Genus Integration, Abelianization and Extended Monodromy

Rui Loja Fernandes

Department of Mathematics University of Illinois at Urbana-Champaign, USA

XXVII International Fall Workshop on Geometry and Physics Sevilla, September 2018 This talk is based on:

Ivan Contreras & RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043. This talk is based on:

Ivan Contreras & RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.

Aim:

Describe an abelian groupoid attached to a Lie algebroid, a.k.a., the Hurewicz homomorphism for Lie groupoids/algebroids This talk is based on:

Ivan Contreras & RLF, "Genus Integration, Abelianization and Extended Monodromy", arXiv:1805.12043.

Aim:

Describe an abelian groupoid attached to a Lie algebroid, a.k.a., the Hurewicz homomorphism for Lie groupoids/algebroids

Plan:

- 1. Genus integration
- 2. Abelianization of Lie algebroids and Lie groupoids
- 3. Extended monodromy

p: A
ightarrow M – Lie algebroid with Lie bracket [,] and anchor ho: A
ightarrow TM

 $p: A \rightarrow M$ – Lie algebroid with Lie bracket [,] and anchor $\rho: A \rightarrow TM$

$$\Pi_1(A) = \frac{\{A \text{-paths}\}}{A \text{-homotopies}} \rightrightarrows M \quad \text{w}/p$$

 $\left\{ \begin{array}{l} A\text{-path: algebroid morphism} \\ a: TI \rightarrow A \\ \\ A\text{-homotopy: algebroid morphism} \\ h: T(I \times I) \rightarrow A \end{array} \right.$

 $p: A \rightarrow M$ – Lie algebroid with Lie bracket [,] and anchor $\rho: A \rightarrow TM$

$$\Pi_1(A) = rac{\{A \text{-paths}\}}{A \text{-homotopies}}
ightarrow M \quad \text{w}/p$$

 $\left\{ \begin{array}{l} A\text{-path: algebroid morphism} \\ a: TI \rightarrow A \\ \\ A\text{-homotopy: algebroid morphism} \\ h: T(I \times I) \rightarrow A \end{array} \right.$

p:A
ightarrow M – Lie algebroid with Lie bracket [,] and anchor ho:A
ightarrow TM

$$\Pi_1(A) = \frac{\{A \text{-paths}\}}{A \text{-homotopies}} \rightrightarrows M \quad \text{w}/$$

A-path: algebroid morphism
$$a: TI \rightarrow A$$

A-homotopy: algebroid morphism $h: T(I \times I) \rightarrow A$

Topological groupoid with structure maps:

- source: s([a]) = p(a(0));
- ▶ target: t([a]) = p(a(1));
- product: $[a] \cdot [b] = [a \circ b];$

Monodromy

For each $x \in M$:

- isotropy Lie algebra: $\mathfrak{g}_x = \ker \rho_x$;
- orbit: $\mathcal{O}_x \subset M$ such that $T_y \mathcal{O} = \operatorname{Im} \rho_y$.

and there is a monodromy map:

 $\partial_x:\pi(\mathcal{O}_x)\to\Pi_1(\mathfrak{g}_x)$

Monodromy

For each $x \in M$:

- isotropy Lie algebra: $\mathfrak{g}_x = \ker \rho_x$;
- orbit: $\mathcal{O}_x \subset M$ such that $T_y \mathcal{O} = \operatorname{Im} \rho_y$.

and there is a monodromy map:

$$\partial_x:\pi(\mathcal{O}_x)\to\Pi_1(\mathfrak{g}_x)$$

Theorem (Crainic & RLF, 2003)

The following statements are equivalent:

- (i) A integrates to some Lie groupoid;
- (ii) $\Pi_1(A)$ is a Lie groupoid;
- (iii) The monodromy groups $\mathcal{N}_x = \operatorname{Im} \partial_x$ are uniformly discrete.

Idea: Replace A-homotopy by A-homology.

Idea: Replace A-homotopy by A-homology.

