Orbifold equivalence for simple, unimodal and bimodal singularities

Ana Ros Camacho

Mathematisch Instituut, Universiteit Utrecht (Utrecht, The Netherlands)

XXVII IFWGP, September 6th, 2018

Motivation

What is "orbifold equivalence"?

- A particular kind of QFT: Landau-Ginzburg models.
- [Vafa-Warner,'88] A 2 dimensional, (2, 2)-supersymmetric sigma model characterized by a potential.
- Wanted: an equivalence relation between two Landau-Ginzburg models described by different potentials.
- 'Orbifold'? Inspired by the study of orbifolds via defects in 2d QFTs.
- Way to go: via matrix factorizations.

Why?

- Interesting applications for the (so-called) Landau-Ginzburg/conformal field theory correspondence (AMA!).
- (Seems to be) Related to mirror symmetry, strange duality of singularities à l'Arnold, et al.

Introducing: matrix factorizations

Let \mathbb{k} be a field $(=\mathbb{C}), S:=\mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ polynomial ring. Assign $\left|x_{i}\right| \in \mathbb{Q}_{\geq 0}$ to each x_{i}. Consider $W \in S$.

Definition

- W is called a potential if it has an isolated singularity at the origin. Equivalently: $\operatorname{dim}_{k}\left(\frac{S}{\left\langle\partial_{x_{0}} W, \ldots, \partial_{x_{n}} W\right\rangle}\right)<\infty$.
- We say that a potential W is homogeneous of degree $\mathbf{d} \in \mathbb{Q}_{\geq 0}$ if it satisfies $W\left(\lambda^{\left|x_{0}\right|} x_{0}, \ldots, \lambda^{\left|x_{n}\right|} x_{n}\right)=\lambda^{d} W\left(x_{0}, \ldots, x_{n}\right)$ for all $\lambda \in \mathbb{C}^{x}$.

From now on: potential="homogeneous potential of degree 2". To any potential W we can associate a central charge, defined as: $c_{W}=\sum_{i=0}^{n}\left(1-\left|x_{i}\right|\right)$. Denote as $\mathcal{P}_{\mathfrak{k}}$ the set of potentials with coefficients in \mathbb{k} and any number of variables.

GOAL: define an equivalence relation in $\mathcal{P}_{\mathfrak{k}}$! HOW? Matrix factorizations!

Definition

Given (S, W), a matrix factorization of W consists of a pair $\left(M, d^{M}\right)$ where:

- M free, \mathbb{Z}_{2}-graded $\left(=M_{0} \oplus M_{1}\right) S$-module, and
. $d^{M}: M \rightarrow M$ degree $1\left(=\left(\begin{array}{cc}0 & d_{1}^{M} \\ d_{0}^{M} & 0\end{array}\right)\right.$) S-linear endomorphism satisfying that

$$
d^{M} \circ d^{M}=W \cdot \operatorname{id}_{M}
$$

("twisted differential").

Example: let $S=\mathbb{C}[x], W=x^{d}$. Possible matrix factorization:

$$
\left(\mathbb{C}[x]^{\oplus 2},\left(\begin{array}{cc}
0 & x^{m} \\
x^{d-m} & 0
\end{array}\right)\right), \text { for } 0<m<d
$$

Remark

We can use bimodules instead of left modules. Given $\left(S_{1}, W_{1}\right),\left(S_{2}, W_{2}\right)$
$\rightsquigarrow\left(S_{1} \otimes_{\mathfrak{k}} S_{2}, W_{1} \otimes_{\mathfrak{k}} 1_{S_{2}}-1_{S_{1}} \otimes_{\mathfrak{k}} W_{2}\right)$ (or simply: $W_{1}-W_{2}$).

Using bimodules...

Definition

Let:
$\left(S_{1}, W_{1}\right),\left(S_{2}, W_{2}\right),\left(S_{3}, W_{3}\right) ;$
(M, d^{M}) matrix factorization of $W_{1}-W_{2}$, and
$\left(N, d^{N}\right)$ matrix factorization of $W_{2}-W_{3}$.
The tensor product matrix factorization $\left(M \otimes s_{2} N, d^{M \otimes N}\right)$ is the matrix factorization of $W_{1}-W_{3}$ with:

- base module over $S_{1} \otimes_{k} S_{3}$,
- twisted differential: $d^{M \otimes N}=d^{M} \otimes \operatorname{id}_{N}+\operatorname{id}_{M} \otimes d^{N}$.

