CONTACT DUAL PAIRS

ALFONSO GIUSEPPE TORTORELLA

(joint work with: A. BLAGA, M. A. SALAZAR & C. VIZMAN)

XXVII International Fall Workshop on Geometry and Physics September 3 – 7, 2018 - Seville, Spain

Introduction

Symplectic dual pairs, tracing back to [LIE, 1890], have their modern origin in

- group representations arising from quantum mechanics [HOWE],
- ▶ the local structure of Poisson manifolds [WEINSTEIN].

They play a relevant role in Poisson geometry and Hamiltonian dynamics:

- Morita equivalence of Poisson manifolds,
- superintegrable Hamiltonian systems,
- moment maps and reduction theory.

The close analogy existing between symplectic/Poisson and contact/Jacobi geometry makes it pretty natural to wonder:

what, if any, is the contact analogue of symplectic dual pairs?

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
- 4 Contact Reduction

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
- 4 Contact Reduction

Contact Manifolds

A *pre-contact structure* on a manifold *M* is equivalently given by:

- ▶ a *pre-contact distribution*, i.e. an hyperplane distribution $H \subset TM$, or
- a *pre-contact form*, i.e. a 1-form ϑ on *M* with values in a line bundle *L*,

with $L = TM/\mathcal{H}$ and $\vartheta(X) = X \mod \mathcal{H}$, or in the opposite direction $\mathcal{H} = \ker \vartheta$.

If \mathcal{H} is *maximally non-integrable*, i.e. the *curvature* 2-*form* $\omega_{\mathcal{H}} \in \Gamma(\wedge^2 \mathcal{H}^* \otimes L)$, with $\omega_{\mathcal{H}}(X, Y) := \vartheta[X, Y]$, is non-degenerate, then \mathcal{H} and ϑ are said to be *contact*.

A *contact structure* is equivalently given by a contact distribution \mathcal{H} or a contact form ϑ . A *contact manifold* is a manifold equipped with a contact structure.

In the *coorientable case*, i.e. when $L \to M$ admits a global frame, one gets that $\vartheta \in \Omega^1(M)$, $\omega_{\mathcal{H}} = (d\vartheta)|_{\mathcal{H}}$, and the maximal non-integrability of \mathcal{H} reduces to:

 $(\mathbf{d}\vartheta)^n \wedge \vartheta$ is a volume form on M^{2n+1} .

A *contactomorphism* $(M, \mathcal{H}) \to (M', \mathcal{H}')$ is a diffeo $\underline{\varphi} : M \to M'$ s.t. $\underline{\varphi}_* \mathcal{H} = \mathcal{H}'$, or equivalently a line bundle isomorphism $\widehat{\varphi} : L \to L'$ s.t. $\widehat{\varphi}^* \vartheta' = \vartheta$.

By symplectization (and projectivization) the contact category is equivalent to the category of equivariant symplectomorphisms between \mathbb{R}^{\times} -principal bundles equipped with (degree 1) homogeneous symplectic structures.

The Lie algebra of infinitesimal contactomorphisms (or contact vector fields) is

 $\operatorname{cont}(M, \mathcal{H}) = \{ X \in \mathfrak{X}(M) : [X, \Gamma(\mathcal{H})] \subset \Gamma(\mathcal{H}) \}.$

The \mathbb{R} -linear isomorphism $\Gamma(L) \to \operatorname{cont}(M, \mathcal{H}), \lambda \mapsto \mathcal{X}_{\lambda}$, uniquely determined by $\vartheta(\mathcal{X}_{\lambda}) = \lambda$, is additionally a 1st order differential operator from *L* to *TM*.

The skew-symmetric 1st order bi-differential operator satisfying Jacobi identity

 $\{-,-\}_{\mathcal{H}}: \Gamma(L) \times \Gamma(L) \to \Gamma(L), \ (\lambda,\mu) \mapsto \{\lambda,\mu\}_{\mathcal{H}} := \vartheta[\mathcal{X}_{\lambda},\mathcal{X}_{\mu}],$

is the associated Jacobi structure and fully encodes the contact structure.