Definition

An A-homology between A-paths a_0 and a_1 is a Lie algebroid map

$$h: T\Sigma \rightarrow A$$
,

where Σ is a compact surface with connected boundary $\partial\Sigma$ such that

$$h|_{\mathcal{T}(\partial\Sigma)} = a_0 \circ a_1^{-1}.$$

We denote by [[a]] the A-homology class of the A-path a.

Idea: Replace A-homotopy by A-homology.

Definition

An A-homology between A-paths a_0 and a_1 is a Lie algebroid map

$$h: T\Sigma \rightarrow A$$
,

where Σ is a compact surface with connected boundary $\partial\Sigma$ such that

$$h|_{\mathcal{T}(\partial \Sigma)} = a_0 \circ a_1^{-1}.$$

We denote by [[a]] the A-homology class of the A-path a.

Rmk. The genus of Σ is not fixed.

$$\mathcal{H}_1(A) = rac{\{A \text{-paths}\}}{A \text{-homologies}}
ightarrow M$$

$$\mathcal{H}_1(A) = \frac{\{A\text{-paths}\}}{A\text{-homologies}} \rightrightarrows M$$

Still a topological groupoid with structure maps:

• product:
$$[[a]] \cdot [[b]] = [[a \circ b]];$$

$$\mathcal{H}_1(A) = \frac{\{A\text{-paths}\}}{A\text{-homologies}} \rightrightarrows M$$

Still a topological groupoid with structure maps:

• product:
$$[[a]] \cdot [[b]] = [[a \circ b]];$$

There is a morphism of groupoids:

$$\Pi_1(A) o \mathcal{H}_1(A), \quad [a] \mapsto [[a]]$$

$$\mathcal{H}_1(A) = \frac{\{A\text{-paths}\}}{A\text{-homologies}} \rightrightarrows M$$

Still a topological groupoid with structure maps:

• target:
$$\mathbf{t}([[a]]) = p(a(1));$$

• product:
$$[[a]] \cdot [[b]] = [[a \circ b]];$$

There is a morphism of groupoids:

$$arPi_1(A) o \mathcal{H}_1(A), \quad [a] \mapsto [[a]]$$

Basic questions:

- What is the meaning of this genus integration?
- When is $\mathcal{H}_1(A)$ smooth?
- If $\mathcal{H}_1(A)$ is smooth, what is its Lie algebroid?

Definition

A Lie algebroid $A \to M$ is called **abelian** if its isotropy Lie algebras \mathfrak{g}_x , $x \in M$, are all abelian.

Definition

A Lie algebroid $A \to M$ is called **abelian** if its isotropy Lie algebras \mathfrak{g}_x , $x \in M$, are all abelian.

- 1) Abelian Lie algebras $A = \mathfrak{g}$;
- 2) Tangent bundle A = TM (more generally, foliations $A = T\mathcal{F}$);
- 3) Regular Poisson structures $A = T^*M$;
- 4) Infinitesimal actions with abelian isotropy $A = \mathfrak{g} \ltimes M$.

Definition

The **abelianization** of $A \to M$ is an abelian Lie algebroid $A^{ab} \to M$ together with a surjective morphism $p: A \to A^{ab}$ such that: for any *abelian* Lie algebroid $B \to N$ and any morphism $\phi: A \to B$:

Definition

The **abelianization** of $A \to M$ is an abelian Lie algebroid $A^{ab} \to M$ together with a surjective morphism $p: A \to A^{ab}$ such that: for any *abelian* Lie algebroid $B \to N$ and any morphism $\phi: A \to B$:

Remarks.

• A and A^{ab} have the same orbit foliation;

For any
$$x \in M$$
, $[\mathfrak{g}_x, \mathfrak{g}_x] \subset \ker p_x$.