Construct a category: $\mathbf{h m f}(\mathbf{W})$
Objects: matrix factorizations of W,
Morphisms: given $\left(M, d^{M}\right),\left(N, d^{N}\right), f: M \rightarrow N$ satisfying that $d^{N} \circ f=f \circ d^{M}$ (up to some homotopy relation).

Warning: categorical nonsense!

Theorem

- [Carqueville-Runkel, '09]: $\mathrm{hmf}(\mathrm{W} \otimes 1-1 \otimes \mathrm{~W})$ is a monoidal category.
- [Carqueville-Murfet, '12]: every object in hmf $\left(W_{1}-W_{2}\right)$ has a left and a right adjoint and its evaluation and coevaluation morphisms can be described in a very explicit way.

Remark

Results obtained from the study of Landau-Ginzburg models from a higher categorical perspective.

A particular example of a composition of these evaluation and coevaluation maps: left and right quantum dimension (qdim $_{l}$, qdim $_{r}$ resp.)

Orbifold equivalence

Definition/Proposition

Let $V\left(x_{1}, \ldots, x_{n}\right), W\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{P}_{\mathfrak{k}},\left(M, d^{M}\right) \in \operatorname{Ob}(\operatorname{hmf}(W-V))$. Assign to $\left(M, d^{M}\right)$ two numbers,
$\operatorname{qdim}_{l}(M)=(-1)^{\binom{m+1}{2}} \operatorname{Res}\left[\frac{\operatorname{str}\left(\partial_{x_{1}} d^{M} \ldots \partial_{x_{m}} d^{M} \partial_{y_{1}} d^{M} \ldots \partial_{y_{n}} d^{M}\right) d y_{1} \ldots d y_{n}}{\partial_{y_{1}} W, \ldots, \partial_{y_{n}} W}\right]$
$\operatorname{qdim}_{r}(M)=(-1)^{\binom{n+1}{2}} \operatorname{Res}\left[\frac{\operatorname{str}\left(\partial_{x_{1}} d^{M} \ldots \partial_{x_{m}} d^{M} \partial_{y_{1}} d^{M} \ldots \partial_{y_{n}} d^{M}\right) d x_{1} \ldots d x_{m}}{\partial_{x_{1}} V, \ldots, \partial_{x_{m}} V}\right]$.

We say that V and W are orbifold equivalent (notation: $V \sim_{\text {orb }} W$) if there exists such an $\left(M, d^{M}\right)$ for which $\operatorname{qdim}_{l}, \operatorname{qdim}_{r} \neq 0$. Orbifold equivalence is indeed an equivalence relation in $\mathcal{P}_{\mathfrak{k}}$.

Remark

- qdim $_{l}$, qdim $_{r} \in \mathbb{K}$.
- Value of quantum dimensions are independent of the \mathbb{Q}-grading.
- If $V \sim_{\text {orb }} W$, then $c_{V}=c_{W}$ and $m-n$ is even.
- Apparently not so easy to find...!

Example: the quantum dimensions of

$$
\left(\mathbb{C}[x, y]^{\oplus 2},\left(\begin{array}{cc}
0 & x-y \\
\frac{x^{d}-y^{d}}{x-y} & 0
\end{array}\right)\right)
$$

are...

$$
\ldots \pm 1!
$$

Examples of orbifold equivalence

[Arnold, 70s]: classification of singularities

Theorem (Carqueville-Runkel-RC,'13)

Consider the subset of $\mathcal{P}_{\mathbb{C}}$ which describes simple singularities. They fall into an ADE classification and in 2 variables they look like:

$$
\begin{gathered}
W_{A_{d-1}}=x^{d}+y^{2}, \\
W_{E_{6}}=x^{3}+y^{4}, \quad W_{D_{d+1}}=x^{3}+x y^{3}, \quad W_{E_{8}}=x^{3}+y^{2},
\end{gathered}
$$

Then,

$$
\begin{aligned}
& \text { For d even, } \neq 12,18,30, W_{A_{d-1}} \sim_{\text {orb }} W_{D_{\frac{d}{2}+1}}, \\
& W_{A_{11}} \sim_{\text {orb }} W_{D_{7}} \sim_{\text {orb }} W_{E_{6}}, \\
& W_{A_{17}} \sim_{\text {orb }} W_{D_{10}} \sim_{\text {orb }} W_{E_{7}}, \text { and } \\
& W_{A_{29}} \sim_{\text {orb }} W_{D_{16}} \sim_{\text {orb }} W_{E_{8}} .
\end{aligned}
$$