- 2 Jacobi Manifolds
 - 3 Contact Dual Pairs
 - 4 Contact Reduction

Jacobi manifolds

A *Jacobi bundle* [MARLE] is a line bundle $L \to M$ with a *Jacobi structure*, i.e. a Lie bracket $J = \{-, -\} : \Gamma(L) \times \Gamma(L) \to \Gamma(L)$ which is a 1st order bi-differential operator. A *Jacobi manifold* is a manifold with a Jacobi bundle over it.

- In particular, the Poisson structures on a manifold *M* coincide exactly with those Jacobi structures {−, −} on ℝ_M := M × ℝ → M such that {1, −} = 0,
- the contact structures coincide with the *non-degenerate* Jacobi structures.

A *Jacobi morphism* $(M_1, L_1, \{-, -\}_1) \rightarrow (M_2, L_2, \{-, -\}_2)$ is a *regular* line bundle morphism $\varphi : L_1 \rightarrow L_2$ s.t. the pull-back of sections $\varphi^* : \Gamma(L_2) \rightarrow \Gamma(L_1)$ satisfies

 $\varphi^* \{\lambda, \mu\}_2 = \{\varphi^* \lambda, \varphi^* \mu\}_1, \quad \forall \lambda, \mu \in \Gamma(L_2).$

By Poissonization (and projectivization) the Jacobi category is equivalent to the category of equivariant Poisson maps between \mathbb{R}^{\times} -principal bundles equipped with (degree -1) homogeneous Poisson structures.

Locally conformal symplectic manifolds

A *locally conformal symplectic* (*lcs*) *structure* on a manifold *M* consists of a representation ∇ of *TM* on line bundle $L \rightarrow M$ and non-degenerate d_{∇} -closed $\omega \in \Omega^2(M; L)$. An *lcs manifold* is a manifold equipped with a lcs structure.

The \mathbb{R} -linear map $\Gamma(L) \to \mathfrak{X}(M)$, $\lambda \mapsto \mathcal{X}_{\lambda}$, uniquely determined by $\mathcal{X}_{\lambda} := \omega^{\sharp}(d_{\nabla}\lambda)$, is additionally a 1st order differential operator from *L* to *TM*.

The skew-symmetric 1st order bi-differential operator satisfying Jacobi identity

 $\{-,-\}_M: \Gamma(L) \times \Gamma(L) \to \Gamma(L), \ (\lambda,\mu) \mapsto \{\lambda,\mu\}_M := \omega(\mathcal{X}_{\lambda},\mathcal{X}_{\mu}),$

is the associated Jacobi structure and fully encodes the lcs structure.

In the *coorientable case*, an lcs structure reduces to a pair (η, ω) , formed by a closed $\eta \in \Omega^1(M)$ and a non-degenerate $\omega \in \Omega^2(M)$, such that

$$d\omega + \omega \wedge \eta = 0.$$
 [Vaisman]

The Characteristic Distribution of a Jacobi Manifold

Let $(M, L, \{-, -\})$ be a Jacobi manifold. For any $\lambda \in \Gamma(L)$, there is an associated *Hamiltonian vector field* $\mathcal{X}_{\lambda} \in \mathfrak{X}(M)$ uniquely determined by

 $\{\lambda, f\mu\} = \mathcal{X}_{\lambda}(f)\mu + f\{\lambda, \mu\}, \qquad \forall \mu \in \Gamma(L), f \in C^{\infty}(M).$

The *characteristic distribution* of $(M, L, \{-, -\})$ is the singular distribution

 $C = \operatorname{span}{X_{\lambda} : \lambda \in \Gamma(L)} \subset TM.$

If C = TM, then the Jacobi structure is said to be *transitive*.