Examples

1) The abelianization of a transitive Lie algebroid $A \rightarrow M$ is:

 $A^{\mathrm{ab}} = A/[\mathfrak{g},\mathfrak{g}], \quad \text{where} \quad [\mathfrak{g},\mathfrak{g}]_{\mathsf{x}} := [\mathfrak{g}_{\mathsf{x}},\mathfrak{g}_{\mathsf{x}}].$

Examples

1) The abelianization of a transitive Lie algebroid $A \rightarrow M$ is:

$$A^{\mathrm{ab}} = A/[\mathfrak{g},\mathfrak{g}], \quad \text{where} \quad [\mathfrak{g},\mathfrak{g}]_x := [\mathfrak{g}_x,\mathfrak{g}_x].$$

2) The bundle of Lie algebras $A = \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$ with Lie bracket $[e_1, e_2] = xe_2$ has abelianization the trivial line bundle:

$$A^{\mathrm{ab}} = \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad [\ , \] = 0.$$

Examples

1) The abelianization of a transitive Lie algebroid $A \rightarrow M$ is:

$$A^{\mathrm{ab}} = A/[\mathfrak{g},\mathfrak{g}], \quad \text{where} \quad [\mathfrak{g},\mathfrak{g}]_{\mathsf{x}} := [\mathfrak{g}_{\mathsf{x}},\mathfrak{g}_{\mathsf{x}}].$$

2) The bundle of Lie algebras $A = \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$ with Lie bracket $[e_1, e_2] = xe_2$ has abelianization the trivial line bundle:

$$A^{\mathrm{ab}} = \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad [\ , \] = 0.$$

3) The action algebroid $A = \mathfrak{so}(3) \ltimes \mathbb{R}^3 \to \mathbb{R}^3$ does not have an abelianization.

Examples

1) The abelianization of a transitive Lie algebroid $A \rightarrow M$ is:

 $A^{\mathrm{ab}} = A/[\mathfrak{g},\mathfrak{g}], \quad \text{where} \quad [\mathfrak{g},\mathfrak{g}]_{x} := [\mathfrak{g}_{x},\mathfrak{g}_{x}].$

2) The bundle of Lie algebras $A = \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$ with Lie bracket $[e_1, e_2] = xe_2$ has abelianization the trivial line bundle:

$$\mathcal{A}^{\mathrm{ab}} = \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad [\ , \] = 0.$$

3) The action algebroid $A = \mathfrak{so}(3) \ltimes \mathbb{R}^3 \to \mathbb{R}^3$ does not have an abelianization.

Open problem: Characterize the Lie algebroids which have an abelianization.

Abelianization of Lie groupoids

Definition

A Lie groupoid $\mathcal{G} \rightrightarrows M$ is called **abelian** if its isotropy Lie groups \mathcal{G}_x , $x \in M$, are all abelian.

Abelianization of Lie groupoids

Definition

A Lie groupoid $\mathcal{G} \rightrightarrows M$ is called **abelian** if its isotropy Lie groups \mathcal{G}_x , $x \in M$, are all abelian.

Definition

The **abelianization** of a groupoid $\mathcal{G} \rightrightarrows M$ is an abelian groupoid $\mathcal{G}^{\mathrm{ab}} \rightarrow M$ together with a surjective groupoid morphism $p: \mathcal{G} \rightarrow \mathcal{G}^{\mathrm{ab}}$ such that for any *abelian* groupoid $\mathcal{H} \rightrightarrows N$

$$\begin{array}{c|c} \mathcal{G} & \xrightarrow{\Phi} \mathcal{H} \\ \downarrow^{\rho} & \swarrow^{\pi} \\ \mathcal{G}^{ab} \end{array}$$

Abelianization of Lie groupoids

Definition

A Lie groupoid $\mathcal{G} \rightrightarrows M$ is called **abelian** if its isotropy Lie groups \mathcal{G}_x , $x \in M$, are all abelian.

