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Discrete geometric realizations

1. Assume we are in RP1 and let {Vn} be a lift of a projective polygon
to R2 such that

det(Vn,Vn+1) = 1

for all n. Let
pn = det(Vn−1,Vn+1)

be a polygonal curvature and qn =
1

pn+1pn
the cross ratio of the

projective points with lifts Vn−1,Vn,Vn+1,Vn+2. Then the
projective tangential flow

(Vn)t =
1

pn
(Vn+1 − Vn−1)

induces the evolution

(qn)t = qn(qn+1 − qn−1),

the Volterra model. We say that the projective tangential flow is a
projective realization of the Volterra model.
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2. If Vn ∈ R2 is a polygon in equicentro-affine plane (SL(2,R) acting
linearly), with invariants

an = det(Vn,Vn+1), κn =
det(Vn,Vn+2)

det(Vn+1,Vn+2)

then, whenever

(Vn)t =
an−1

an
Vn+1

and pn =
an
an+1

, qn = κn, we have

(pn)t = pn(qn − qn+1),

(qn)t = pn−1 − pn

which is the Toda Lattice.
3. The pentagram map induces a map on the projective invariants of
polygon which is an integrable double discretization of the Boussinesq
equation.

Authors: Bobenko, Doliwa& Santini, Fukujioka& Kurose, Hoffman,
Mansfield, Maŕı Beffa, Inoguchi-Kajiwara & Matsuura, Wang, Suris.
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Assume u : J ⊂ R2 → R3 is a solution of the Vortex filament flow
equation (Localized induction flow)

ut = κB

where κ is the curvature of the flow u and B is the binormal.

Then, curvature and torsion of the flow satisfy an equation equivalent to
the Nonlinear Schrödinger equation (NLS). If

φ = κe i
∫
τdx , φt = iφxx +

i

2
||φ||2φ

(Hasimoto, 72)
We say the Vortex Filament flow is an Euclidean realization of NLS.Or
NLS is the Vortex filament flow defined on the moduli space of Euclidean
curves.

Gloria Maŕı Beffa University of Wisconsin - Madison Discrete geometry of polygons and Hamiltonian structures



Assume u : J ⊂ R2 → R3 is a solution of the Vortex filament flow
equation (Localized induction flow)

ut = κB

where κ is the curvature of the flow u and B is the binormal.
Then, curvature and torsion of the flow satisfy an equation equivalent to
the Nonlinear Schrödinger equation (NLS). If

φ = κe i
∫
τdx , φt = iφxx +

i

2
||φ||2φ

(Hasimoto, 72)

We say the Vortex Filament flow is an Euclidean realization of NLS.Or
NLS is the Vortex filament flow defined on the moduli space of Euclidean
curves.
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Joint work with J. P. Wang, “Hamiltonian structures and integrable evolutions of twisted polygons in RPn”, (2013), and A. Calini

“Integrable evolutions of twisted polygons in centro-affine Rm” (in progress).

The moduli space of twisted polygons

Let M = G/H with G semisimple Lie group acting naturally on M. We
say a polygon {un} ∈ M∞ un ∈ M is twisted with period N if there exists
g ∈ G such that uN+n = g · un, for all n. The element g is called the
monodromy of the polygon.
How can we find coordinates for the moduli space of twisted polygons?

We define a right (resp. left) discrete moving frame associated to {un} as
an equivariant map

ρ : U ⊂ MN → GN

wrt the diagonal action on MN and the right inverse (resp. left) action
on GN . If ρ(u) = (ρn), we say ρn is the moving frame at the vertex un.
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We define the right (resp. left) discrete Serret–Frenet equations to be

ρn+1 = Knρn (resp. ρn+1 = ρnKn).

The group elements {Kn}
N
n=1 functionally generate all invariants of the

polygon under the diagonal action (Mansfield, MB, Wang 2013).

{Kn}
N
n=1 define (local) coordinates in the moduli space of polygons under

the action of G .
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Example
Let {un} be a twisted polygon in RPm.

One can prove that if {un} is non
degenerate and if N and m + 1 are coprime, there is a unique lift to a
polygon in Rm+1, {Vn}, such that det(Vn+m, . . . ,Vn+1Vn) = 1 for all n.
The map

ρ : (RPm)N → SL(m + 1,R)N
ρ({un}) = {(Vn+m, . . . ,Vn+1,Vn)}

is a projective left moving frame. The Serret–Frenet equations are

ρn+1 = ρn


km
n 1 0 . . . 0

km−1
n 0 1 . . . 0
...

...
. . . . . .

...
k1
n 0 . . . 0 1

(−1)m+1 0 0 . . . 0


where k i

n are given by Vn+m+1 = km
n Vn+m + . . . k1

nVn+1 + (−1)mVn and
{k i

n} generate all other invariants of the polygon. We can give coordinates
to the moduli space using (Kn) ∈ GN (left) or (K−1

n ) ∈ GN (right).
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In general

Theorem
Assume M = G/H. The moduli space of non degenerate twisted
polygons in MN can be identified with an open subset of the quotient
GN/HN , where HN acts on GN via the right gauge action

HN × GN → GN

((hn), (gn)) → (hn+1gnh
−1
n )

The question now is: is there a natural Poisson structure in GN such that
right gauge is a Poisson map? If so we might be able to reduce it.