CHARACTERISTIC FOLIATION THEOREM [KIRILLOV '76]

- A transitive Jacobi manifold is completely characterized as follows:
 - ▶ odd-dimensional transitive Jacobi manifolds ↔ contact manifolds,
 - even-dimensional transitive Jacobi manifolds $\stackrel{1-1}{\longleftrightarrow}$ lcs manifolds.
- The characteristic distribution C is integrable à la Stefan–Sussmann, and each characteristic integral leaf inherits a transitive Jacobi structure.

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs
 - Contact Reduction

Contact Groupoids

Let $\mathcal{G} \Rightarrow \mathcal{G}_0$ be a Lie groupoid, with structure maps s, t, m, u, i. The duality contact distributions and forms induces a correspondence between:

- ► contact distributions \mathcal{H} on \mathcal{G} which are *multiplicative*, i.e. \mathcal{H} is a *wide* subgroupoid of the tangent groupoid $T\mathcal{G} \rightrightarrows T\mathcal{G}_0$,
- contact forms $\vartheta \in \Omega^1(\mathcal{G}; t^*L_0)$, with values in a representation $L_0 \to \mathcal{G}_0$ of \mathcal{G} , which are *multiplicative*, i.e. for all $(g, h) \in \mathcal{G}^{(2)}$

$$(m^*\vartheta)_{(g,h)} = (\mathrm{pr}_1^*\vartheta)_{(g,h)} + g \cdot (\mathrm{pr}_2^*\vartheta)_{(g,h)}.$$

A *multiplicative contact structure* on a Lie groupoid is equivalently given by a multiplicative contact distribution \mathcal{H} or a multiplicative contact form ϑ . A *contact groupoid* is a Lie groupoid equipped with a multiplicative contact structure.

By symplectization (and projectivization) the category of contact groupoids is equivalent to the category of (degree 1) homogeneous symplectic groupoids.

From Contact Groupoids to Contact Dual Pairs

Let $\mathcal{G} \rightrightarrows \mathcal{G}_0$ be a contact groupoid, $\vartheta \in \Omega^1(\mathcal{G}; t^*L_0)$, $\mathcal{H} = \ker \vartheta$ and $L = T\mathcal{G}/\mathcal{H}$.

- ▶ The right and left multiplications induce regular line bundle morphisms $\hat{s}: L \to L_0$ and $\hat{t}: L \to L_0$ covering respectively $s: \mathcal{G} \to \mathcal{G}_0$ and $t: \mathcal{G} \to \mathcal{G}_0$.
- ► There is a unique Jacobi structure J₀ = {−, −}₀ on L₀ → G₀ such that the maps in the following diagram are Jacobi morphisms

$$(\mathcal{G}_0, L_0, J_0) \xleftarrow{\widehat{s}} (\mathcal{G}, \mathcal{H}) \xrightarrow{\widehat{t}} (\mathcal{G}_0, L_0, -J_0).$$

The following additional properties are satisfied by any contact groupoid:

- \mathcal{H} is transverse to both $T^s \mathcal{G}$ and $T^t \mathcal{G}$,
- **2** $\hat{s}^*\lambda$ and $\hat{t}^*\mu$ commute wrt $\{-,-\}_{\mathcal{H}}$, for all $\lambda, \mu \in \Gamma(L)$,

so contact groupoids lead us to single out the notion of contact dual pair.

Contact Dual Pairs

Consider a contact manifold (M, H) and a pair of Jacobi morphisms

$$(M_1, L_1, \mathbf{J}_1 = \{-, -\}_1) \xleftarrow{\widehat{\varphi}_1} (M, \mathcal{H}) \xrightarrow{\widehat{\varphi}_2} (M_2, L_2, \mathbf{J}_2 = \{-, -\}_2). \quad (\star)$$