Definition

The **abelianization** of a groupoid $\mathcal{G} \rightrightarrows M$ is an abelian groupoid $\mathcal{G}^{\mathrm{ab}} \rightarrow M$ together with a surjective groupoid morphism $p: \mathcal{G} \rightarrow \mathcal{G}^{\mathrm{ab}}$ such that for any *abelian* groupoid $\mathcal{H} \rightrightarrows N$

$$\begin{array}{c} \mathcal{G} \xrightarrow{\Phi} \mathcal{H} \\ \downarrow^{\rho} \downarrow^{\checkmark} \stackrel{\checkmark}{\underset{\exists' \overline{\Phi}}{\overset{\checkmark}{\exists' \overline{\Phi}}}} \mathcal{H} \end{array}$$

Rmk. The terms "groupoid" and "groupoid morphism" should be interpreted in one of the categories **Sets**, **Top** or **Man**.

If G is a Lie group:

If G is a Lie group:

set theoretical abelianization:

$$G^{\mathrm{ab}} = G/(G,G).$$

But in general this fails to be a Lie group, since (G, G) may not be a closed subgroup!

If G is a Lie group:

$$G^{\mathrm{ab}} = G/(G,G).$$

But in general this fails to be a Lie group, since (G, G) may not be a closed subgroup!

the topological and smooth abelianization:

$$G^{\mathrm{ab}} = G/\overline{(G,G)}.$$

In general, the Lie algebra of G^{ab} is $\subsetneq \mathfrak{g}^{\mathrm{ab}}$.

If G is a Lie group:

$$G^{\mathrm{ab}} = G/(G,G).$$

But in general this fails to be a Lie group, since (G, G) may not be a closed subgroup!

the topological and smooth abelianization:

$$G^{\mathrm{ab}} = G/\overline{(G,G)}.$$

In general, the Lie algebra of G^{ab} is $\subsetneq \mathfrak{g}^{ab}$.

However, when G is 1-connected, we have $\overline{(G,G)} = (G,G)$ and G^{ab} is the 1-connected Lie group integrating \mathfrak{g}^{ab} .

The genus integration $\mathcal{H}_1(A)$ is the set-theoretical abelianization of $\Pi_1(A)$:

The genus integration $\mathcal{H}_1(A)$ is the set-theoretical abelianization of $\Pi_1(A)$:

Theorem

For any Lie algebroid $A \rightarrow M$:

 $\mathcal{H}_1(A) = \Pi_1(A)/(\Pi_1(A),\Pi_1(A)),$

where $(\Pi_1(A), \Pi_1(A)) = \bigcup_{x \in M} (\Pi_1(A)_x, \Pi_1(A)_x)$ is the group bundle formed by the isotropies of $\Pi_1(A)$.

The genus integration $\mathcal{H}_1(A)$ is the set-theoretical abelianization of $\Pi_1(A)$:

Theorem

For any Lie algebroid $A \rightarrow M$:

 $\mathcal{H}_1(A) = \Pi_1(A)/(\Pi_1(A),\Pi_1(A)),$

where $(\Pi_1(A), \Pi_1(A)) = \bigcup_{x \in M} (\Pi_1(A)_x, \Pi_1(A)_x)$ is the group bundle formed by the isotropies of $\Pi_1(A)$.

Corollary

If $\mathcal{H}_1(A)$ is smooth, then its Lie algebroid is $A^{\rm ab}$. In particular, in this case $A^{\rm ab}$ is integrable.

The genus integration $\mathcal{H}_1(A)$ is the set-theoretical abelianization of $\Pi_1(A)$:

Theorem

For any Lie algebroid $A \rightarrow M$:

 $\mathcal{H}_1(A) = \Pi_1(A)/(\Pi_1(A),\Pi_1(A)),$

where $(\Pi_1(A), \Pi_1(A)) = \bigcup_{x \in M} (\Pi_1(A)_x, \Pi_1(A)_x)$ is the group bundle formed by the isotropies of $\Pi_1(A)$.

Corollary

If $\mathcal{H}_1(A)$ is smooth, then its Lie algebroid is $A^{\rm ab}$. In particular, in this case $A^{\rm ab}$ is integrable.

Remark. $\mathcal{H}_1(A)$ need to be source 1-connected!

- 1) For a Lie algebra $A = \mathfrak{g}$:
 - $\Pi_1(\mathfrak{g}) = \tilde{G}$ is smooth);
 - $\mathcal{H}_1(\mathfrak{g}) = \tilde{G}/(\tilde{G}, \tilde{G}) = \Pi_1(\mathfrak{g}^{\mathrm{ab}})$ is smooth.

