A geometric formulation
of Ehrenfest molecular
dynamics

Jests Clemente-Gallardo
jcg@unizar.es

XXVII International Fall
Workshop on Geometry and
Physics,

Sevilla, 3-7 September 2018

Instituto Universitario de Inveshgaclon
Biocomputacion y Fisica
f} de Sistemas Complejos

Universidad Zaragoza



Content

» Introduction: the geometric formalism of Quantum Mechanics

\4

Geometric Quantum-Classical Molecular Dynamics

» Application I: Ehrenfest Statistical Dynamics and electronic
decoherence

» Application Il: Definition of hybrid ensembles

v

Application IlI: Control of hybrid systems

» Conclusions and Outlook

Results from many colaborations with J. L. Alonso, P. Bruscolini, J. F.
Carifiena, A. Castro, J. C. Cuchi, P. Echenique, J. A. Jover-Galtier and
G. Marmo

and

the Bachelor Theses of Carlos Bouthelier (2017) and Cristian-Emanuel
Boghiu (2018).



Introduction: GQM



Introduction: GQM

Introduction: the problem of GQM

General formulation of a physical system

P> A set of states S representing the relevant degrees of freedom




Introduction: GQM

Introduction: the problem of GQM

General formulation of a physical system

» A set of states S representing the relevant degrees of freedom

» A set of observables O containing the posibles representations of
physical magnitudes in our model




Introduction: GQM

Introduction: the problem of GQM

General formulation of a physical system

» A set of states S representing the relevant degrees of freedom

» A set of observables O containing the posibles representations of
physical magnitudes in our model

» A way of representing the measurement process, i.e., an aplication
S x O — R assigning a real number to the measurement of every
magnitude on every state.




Introduction: GQM

Introduction: the problem of GQM

General formulation of a physical system

> A set of states S representing the relevant degrees of freedom

> A set of observables O containing the posibles representations of
physical magnitudes in our model

» A way of representing the measurement process, i.e., an aplication
S x O — R assigning a real number to the measurement of every
magnitude on every state.

» Besides, if we intend to define a dynamical system, we have to add a
differential (difference) equation whose solutions represent the
trajectories of the physical system.




Introduction: GQM

Introduction: the problem of GQM

General formulation of a physical system

» A set of states S representing the relevant degrees of freedom

» A set of observables O containing the posibles representations of
physical magnitudes in our model

» A way of representing the measurement process, i.e., an aplication
S x O — R assigning a real number to the measurement of every
magnitude on every state.

» Besides, if we intend to define a dynamical system, we have to add a
differential (difference) equation whose solutions represent the
trajectories of the physical system.

Is it possible to find a common framework for Classical and Quantum
Mechanics?
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Classical nonrelativistic Hamiltonian system

» The set of states S corresponds to the phase
space of the system, i.e., the positions of the
system and their corresponding momenta
Depending on the context, we may consider
further structure on S, such as being a
cotangent bundle, a symplectic, Poisson or
Dirac manifold, or if necessary, a Riemannian
structure.

» the set of observable O corresponds to the real-valued functions
defined on S, i.e.,, O = F(S),

» measurement process is just the evaluation of the function on the
state:

SxO>3 (s, f)—f(s)eR

» Dynamics correponds to the integral curve of
the Hamiltonian vector field associated to the
function h which represents the energy of the
system:

Xph = {hv }
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Nonrelativistic Hamiltonian quantum system (Schrédinger formalism)
2

e
» The set of states S corresponds to a Hilbert g
space (projective) H

» the set of observables O corresponds to the set of selfadjoint
operators on H,

» measurement corresponds to the evaluation

(Y|Ke)
Sx 053 (W, K)— ) eR

» Dynamics can be introduced via Schrédinger
equation, associated to the Hamiltonian @

operator ’ .

il o
ih=—11()) = HI(2)
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Nonrelativistic Hamiltonian quantum system (Heisenberg formalism):

» Model is built on the set of physical ﬂ
magnitudes O , which are the real part of a
complex C*—algebra. S

» The set of states corresponds to the dual vector space to O, i.e.
linear functionals p: O — C.

» Measurement corresponds to the action of the operator on the state

Sx 03 (p,K)— p(K)eR

» Dynamics is introduced by Heisenberg
equation:

7
/haK(t) = HK(t) — K(t)H
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Geometric Quantum Mechanics
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GEOMETRIZATION OF QUANTUM MECHANICS

J. F. Carinena,* J. Clemente-Gallardo,’ and G. Marmo?

ic terms. In

We show that various descriptions of quantum mechanics can be represented in geome;
particular, starting with the space of observables and using the momentum map associated with the
unitary group, we give a unified geometric description of the different pictures of quantum mechanics.