An example of a matrix factorization proving orbifold equivalence...
[Carqueville-RC-Runkel,'13]: take $S=\mathbb{C}[u, v, x, y]$ and consider the potential $W=W_{A_{11}}-W_{E_{6}}=u^{12}+y^{2}-x^{3}-y^{4}$.
A matrix factorization of this potential is $\left(\mathbb{C}[u, v, x, y]^{\oplus 4}, d^{M}\right)$, with

$$
d_{1}^{M}=\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right), \quad d_{0}^{M}=\operatorname{Det}\left[d_{1}^{M}\right]\left(d_{1}^{M}\right)^{-1}
$$

where

$$
\begin{aligned}
& d_{11}=y^{2}-v+\frac{1}{2} x(s u)^{2}+\frac{2 t+1}{8}(s u)^{6} \\
& d_{12}=-x+y(s u)+\frac{t+1}{4}(s u)^{4} \\
& d_{21}=x^{2}+y x(s u)+\frac{t}{4} x(s u)^{4}+\frac{2 t+1}{4} y(s u)^{5}-\frac{9 t+5}{48}(s u)^{8} \\
& d_{22}=y^{2}+v+\frac{1}{2} x(s u)^{2}+\frac{2 t+1}{8}(s u)^{6}
\end{aligned}
$$

(s and t can be any solution of $t^{2}=\frac{1}{3}, s^{12}=-576(26 t-15)$).

Next on Arnold's classification: unimodal singularities. Focus on the exceptional ones.

Type	Potential $(v 1)$	Potential (v2)	Potential (v3)	c_{W}
Q_{10}	$x^{4}+y^{3}+x z^{2}$	-	-	$\frac{13}{12}$
Q_{11}	$x^{3} y+y^{3}+x z^{2}$	-	-	$\frac{10}{9}$
Q_{12}	$x^{3} z+y^{3}+x z^{2}$	$x^{5}+y^{3}+x z^{2}$	-	$\frac{17}{15}$
S_{11}	$x^{4}+y^{2} z+x z^{2}$	-	-	$\frac{9}{8}$
S_{12}	$x^{3} y+y^{2} z+x z^{2}$	-	-	$\frac{15}{13}$
U_{12}	$x^{4}+y^{3}+z^{3}$	$x^{4}+y^{3}+z^{2} y$	$x^{4}+y^{2} z+z^{2} y$	${ }^{\frac{7}{6}}$
Z_{11}	$x^{5}+x y^{3}+z^{2}$	-	-	$\frac{16}{15}$
Z_{12}	$y x^{4}+x y^{3}+z^{2}$	-	-	${ }^{\frac{12}{11}}$
Z_{13}	$x^{3} z+x y^{3}+z^{2}$	$x^{6}+y^{3} x+z^{2}$	-	$\frac{10}{9}$
W_{12}	$x^{5}+y^{2} z+z^{2}$	$x^{5}+y^{4}+z^{2}$	-	${ }^{\frac{11}{10}}$
W_{13}	$y x^{4}+y^{2} z+z^{2}$	$x^{4} y+y^{4}+z^{2}$	-	$\frac{9}{8}$
E_{12}	$x^{7}+y^{3}+z^{2}$	-	-	$\frac{22}{21}$
E_{13}	$y^{3}+y x^{5}+z^{2}$	-	-	$\frac{16}{15}$
E_{14}	$x^{4} z+y^{3}+z^{2}$	$x^{8}+y^{3}+z^{2}$	-	$\frac{13}{12}$

Question: which ones could be orbifold equivalent?

Next on Arnold's classification: unimodal singularities. Focus on the exceptional ones.

Type	Potential (v1)	Potential (v2)	Potential (v3)	c_{W}
Q_{10}	$x^{4}+y^{3}+x z^{2}$	-	-	$\frac{13}{12}$
E_{14}	$x^{4} z+y^{3}+z^{2}$	$x^{8}+y^{3}+z^{2}$		

Next on Arnold's classification: unimodal singularities. Focus on the exceptional ones.