- 1) For a Lie algebra $A = \mathfrak{g}$:
 - $\Pi_1(\mathfrak{g}) = \tilde{G}$ is smooth);
 - $\mathcal{H}_1(\mathfrak{g}) = \tilde{G}/(\tilde{G},\tilde{G}) = \Pi_1(\mathfrak{g}^{\mathrm{ab}})$ is smooth.
- 2) For the tangent Lie algebroid $A = TM = A^{ab}$:
 - $\Pi_1(TM) = (ilde{M} imes ilde{M}) / \pi_1(M)$, is smooth;
 - $\mathcal{H}_1(TM) = (\bar{M} \times \bar{M})/\mathcal{H}_1(M)$ is smooth $(\bar{M} = \frac{\tilde{M}}{(\pi_1(M), \pi_1(M))});$

- 1) For a Lie algebra $A = \mathfrak{g}$:
 - $\Pi_1(\mathfrak{g}) = \tilde{G}$ is smooth);
 - $\mathcal{H}_1(\mathfrak{g}) = \tilde{G}/(\tilde{G},\tilde{G}) = \Pi_1(\mathfrak{g}^{\mathrm{ab}})$ is smooth.
- 2) For the tangent Lie algebroid $A = TM = A^{ab}$:
 - $\Pi_1(\mathit{TM}) = (ilde{M} imes ilde{M}) / \pi_1(\mathit{M})$, is smooth;
 - $\mathcal{H}_1(TM) = (\bar{M} \times \bar{M})/\mathcal{H}_1(M)$ is smooth $(\bar{M} = \frac{\tilde{M}}{(\pi_1(M), \pi_1(M))});$
- 3) For a foliation $A = T\mathcal{F} = A^{ab}$:
 - $\Pi_1(TM)$ is smooth;
 - $\mathcal{H}_1(TM)$ is smooth iff the holonomy is abelian;

- 1) For a Lie algebra $A = \mathfrak{g}$:
 - $\Pi_1(\mathfrak{g}) = \tilde{G}$ is smooth);
 - $\mathcal{H}_1(\mathfrak{g}) = \tilde{G}/(\tilde{G}, \tilde{G}) = \Pi_1(\mathfrak{g}^{\mathrm{ab}})$ is smooth.
- 2) For the tangent Lie algebroid $A = TM = A^{ab}$:
 - $\Pi_1(\mathit{TM}) = (ilde{M} imes ilde{M}) / \pi_1(\mathit{M})$, is smooth;
 - $\mathcal{H}_1(TM) = (\bar{M} \times \bar{M})/\mathcal{H}_1(M)$ is smooth $(\bar{M} = \frac{\tilde{M}}{(\pi_1(M), \pi_1(M))});$
- 3) For a foliation $A = T\mathcal{F} = A^{ab}$:
 - $\Pi_1(TM)$ is smooth;
 - $\mathcal{H}_1(TM)$ is smooth iff the holonomy is abelian;
- 4) For the action algebroid $A = \mathfrak{so}(3) \ltimes \mathbb{R}^3$ there is no A^{ab} and:
 - $\Pi_1(TM) = SU(2) \ltimes \mathbb{R}^3$ is smooth;
 - $\mathcal{H}_1(\mathit{TM}) = \mathit{SO}(3) \ltimes (\mathbb{R}^3 \{0\}) \cup \{0\}$ is not smooth;

- 1) For a Lie algebra $A = \mathfrak{g}$:
 - $\Pi_1(\mathfrak{g}) = \tilde{G}$ is smooth);
 - $\mathcal{H}_1(\mathfrak{g}) = \tilde{G}/(\tilde{G},\tilde{G}) = \varPi_1(\mathfrak{g}^{\mathrm{ab}})$ is smooth.
- 2) For the tangent Lie algebroid $A = TM = A^{ab}$:
 - $\Pi_1(\mathit{TM}) = (ilde{M} imes ilde{M}) / \pi_1(\mathit{M})$, is smooth;
 - $\mathcal{H}_1(TM) = (\bar{M} \times \bar{M})/\mathcal{H}_1(M)$ is smooth $(\bar{M} = \frac{\tilde{M}}{(\pi_1(M), \pi_1(M))});$