DEFINITION The above diagram form a (*Lie–Weinstein*) contact dual pair if: **•** \mathcal{H} is transverse to the fibers of both $\varphi_1 : M \to M_1$ and $\varphi_2 : M \to M_2$, **•** $\hat{\varphi}_1^* \lambda_1$ and $\hat{\varphi}_2^* \lambda_2$ commute wrt $\{-, -\}_{\mathcal{H}}$, for all $\lambda_1 \in \Gamma(L_1)$ and $\lambda_2 \in \Gamma(L_2)$, **•** $\mathcal{H} \cap \ker T \varphi_1$ is the orthogonal complement of $\mathcal{H} \cap \ker T \varphi_2$ wrt $\omega_{\mathcal{H}}$. Further (\star) is *full* if $\varphi_1 : M \to M_1$ and $\varphi_2 : M \to M_2$ are surjective submersions.

• A contact groupoid gives canonically rise to a full contact dual pair.

PROPOSITION The symplectization/Poissonization functor identifies the contact dual pairs with the homogeneous symplectic dual pairs.

Consider a full contact dual pair $(M_1, L_1, J_1) \stackrel{\widehat{\varphi}_1}{\longleftarrow} (M, \mathcal{H}) \stackrel{\widehat{\varphi}_2}{\longrightarrow} (M_2, L_2, J_2)$, with connected fibers of the underlying maps $\underline{\varphi}_1 : M \to M_1$ and $\underline{\varphi}_2 : M \to M_2$.

The Characteristic Leaf Correspondence Theorem

- The relation $\underline{\varphi}_1^{-1}(S_1) = \underline{\varphi}_2^{-1}(S_2)$ establishes a 1-1 correspondence between the characteristic leaves S_1 of M_1 and the characteristic leaves S_2 of M_2 .
- Solution Let S_1 and S_2 be in correspondence. Then dim $S_1 \equiv \dim S_2 \mod 2$, and
 - if S_i is odd-dim and ϑ_{S_i} is its inherited contact 1-form, then:

$$\iota_{\mathcal{S}}^{*}\vartheta=\phi_{1}^{*}\vartheta_{\mathcal{S}_{1}}+\phi_{2}^{*}\vartheta_{\mathcal{S}_{2}}\in\Omega^{1}(\mathcal{S},L|_{\mathcal{S}}),$$

where $\underline{\varphi}_1^{-1}(\mathcal{S}_1) = \mathcal{S} = \underline{\varphi}_2^{-1}(\mathcal{S}_2)$ and $\iota_S : L|_S \to L$ is the inclusion map, if \mathcal{S}_i is even-dim and $(L_i|_{\mathcal{S}_i}, \nabla^{\mathcal{S}_i}, \omega_{\mathcal{S}_i})$ is its inherited lcs structure, then

$$d_{\nabla}(\iota_{\mathcal{S}}^{*}\vartheta) = \varphi_{1}^{*}\omega_{\mathcal{S}_{1}} + \varphi_{2}^{*}\omega_{\mathcal{S}_{2}} \in \Omega^{2}(\mathcal{S},L|_{\mathcal{S}}),$$

where ∇ is the representation of TS on $L|_S$ s.t. $\varphi_1^* \nabla^{S_1} = \nabla = \varphi_2^* \nabla^{S_2}$.

Contact Manifolds

- 2 Jacobi Manifolds
- 3 Contact Dual Pairs

4 Contact Reduction

Contact Groupoid Actions

Let *M* be a contact manifold and $\mathcal{G} \rightrightarrows \mathcal{G}_0$ a contact groupoid. A (*left*) *action* of \mathcal{G} on *M*, with *moment* $\mu : M \rightarrow \mathcal{G}_0$, is a map $\Phi : \mathcal{G}_s \times_{\mu} M \rightarrow M$, $(g, x) \mapsto g \cdot x$, s.t.

$$\mu(g \cdot x) = t(g), \quad \mu(x) \cdot x = x, \quad (gh) \cdot x = g \cdot (hx).$$

The action is *contact* [ZAMBON, ZHU] is these two equivalent properties hold:

- ► $(T\Phi)(u,v) \in \mathcal{H}_M \iff u \in \mathcal{H}_{\mathcal{G}};$ for all $(u,v) \in T(\mathcal{G}_s \times_{\mu} M)$, s.t. $v \in \mathcal{H}_M$,
- ▶ there is a regular line bundle morphism $\hat{\mu}$: $L_M \to L_0$ covering μ (so that $L_M \simeq \mu^* L_0$), and for all $(g, x) \in \mathcal{G}_s \times_{\mu} M$ the following holds:

$$(\Phi^*\vartheta_M)_{(g,x)} = (\mathbf{pr}_1^*\vartheta_{\mathcal{G}})_{(g,x)} + g \cdot (\mathbf{pr}_2^*\vartheta_M)_{(g,x)}.$$

- $\mathcal{G}^{(2)} \xrightarrow{m} \mathcal{G}$ is a contact groupoid action of \mathcal{G} on \mathcal{G} with moment $\mathcal{G} \xrightarrow{t} \mathcal{G}_0$.
- a Lie group *G* acting on *M* by contactomorphisms gives rise to a moment $\mu: M \to \mathbb{P}(\mathfrak{g}^*)$ and a contact groupoid action of $\mathbb{P}(T^*G) \rightrightarrows \mathbb{P}(\mathfrak{g}^*)$ on *M*.

Contact Dual Pairs from Contact Reduction

Fix a *free and proper* contact action of a *s-connected* contact groupoid $\mathcal{G} \rightrightarrows \mathcal{G}_0$ on a contact manifold *M* with moment $\mu : M \rightarrow \mathcal{G}_0$. Then one gets that:

- $\mu : M \to \mathcal{G}_0$ is a submersion, with image denoted \mathcal{G}_0^{μ} , and it lifts to a \mathcal{G} -equivariant Jacobi morphism $\widehat{\mu} : L_M \to L_0$,
- ▶ there is a unique Jacobi structure $\{-,-\}_{M/\mathcal{G}}$ on $L_M/\mathcal{G} \to M/\mathcal{G}$ s.t. the quotient map $\hat{q} : L_M \to L_M/\mathcal{G}$ is a Jacobi morphism covering $q : M \to M/\mathcal{G}$.

Proposition The following is a full contact dual pair, with connected fibers,

$$(M/\mathcal{G}, L_{M/\mathcal{G}}, \{-, -\}_{M/\mathcal{G}}) \xleftarrow{\widehat{q}} (M, \mathcal{H}_M) \xrightarrow{\widehat{\mu}} (\mathcal{G}_0^{\mu}, L_0, \{-, -\}_0).$$

This yields a new insight on the Contact Reduction [ZAMBON & ZHU]

- ► the *reduced orbit spaces* μ⁻¹(O)/G, as O varies among the coadjoint orbits in G₀^µ, are the characteristic leaves of (M/G, L_M/G, {−, −}_{M/G}), and
- ► the *reduced transitive Jacobi structure* of µ⁻¹(O)/G agree with the one inherited from M/G.

References

- ► A. BLAGA, M. A. SALAZAR, A. G. TORTORELLA & C. VIZMAN, *Contact dual pairs*, in preparation.
- A. BRUCE, K. GRABOWSKA & J. GRABOWSKI, *Remarks on contact and Jacobi geometry*, SIGMA 13 (2017) 59–80.
- M. CRAINIC & M. A. SALAZAR, *Jacobi structures and Spencer operators*, J. Math. Pures Appl. 103 (2015) 504–521.
- Y. KERBRAT & Z. SOUICI-BENHAMMADI, Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 81–86.
- A. KIRILLOV, Local Lie algebras, Russian Math. Surveys 31 (1976) 55–75.
- A. WEINSTEIN, *The local structure of Poisson manifolds*, J. Differential Geom. 18 (1983) 523–557.
- M. ZAMBON & C. ZHU, Contact reduction and groupoid actions, Trans. Amer. Math. Soc. 358 (2005) 1365–1401.

Thank you!