac{1}{2}\mathbf{e}^{36} + \frac{1}{2}\mathbf{e}^{45}, -\mathbf{e}^{27}, -\frac{3}{4}\mathbf{e}^{37}, -\frac{3}{4}\mathbf{e}^{47}, -\frac{3}{4}\mathbf{e}^{57}, -\frac{3}{4}\mathbf{e}^{67}, 0\right); \\ \mathfrak{cp}_4 = & \left(-\frac{7}{5}\mathbf{e}^{17} + \frac{2}{5}\mathbf{e}^{36} + \frac{2}{5}\mathbf{e}^{45}, -\frac{6}{5}\mathbf{e}^{27} - \frac{2}{5}\mathbf{e}^{46}, -\frac{4}{5}\mathbf{e}^{37}, -\frac{3}{5}\mathbf{e}^{47}, -\frac{4}{5}\mathbf{e}^{57}, -\frac{3}{5}\mathbf{e}^{67}, 0\right); \\ \mathfrak{cp}_5 = & \left(-\frac{5}{4}\mathbf{e}^{17} + \frac{1}{2}\mathbf{e}^{45}, -\frac{5}{4}\mathbf{e}^{27} - \frac{1}{2}\mathbf{e}^{45}, -\mathbf{e}^{37}, -\frac{1}{2}\mathbf{e}^{47}, -\frac{3}{4}\mathbf{e}^{57}, -\frac{3}{4}\mathbf{e}^{67}, 0\right); \\ \mathfrak{cp}_6 = & \left(-\frac{4}{3}\mathbf{e}^{17} + \frac{1}{3}\mathbf{e}^{36} + \frac{1}{3}\mathbf{e}^{45}, -\frac{4}{3}\mathbf{e}^{27} + \frac{1}{3}\mathbf{e}^{35} - \frac{1}{3}\mathbf{e}^{46}, -\frac{2}{3}\mathbf{e}^{37}, -\frac{2}{3}\mathbf{e}^{47}, -\frac{2}{3}\mathbf{e}^{57}, -\frac{2}{3}\mathbf{e}^{67}, 0\right); \\ \mathfrak{cp}_7 = & \left(-\frac{6}{5}\mathbf{e}^{17} + \frac{2}{5}\mathbf{e}^{36}, -\frac{3}{5}\mathbf{e}^{27}, -\frac{3}{5}\mathbf{e}^{37}, \frac{2}{5}\mathbf{e}^{26} - \frac{6}{5}\mathbf{e}^{47}, \frac{2}{5}\mathbf{e}^{23} - \frac{6}{5}\mathbf{e}^{57}, -\frac{3}{5}\mathbf{e}^{67}, 0\right); \end{split}$$

Main result: Every 7-dimensional rank-one solvable extension of a nilpotent Lie group with a Locally Conformal Parallel $\rm G_2\text{-}structure$ admits

- ▶ a long time LCP solution to the Laplacian flow.
- a long time LCP solution to the Laplacian coflow.

> Raquel Villacampa Gutiérrez

 $\begin{array}{l} \text{Motivation and} \\ \mathrm{G}_2 \text{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2 -structure

Results

More solutions to the LCP Laplacian flow & coflow

For the rest of the cases cp_i with $i = \{2, ..., 7\}$, we consider a basis $\{x^1, ..., x^7\}$ of 1-forms given by $x^k = h_k(t)e^k$, and a particular type of functions $h_k(t)$, inspired by the previous example:

flow $\Rightarrow h_k(t) = (1 - \alpha t)^{\beta_k}$, coflow $\Rightarrow h_k(t) = (1 - \gamma t)^{\delta_k}$.