3) For a foliation
$$A = T\mathcal{F} = A^{ab}$$
:

- $\Pi_1(TM)$ is smooth;
- $\mathcal{H}_1(TM)$ is smooth iff the holonomy is abelian;
- 4) For the action algebroid $A = \mathfrak{so}(3) \ltimes \mathbb{R}^3$ there is no A^{ab} and:

-
$$\Pi_1(TM) = SU(2) \ltimes \mathbb{R}^3$$
 is smooth;

- $\mathcal{H}_1(TM) = SO(3) \ltimes (\mathbb{R}^3 \{0\}) \cup \{0\}$ is not smooth;
- 5) For the bundle of Lie algebras $A = \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}$, w/ $[e_1, e_2] = xe_2$:

-
$$\Pi_1(A) = \mathbb{R} \ltimes \mathbb{R}^2 \to R$$
 with product
 $(x, a_1, b_1) \cdot (x, a_2, b_2) = (x, a_1 a_2, a_1^x b_2 + b_1);$
- $\Pi_1(A)^{ab} = \mathbb{R} \ltimes \mathbb{R} \to R;$
- $\mathcal{H}_1(A) = \Pi_1(A)^{ab} \cup \{0\} \times \mathbb{R}^2$ is not smooth;

Question. When is $\mathcal{H}_1(A)$ smooth?

Question. When is $\mathcal{H}_1(A)$ smooth?

Consider the restriction $A_{\mathcal{O}}$ to an orbit \mathcal{O} , and choose a splitting $\sigma: \mathcal{TO} \to A_{\mathcal{O}}^{ab}$ for the short exact sequence of the abelianization:

$$0 \longrightarrow \mathfrak{g}_{\mathcal{O}}^{\mathrm{ab}} \longrightarrow A_{\mathcal{O}}^{\mathrm{ab}} \xrightarrow[\sigma]{\rho} T\mathcal{O} \longrightarrow 0,$$

Question. When is $\mathcal{H}_1(A)$ smooth?

Consider the restriction $A_{\mathcal{O}}$ to an orbit \mathcal{O} , and choose a splitting $\sigma: \mathcal{TO} \to A_{\mathcal{O}}^{ab}$ for the short exact sequence of the abelianization:

$$0 \longrightarrow \mathfrak{g}_{\mathcal{O}}^{\mathrm{ab}} \longrightarrow A_{\mathcal{O}}^{\mathrm{ab}} \xrightarrow[\sigma]{\rho} T\mathcal{O} \longrightarrow 0,$$

Then:

• curvature 2-form
$$\Omega \in \Omega^2(\mathcal{O},\mathfrak{g}^{\mathrm{ab}}_\mathcal{O})$$
:

$$\Omega(X,Y) := [\sigma(X),\sigma(Y)] - \sigma([X,Y]).$$

▶ flat connection ∇ on the bundle $\mathfrak{g}_{\mathcal{O}}^{ab} \to \mathcal{O}$:

$$\nabla_{X}\alpha := [\sigma(X), \alpha].$$

Remark. Two different splittings induce the same connection and the same curvature 2-form.

Let $q: \tilde{\mathcal{O}}^h \to \mathcal{O}$ be the holonomy cover of \mathcal{O} relative to ∇ , so $q^* \mathfrak{g}^{ab}_{\mathcal{O}} \to \tilde{\mathcal{O}}^h$ is trivial with a canonical trivialization.

Let $q: \tilde{\mathcal{O}}^h \to \mathcal{O}$ be the holonomy cover of \mathcal{O} relative to ∇ , so $q^* \mathfrak{g}^{\mathrm{ab}}_{\mathcal{O}} \to \tilde{\mathcal{O}}^h$ is trivial with a canonical trivialization.