This construction is an alternative to the usual GNS construction for pure states.
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Abstract
Relevant algebraic structures for the description of quantum mechanics in the Heisenberg
picture are replaced by tensor fields on the space of states. This replacement introduces a
differential geometric point of view which allows for a covariant formulation of quantum
mechanics under the full diffcomorphism group.
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Physical states |: Hilbert space

We choose to consider Hilbert space 7 as a real differentiable manifold
Mg. For the sake of simplicity, we will consider that the quantum system
is finite-dimensional.

» The set
Wy => zle) =C"3(,...,2") > (@', p1,- -, 4", pn) € R ~ Mg
j
» The scalar product can be described by a tensor on H:

(P1lha) = W(Xyys X)Xy = (¥,901); Xy, = (¥,92)

By using the realification introduced we obtain two tensors which
encode the same information

E e >« (dg* ® dg* + dpi ® dpy)
w =Y, dg* A dpx



» The complex structure of H becomes a 1:1 tensor field:

J: TMQ X T*MQ — COO(MQ);

0
1

co -

—~1
0

0
0

o

0 O
0 0
Ol =
5% 0
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Let (#, h) be a n—dimensional Hilbert space. Then (g,w,J) endow Mq
with a Kéhler structure of (real) dimension 2n.




» The complex structure of H becomes a 1:1 tensor field:

J:TMg x T*Mgq — C®(Mg);  J(XJ, X)) = (=X}, X[)

0 -1 00 ...0 0
1 0 00 ..0 0

J= : -
0 0 00 0l %
0 0 00 1\ @

Let (#, h) be a n—dimensional Hilbert space. Then (g,w,J) endow Mq
with a Kahler structure of ( real) dimension 2n.

Hermitian structure can also be encoded in the tensor fields:

h|—>{ =Dz (aqk®3qk+6pk®8pk)
= Zk Era A 8Pk
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» How can we define the projective space corresponding to #?
» Can we characterize the tensor fields introduced above?

True physical states correspond to the
equivalence class: 3

1), [¥2) € Ho=H — {0}

1) ~ [2) & [h2) = Aldn); A eC
The set of these equivalence classes
define the projective space PH, which
is diffeomorphic to the space of
projectors on one-dimensional
subspaces of the Hilbert space H:

o
W=y
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Question: How can we construct this object from Mg? J

Consider two vector fields on Mg:

0 0 0 0
A= § 2% — r=JAa) = k— — g —
; <q dqk erk@pk) J(8) ; <q opr ? 8Pk>
dilations global phase change

A y T define an integrable distribution on Mg, and hence a foliation P.
This foliation is the geometric analogue of PH.

We thus have a projection
m: Mg — P.
But tensors G and £2 can not be projected directly
LaG=-2G LaQ = -20Q.
Solution:
Gp = (WY)G—ARA-TRI Qp=@Y)Q— (AT -TR®A)
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On End(#) we have three algebraic

Tensors G and Q define on F>(Mg) structrues

the following structures: > The associative product:

» G recovers the anti-commutator 1 i
of the operators (HE=-aE 5 EAO i E[A’ il

G(de, de) = onB = {fA, f3}+ y \
» its symmetrical part
» Poisson tensors recovers the
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Tensors G and Q define on F»(Mg) ‘
the following stfuctures: On End(H) we have three algebraic

structrues

> iati P
AT e it 41 » The associative product:

1 i )
L= : 1
fas = 5 G(dfa, dfi)+5Q(df, dfs) A B AB = 5A03+5[A7 B]
» G recovers the anti-commutator

o Ehemsgeratog » its symmetrical part

Gldfa, dfe) = facs := {fa: fo}t+ A B+ Ao B = (AB + BA)
» Poisson tensors recovers the

» and the skew-symmetrical one:
commutator:

A B [A B] = —i(AB — BA
Q(dfa, dfg) = fiia g = {fa, fa} 1. 8] f )
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Physical magnitudes Ill: Projective space

Question:If we consider the system defined on the projective space P,
how can we represent the observables?

» Expectation values

(¢ (d, )| Ay (4, B))
(v(d,P)|¥(d, P))

eA(aa 5) =

» Dispersions:

A (0@, PIA*E,P)) <<w(a, P)|Av(d. 5)>>2 _
(W@ AW@ER)  \ ((d R 5)
= ep () — ea(¥)? = Gp(dea, dea)
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> ea(s) = A
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Physical magnitudes: Spectral information

Let us denote as £(Mg) the set of expection value functions.