nd					
	\mathfrak{cp}_i	α	(eta_1,\ldots,eta_7)	γ	$(\delta_1,\ldots,\delta_7)$
V	\mathfrak{cp}_1	4	$\left(\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{3}{4},\frac{1}{2}\right)$	-6	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{2}\right)$
v a	\mathfrak{cp}_2	$\frac{10}{3}$	$\left(\frac{9}{10}, \frac{4}{5}, \frac{7}{10}, \frac{4}{5}, \frac{4}{5}, \frac{7}{10}, \frac{1}{2}\right)$	$\frac{-16}{3}$	$\left(\frac{1}{4}, \frac{5}{16}, \frac{3}{8}, \frac{5}{16}, \frac{5}{16}, \frac{3}{8}, \frac{1}{2}\right)$
ture	cp ₃	3	$\left(1,rac{5}{6},rac{3}{4},rac{3}{4},rac{3}{4},rac{3}{4},rac{3}{4},rac{1}{2} ight)$	-5	$\left(\frac{1}{5}, \frac{3}{10}, \frac{7}{20}, \frac{7}{20}, \frac{7}{20}, \frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right)$
	cp4	$\frac{14}{5}$	$\big(1, \tfrac{13}{14}, \tfrac{11}{14}, \tfrac{5}{7}, \tfrac{11}{14}, \tfrac{5}{7}, \tfrac{1}{2}\big)$	$-\frac{24}{5}$	$\left(\frac{5}{24}, \frac{1}{4}, \frac{1}{3}, \frac{3}{8}, \frac{1}{3}, \frac{3}{8}, \frac{1}{2}\right)$
	\mathfrak{cp}_5	3	$\left(\frac{11}{12}, \frac{11}{12}, \frac{5}{6}, \frac{2}{3}, \frac{3}{4}, \frac{3}{4}, \frac{1}{2}\right)$	-5	$\left(\frac{1}{4}, \frac{1}{4}, \frac{3}{10}, \frac{2}{5}, \frac{7}{20}, \frac{7}{20}, \frac{1}{2}\right)$
	\mathfrak{cp}_6	<u>8</u> 3	$\left(1,1,rac{3}{4},rac{3}{4},rac{3}{4},rac{3}{4},rac{3}{4},rac{1}{2} ight)$	$-\frac{14}{3}$	$\left(\frac{3}{14}, \frac{3}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{1}{2}\right)$
	cp7	$\frac{14}{5}$	$\left(\frac{13}{14}, \frac{10}{14}, \frac{10}{14}, \frac{13}{14}, \frac{13}{14}, \frac{13}{14}, \frac{10}{14}, \frac{1}{2}\right)$	$-\frac{24}{5}$	$\left(\frac{1}{4}, \frac{3}{8}, \frac{3}{8}, \frac{1}{4}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}\right)$

> Raquel Villacampa Gutiérrez

 $\begin{array}{l} \mbox{Motivation and} \\ {\rm G}_2 \mbox{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G₂-structure

Results

Relation Theorem

The founded solutions for the LCP flow and the LCP coflow are related, as the following Theorem shows:

Theorem

Let σ_t and $\tilde{\sigma}_t$ be two different families of G_2 structures on cp_i with i = 1, ..., 7, where

$$h_k(t)=(1-lpha\,t)^{eta_k},\quad eta_7=rac{1}{2},\quad ext{and}\quad \widetilde{h_k}(t)=(1-\gamma\,t)^{\delta_k},\quad \delta_7=rac{1}{2}$$

If the defining parameters of the functions $h_i(t)$ and $\widetilde{h_i}(t)$ are related by:

$$\gamma = \alpha\left(\frac{2-\sum_{j=1}^7\beta_j}{2}\right), \delta_k = \frac{1}{2} + \frac{1-2\beta_k}{-2+\sum_{j=1}^7\beta_j} \text{ for } k \in \{1,\ldots,7\}.$$

Then:

- (i) σ_t is LCP if and only if $\tilde{\sigma}_t$ is LCP.
- (ii) σ_t solves the Laplacian flow if and only if $\tilde{\psi}_t = *_{\tilde{\sigma}} \tilde{\sigma}_t$ solves the Laplacian coflow.

Raquel Villacampa Gutiérrez

 $\begin{array}{l} \text{Motivation and} \\ \text{G}_2 \text{ background} \end{array}$

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G₂-structure

Results

Open problems

We have obtained some long-time solutions to the LCP flow and coflow.

Open problems:

- Study short time-existence and uniqueness of solution.
- Study the behavior of limit of solutions. Are they parallel structures?

Thank you!!