Definition

The **extended monodromy homomorphism** at $x \in M$ is the homomorphism of abelian groups:

$$\partial_x^{\mathrm{ext}}: H_2(\tilde{\mathcal{O}}^h) o \Pi_1(\mathfrak{g}_x^{\mathrm{ab}}), \quad [\gamma] \mapsto \exp\left(\int_\gamma q^*\Omega\right).$$

Its image $\mathcal{N}_x^{\text{ext}}(A) \subset \Pi_1(\mathfrak{g}_x^{\text{ab}})$ is the **extended monodromy group** at *x*.

Let $q: \tilde{\mathcal{O}}^h \to \mathcal{O}$ be the holonomy cover of \mathcal{O} relative to ∇ , so $q^* \mathfrak{g}^{\mathrm{ab}}_{\mathcal{O}} \to \tilde{\mathcal{O}}^h$ is trivial with a canonical trivialization.

Definition

The **extended monodromy homomorphism** at $x \in M$ is the homomorphism of abelian groups:

$$\partial_x^{\mathrm{ext}}: H_2(\tilde{\mathcal{O}}^h) o \Pi_1(\mathfrak{g}_x^{\mathrm{ab}}), \quad [\gamma] \mapsto \exp\left(\int_\gamma q^*\Omega\right).$$

Its image $\mathcal{N}_x^{\text{ext}}(A) \subset \Pi_1(\mathfrak{g}_x^{\text{ab}})$ is the **extended monodromy group** at x.

Proposition

There is a commutative diagram:

Theorem

Let $A \rightarrow M$ be a transitive Lie algebroid. The following statements are equivalent:

- (a) the genus integration $\mathcal{H}_1(A)$ is smooth;
- (b) the extended monodromy groups are discrete;
- (c) the abelianization $A^{\rm ab}$ has an abelian integration.

Theorem

Let $A \rightarrow M$ be a transitive Lie algebroid. The following statements are equivalent:

- (a) the genus integration $\mathcal{H}_1(A)$ is smooth;
- (b) the extended monodromy groups are discrete;
- (c) the abelianization $A^{\rm ab}$ has an abelian integration.

Corollary

If $A \to M$ is a transitive Lie algebroid whose monodromy and extended monodromy are both discrete, then the genus integration $\mathcal{H}_1(A)$ is the abelianization of $\Pi_1(A)$ in the smooth category.

Theorem

Let $A \rightarrow M$ be a transitive Lie algebroid. The following statements are equivalent:

- (a) the genus integration $\mathcal{H}_1(A)$ is smooth;
- (b) the extended monodromy groups are discrete;
- (c) the abelianization $A^{\rm ab}$ has an abelian integration.

Corollary

If $A \to M$ is a transitive Lie algebroid whose monodromy and extended monodromy are both discrete, then the genus integration $\mathcal{H}_1(A)$ is the abelianization of $\Pi_1(A)$ in the smooth category.

Corollary

If a Lie algebroid $A \to M$ admits a proper integration $\mathcal{G} \rightrightarrows M$ then its extended monodromy groups are all discrete.

Closing Remarks/Open Problems

- Determine the obstructions to the existence of the abelianization A^{ab};
- Determine the obstructions to smoothness of H₁(A) in the non-transitive case;
- Poisson geometry: does H₁(T*M) have extra geometric structure?
- ▶ Possible higher versions of Hurewicz $\Pi_k(A) \rightarrow \mathcal{H}_k(A)$?
- Possible applications to physics (Sigma models?)

Closing Remarks/Open Problems

- Determine the obstructions to the existence of the abelianization A^{ab};
- Determine the obstructions to smoothness of H₁(A) in the non-transitive case;
- Poisson geometry: does H₁(T*M) have extra geometric structure?
- ▶ Possible higher versions of Hurewicz $\Pi_k(A) \rightarrow \mathcal{H}_k(A)$?
- Possible applications to physics (Sigma models?)

THANK YOU!