Type	Potential (v1)	Potential (v2)	Potential (v3)	c_{W}
Q_{11}	$x^{3} y+y^{3}+x z^{2}$	-	-	$\frac{10}{9}$
Z_{13}	$x^{3} z+x y^{3}+z^{2}$	$x^{6}+y^{3} x+z^{2}$	-	
				$\frac{10}{9}$

Next on Arnold's classification: unimodal singularities. Focus on the exceptional ones.

Type	Potential (v1)	Potential (v2)	Potential (v3)	c_{W}
S_{11}	$x^{4}+y^{2} z+x z^{2}$	-	-	$\frac{9}{8}$
W_{13}	$y x^{4}+y^{2} z+z^{2}$	$x^{4} y+y^{4}+z^{2}$		

Next on Arnold's classification: unimodal singularities. Focus on the exceptional ones.

Type	Potential (v1)	Potential (v2)	Potential (v3)	c_{W}
Z_{11}	$x^{5}+x y^{3}+z^{2}$	-	-	
				$\frac{16}{15}$
E_{13}	$y^{3}+y x^{5}+z^{2}$	-	-	$\frac{16}{15}$

Conjecture ('Arnold strange duality for exceptional unimodal singularities')

$Q_{10} \sim_{\text {orb }} E_{14}, Q_{11} \sim_{\text {orb }} Z_{13}, S_{11} \sim_{\text {orb }} W_{13}$ and $Z_{11} \sim_{\text {orb }} E_{13}$.

Proposition

(1. (Newton-RC,'15) Indeed $Q_{10} \sim_{\text {orb }} E_{14}$. Let $\left(M_{1}, d^{M_{1}}\right)$ (resp. $\left.\left(M_{2}, d^{M_{2}}\right)\right)$ be the matrix factorization proving orbifold equivalence betwen Q_{10} and E_{14} ($v 1$) (resp. (v2)). ($\left.M_{1}, d^{M_{1}}\right)$ (resp. $\left(M_{2}, d^{M_{2}}\right)$) depends on a set of parameters satisfying a certain set of conditions. The solutions of this system of equations are actually permuted by a Galois group isomorphic to $D_{4} \times C_{2}$ (resp. V_{4}).
(2) (Newton-RC,'16) Different potentials describing the same exceptional unimodal singularities are orbifold equivalent. The matrix factorizations proving orbifold equivalence (...) Galois group isomorphic to:

Singularity	Galois group	Singularity	Galois group
E_{14}	D_{8}	W_{12}	C_{2}
Q_{12}	$C_{2} \times C_{5} \rtimes C_{4}$	W_{13}	D_{8}
$U_{12}(v 2 \mathrm{vs} \mathrm{v} 1 / \mathrm{v3})$	$S_{3} \times C_{2} / C_{2}$	Z_{13}	$C_{2} \times C_{9} \rtimes C_{6}$

Remaining cases proved by Recknagel et al, '17-but without Galois groups!

Next on Arnold's classification: bimodal singularities.
Conjecture ('Arnold strange duality for bimodal singularities')
$J_{3,0} \sim_{\text {orb }} Z_{13}, Q_{2,0} \sim_{\text {orb }} Z_{17}, E_{18} \sim_{\text {orb }} Q_{12}, E_{19} \sim_{\text {orb }} Z_{1,0}, Z_{19} \sim_{\text {orb }} E_{25}$,
$Q_{17} \sim_{\text {orb }} Z_{2,0}, Q_{18} \sim_{\text {orb }} E_{30}, W_{17} \sim_{\text {orb }} S_{1,0}, S_{17} \sim_{\text {orb }} X_{2,0}$.
Proposition (RC '17, in preparation)
Indeed $Q_{18} \sim_{\text {orb }} E_{30}$ and $E_{18} \sim_{\text {orb }} Q_{12}$.

Sure but - very heavy computational problem. Can we simplify this search?
Result (Cornelissen-Kluck-RC, '18, work in progress)

- Sage algorithm (interface in Julia) capable of deciding if two potentials are orbifold equivalent.
- If so, we can prove orbifold equivalence in finite time.

Open questions

Few examples remaining involving bimodal singularities. More general instances of potentials?

Galois groups: missing ones?

Better, faster, stronger: improving the CKRC algorithm to speed up the search.

Applications to Landau-Ginzburg/conformal field theory correspondence?

Thank you very much for your attention! =)