Let A be a Hermitian operator on H, A € R an eigenvalue and |1).) € H
one corresponding eigenvector. Then:

» ep has a critical point at 1,
> ea(s) = A )

Therefore £(Mg) allows us:
» to represent the expectation value of physical observables

» to recover the spectral information




Summary
QM: CM:

» S=(#,h)or > S = (MQ)
S="PH ’
> O = Herm(H) : f(ff;(M)

> (plAy) i

Introduction: GQM

GQM
> S = (MQ, G,Q)
or
S =(P,Gp,p)
» O = fz(MQ) or
E(Mg)

» fa() or ea(v))
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How can we define the dynamics

Question: How can we define the dynamics?

» We consider the function fy € F»(Mg) or ey € E(Mg)

» and the corresponding Hamiltonian vector fields (from Q or Qp) por
Q:
X, =, h Xey = W Hfu, }p
» Finally, we claim that the solutions of the physical dynamics

correspond to the integral curves of the Hamiltonian vector fields
X, or Xey
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Aplication: Molecular dynamics

System: When modeling a molecule, it is impossible to treat all degrees
of freedom as a quantum system. As the dynamical time scales are very
different, we assume that the core can be represented as a point in a
classical manifold (Mc¢) while the valence electrons are represented as
rays on a Hilbert space H.
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Quantum-classical molecular dynamics

Quantum-classical molecular dynamics as an approximation
to full quantum dynamics

Folkmar A. Bornemann, Peter Nettesheim, and Christof Schiitte®
Konrad-Zuse-Zentrum Berlin, Heilbronner Str. 10, D-10711 Berlin, Germany

(Received 7 February 1996; accepted 8 April 1996)

This paper presents a mathematical derivation of a model for quantum-classical molecular dynamics
(QCMD) as a partial classical limit of the full Schrodinger equation. This limit is achieved in two
steps: separation of the full wave function and short wave asymptotics for its *‘classical’’ part. Both
steps can be rigorously justified under the' sante smallness assumptions. This throws some light on
the time-dependent self-consistent-field method and on mixed quantum-semiclassical models, which
also depend on the separation step. On the other hand, the theory leads to a characterization of the
critical situations in which the QCMD model is in danger of largely deviating from the solution of
full Schrodinger equation. These critical situations are exemplified in an illustrative numerical
simulation: the collinear collision of a classical particle with a harmonic quantum oscillator.
© 1996 American Institute of Physics. [S0021-9606(96)00727-1]
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ON THE SINGULAR LIMIT OF THE QUANTUM-CLASSICAL
MOLECULAR DYNAMICS MODEL*

FOLKMAR A. BORNEMANN' AND CHRISTOF SCHUTTE!

Abstract. In molecular dynamics applications there is a growing interest in so-called mized
quantum-classical models. These models describe most atoms of the molecular system by means
of classical mechanics but describe an important, small portion of the system by means of quan-
tum mechanics. A particularly extensively used model, the quantum-classical molecular dynamics
(QCMD) model, consists of a singularly perturbed Schrédinger equation nonlinearly coupled to a
classical Newtonian equation of motion.

This paper studies the singular limit of the QCMD model for finite dimensional Hilbert spaces.
The main result states that this limit is given by the time-dependent Born-Oppenheimer model of
quantum theory—provided the Hamiltonian under consideration has a smooth spectral decomposi-
tion. This result is strongly related to the quantum adiabatic theorem. The proof uses the method
of weak convergence by directly discussing the density matrix instead of the wave functions. This

avoids the di ion of highly ill 'y phases.

On the other hand, the limit of the QCMD model is of a different nature if the spectral decom-
position of the Hamiltonian happens not to be smooth. We will present a generic example for which
the limit set is not a unique trajectory of a limit dynamical system but rather a funnel consisting of
infinitely many trajectories.

Key words. QCMD model, Born-Oppenheimer model, quantum adiabatic theorem, weak
convergence, density matrix, funnel, Takens-chaos

AMS subject classifications. 34E15,81Q15,81V55
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The basic steps to link the full quantum description of the complete
system with the hybrid quantum-classical description are the following:

» First of all, we assume that the wave function of the total system is
separable, i.e., W(r, R) € L2(R®) can be written as:

V= xn(R)@ve(r);  X(R),ve(r) € L2(R?),

» These two wave functions are chosen to satisfy a couple of
self-consistent equations associated to the original Schrédinger
equation.

h
i = = 5= Bpx+ W1V X(R,0) = xolR)

i =~ A (V0 9(7,0) = t(r)



» The nuclear wave function can be approximated by an approximate
delta function (roughly speaking, this implies that the probability
density is a gaussian function with variance €)

Then, it can be proved that:

The error of considering the evolution W(t) as a separable state is of
order €/L, where L is the natural length of the system.