They were classified by Semenov-Tian-Shansky in “Dressing
transformations and Poisson Group actions”, (1985). We will describe
the main bracket.
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Gloria Maŕı Beffa University of Wisconsin - Madison Discrete geometry of polygons and Hamiltonian structures



A Poisson structure on GN

Assume g to have an inner product 〈 , 〉 that identifies g with g∗.Let
F : GN → R be a function, we define the left gradient at L = (Ln) ∈ GN

to be the element of gN , (∇nF(L)) such that, for any (ξn) ∈ gN

d

dε
|ε=0F(exp(εξn)Ln) = 〈∇nF(L), ξn〉.

Analogously, the right gradient satisfies

d

dε
|ε=0F(Ln exp(εξn)) = 〈∇ ′nF(L), ξn〉.

Assume g has a grading g = g+ ⊕ h0 ⊕ g−, with h0 commutative, g+
dual to g−. We define the classical R-matrix to be map R : g → g

R(ξ+ + ξh + ξ−) =
1

2
(ξ+ − ξ−).

Associated to R there exists a 2-tensor r such that

r(ξ∧ η) = 〈ξ,R(η)〉, r(ξ⊗ η) = 〈ξ+, η−〉.

Gloria Maŕı Beffa University of Wisconsin - Madison Discrete geometry of polygons and Hamiltonian structures



A Poisson structure on GN

Assume g to have an inner product 〈 , 〉 that identifies g with g∗.

Let
F : GN → R be a function, we define the left gradient at L = (Ln) ∈ GN

to be the element of gN , (∇nF(L)) such that, for any (ξn) ∈ gN

d

dε
|ε=0F(exp(εξn)Ln) = 〈∇nF(L), ξn〉.

Analogously, the right gradient satisfies

d

dε
|ε=0F(Ln exp(εξn)) = 〈∇ ′nF(L), ξn〉.

Assume g has a grading g = g+ ⊕ h0 ⊕ g−, with h0 commutative, g+
dual to g−. We define the classical R-matrix to be map R : g → g

R(ξ+ + ξh + ξ−) =
1

2
(ξ+ − ξ−).

Associated to R there exists a 2-tensor r such that

r(ξ∧ η) = 〈ξ,R(η)〉, r(ξ⊗ η) = 〈ξ+, η−〉.
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Define the twisted Poisson bracket in GN to be given by

{F ,G}(L) =
∑N

s=1 r(∇sF ∧∇sG) +
∑N

s=1 r(∇ ′sF ∧∇ ′sG)

−
∑N

s=1 r ((τ⊗ id)(∇ ′sF ⊗∇sG)) +
∑N

s=1 r ((τ⊗ id)(∇ ′sG ⊗∇sF)) .

The twisted Poisson bracket defines a Hamiltonian structure for which
gauge action is a Poisson map.

Gloria Maŕı Beffa University of Wisconsin - Madison Discrete geometry of polygons and Hamiltonian structures



A discrete geometric Poisson bracket

Assume G has a Lie algebra g with two gradations
g = g+ ⊕ h0 ⊕ g− with h0 commutative and g+ and g− dual of
each other, and g = g1 ⊕ g0 ⊕ g−1, g1 and g−1 dual of each
other. Assume M = G/H with h = g0 ⊕ g1. We say both
gradations are compatible if

g1 ⊂ g+, g−1 ⊂ g−.

Theorem
(MB 14) Assume M = G/H and g has two compatible gradations
as above. The twisted Poisson structure defined on GN , with r
associated to the classical R-matrix, is locally reducible to the
quotient GN/HN . Furthermore, any reduced Hamiltonian evolution
with Hamiltonian functional f is induced on the invariants by a
local invariant polygonal vector field X f = (X f

n ) in M.
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Gloria Maŕı Beffa University of Wisconsin - Madison Discrete geometry of polygons and Hamiltonian structures



A discrete geometric Poisson bracket

Assume G has a Lie algebra g with two gradations
g = g+ ⊕ h0 ⊕ g− with h0 commutative and g+ and g− dual of
each other, and g = g1 ⊕ g0 ⊕ g−1, g1 and g−1 dual of each
other. Assume M = G/H with h = g0 ⊕ g1. We say both
gradations are compatible if

g1 ⊂ g+, g−1 ⊂ g−.

Theorem
(MB 14) Assume M = G/H and g has two compatible gradations
as above. The twisted Poisson structure defined on GN , with r
associated to the classical R-matrix, is locally reducible to the
quotient GN/HN .

Furthermore, any reduced Hamiltonian evolution
with Hamiltonian functional f is induced on the invariants by a
local invariant polygonal vector field X f = (X f

n ) in M.
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The projective case

Example
(MB, Wang 13) In the projective case G = PSL(m + 1) the gradations
are:

1. g+ = strictly lower triangular matrices; h0 = diagonal matrices;
g− = strictly upper triangular matrices.

2.

g1 =


0 . . . 0 0
...

...
...

...
0 . . . 0 0
∗ . . . ∗ 0

 , g0 =


∗ . . . ∗ 0
...

...
...

...
∗ . . . ∗ 0
0 . . . 0 ∗

 , g−1 =


0 . . . 0 ∗
...

...
...

...
0 . . . 0 ∗
0 . . . 0 0


If we define h = g0 ⊕ g1, then RPm = G/H is the standard description of
the projective space as homogeneous space.
The two gradations are compatible and hence we have a reduced bracket.
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Gloria Maŕı Beffa University of Wisconsin - Madison Discrete geometry of polygons and Hamiltonian structures



In the case n = 1 the bracket is given by: let f , g be functions of kn

{f , g }(kn) =
∑
n

df

dkn

(
τ−1 − τ+ kn(τ− 1)(τ+ 1)−1kn

) dg

dkn

which is one of two Hamiltonian structures for the modified Volterra
lattice, the other one being τ− τ−1.

Indeed, if a twisted polygon in RP1 has a lift {Vn} solution of

(Vn)t = fnVn+1 + αnVn,

where fn an arbitrary function of kn, and αn = −(1 + τ)−1kn−1fn is the
unique choice that preserves det(Vn+1,Vn) = 1, then

(kn)t =
(
τ−1 − τ+ kn(τ− 1)(τ+ 1)−1kn

)
fn+1.

The vector field

X f
n =

δf

δkn
Vn+1 + αnVn

is the lifted vector field in R2. The choice f =
∑

n ln kn−1 defines an
evolution equivalent to the modified Volterra chain.
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Theorem
(MB, Wang 13) The evolution in RPm whose unique lift to Rm+1 is

(Vn)t =
1

k1
n−1

(
Vn+m + km

n Vn+m−1 + · · ·+ k2
nVn+1

)
+ αnVn

αn uniquely determined by preservation of det(Vn+m, . . . ,Vn) = 1,
induces on k i

n (bi-Hamiltonian?) and completely integrable discretizations
of Wm algebras, (generalizations of the Boussinesq lattice), for any m.

The equations are given by k i
t =

k i+1
1

k1
1

− k i+1

k1
−i
, i = 1, 2, · · · ,m − 1

km
t = 1

k1
1
− 1

k1
−N

Under the Miura transformation u1 = 1
k1k1

1 ···k1
n
, ui =

k i
i−1

k1k1
1 ···k1

i−1
,

i = 2, · · · ,N + 1, they become
u1
t = −u1(u2

N − u2
−1)

uit = ui+1 − ui+1
−1 − ui (u2

i−1 − u2
−1), i = 2, 3 · · · ,m − 1

umt = u1 − u1
−1 − um(u2

N−1 − u2
−1)
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Theorem
(MB, Wang 13) The right bracket for the parabolic r tensor

{F ,G}right(L) =
∑
n

r(∇ ′nF (L)∧∇ ′nG(L))

(which is not a Poisson bracket),

also reduces to GN/HN to produce a
second Hamiltonian structure for the same integrable system. Both
brackets are compatible for m = 2, 3 and initially conjectured to be
compatible for higher dimensions.

They were proved to be compatible in recent work with Calini. The study
of the compatibility of the Poisson pair is based on lifting the two
Hamiltonian structures to two pre-symplectic structures in the space of
projective polygons, and study the properties at that level.
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Theorem
(Calini, MB, 2017) Given a Hamiltonian f on the moduli space, there
exists moduli coordinates a = (an) and a vector field Y f such that if
(un)t = Y f

n , then (an)t is f -Hamiltonian wrt to the main reduced bracket
{, }1.
Furthermore, there exists pre-symplectic forms ω1 and ω2 on the space
of polygons such that

ω1(Y
f ,Y g )(u) = {f , g }1(a), ω2(Y

f ,Y g )(u) = {f , g }2(a).

If un ∈ RPm lifts to Vn ∈ Rm with det(Vn,Vn+1, . . . ,Vn+m−1) = 1 for all
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ω2(X ,Y ) =
1

2

∑
n

m−1∑
r=1

{det(Yn, . . . ,Xn+r , . . . , γn+m−1)

− det(Xn, . . . ,Yn+r , . . . , γn+m−1)}.

Trivially, ω1(gX , gY ) = ω1(X ,Y ) and ω2(gX , gY ) = ω2(X ,Y ).

Theorem
(Calini, MB, 17) {, }1 and {, }2 are compatible.

Theorem
(Calini, MB, 18) There exist two integrable hierarchies associated to each
of two vector fields generating the kernel of ω2. Restricted to the moduli
space, ω1 is symplectic and one can generate a recursion operator.
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