By using WKB method, the nuclear wave function can be written as

X(R.t) = A(R, t)en*(Rt) 4 o (,/A’Z) :

The corresponding equations for the amplitude and the phase read:

%
ot
oA . [ VRS
W"‘leR <A 7) —0

First equation can be read as a Hamilton-Jacobi equation for the
momentum

1
+ 5 (VRS) + (¥|Vy) =0

P = VRgS.

Combining WKB expansion and the approximate-delta assumption, it is
possible to prove, rigorously, that error considering the wave function
constructed as the tensor product of these (Ehrenfest) equations as the
solution of the original complete Schrodinger equation is of order

((e/L)* + \/m/M).



Dynamics: Ehrenfest equations ( (R, P) € Mc and |¢)) € H

He(R) € Herm(H))

Pk
o

Pr = —gradg (| He(R))
) HARIV(0)

Rk =




Dynamics: Ehrenfest equations ( (R, P) € Mc and [¢)) € H
He(R) € Herm(#.))

. Pk

Rk = e

Pk = —grad~<¢|He(f_é)w)
p A HAR)o(0)

Question: Is it possible to identify a Hamiltonian structure for these
equations?
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Abstract

Quantum dynamics (i.e. the Schridinger equation) and classical dynamics
(i.e. Hamilton equations) can both be formulated in equal geometric terms: a
Poisson bracket defined on a manifold. In this paper, we first show that the
hybrid quantum-classical dynamics prescribed by the Ehrenfiest equations can
also be formulated within this general framework, what has been used in the
literature to construct propagation schemes for Ehrenfest dynamics. Then, the
existence of a well-defined Poisson bracket allows us to arrive to a Liouville
«equation for a statistical ensemble of Ehrenfest systems. The study of a generic
toy model shows that the evolution produced by Ehrenfest dynamics is ergodic
and therefore the only constants of motion are functions of the Hamiltonian.
The emergence of the canonical ensemble characterized by the Boltzmann
distribution follows after an appropriate application of the principle of equal
a priori probabilities to this case. Once we know the canonical distribution
of an Ehrenfest system, it is straightforward to extend the formalism of Nosé
(invented to do constant temperature molecular dynamics by a non-stochastic
method) to our Ehrenfest formalism. This work also provides the basis for
extending stochastic methods to Ehrenfest dynamics,
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Characterizing the hybrid system

» The quantum subsystem is assumed to be finite dimensional
» The space of states is S = Mc x Mg

» The set of physical magnitudes is O = C>®(Mc¢ x Mg).

» We define a symplectic structure as w = w¢ + fuwg

» And a Hamlltonlan functlon w‘rL:’tten as
fH(R P g P) Zk 2Me %

Ehrenfest equations define a Hamiltonian system on (Mc x Mg,w).

Being Hamiltonian and symplectic, we can use the symplectic volume to
define a measure on Mc x Mg which is invariant under the dynamics:

M — wdim(McX MQ)




Example: Classical integrable system (action-angle variables) coupled to
a two-level quantum system (very simplified model of an atom adsorbed
in a metal)

(¥(g, p)|(ox + €J cos bo;)|¢(a, p))

fu(4.0,9.p) = Jo + (¥(q, p)I¥(q,p))




Example: Classical integrable system (action-angle variables) coupled to
a two-level quantum system (very simplified model of an atom adsorbed
in a metal)

((q, p)|(0x + €J cos Ba,)|1(q, p))
(¥(q, p)lv(a,p))

fH(J797 q7p) = J9 +

Sle

06 s

I

Blue curve (e = 0.15) almost linear behavior and red curve (e = 1.55),
clearly non-linear.
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Statistical mechanical system

Let us consider the symplectic measure dugc = w” and the family of
measures of the form

dit = Foc(&,¥)duqc,

where Foc(&,) satisfies
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Statistical mechanical system

Let us consider the symplectic measure dugc = w” and the family of
measures of the form

dit = Foc(&,¥)duqc,

where Foc(&,) satisfies

/M dugc(é,P)Foc(e,$) =1, Foclé,$) 20, VE € M, € Mo

If Foc(&,v) is a constant of the motion, dfi is an invariant measure for
Ehrenfest dynamics
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Ehrenfest Statistical Models

Definition of the statistical model

A physical observable A will now be represented by a function 74 on the
manifold M. To define statistical averages of observables depending on

classical and quantum degrees of freedom (i.e., functions as fa(§,v)) we
will consider a probability density Foc defined on M, which allows us to

write

(A) = /M duacle, ) Fac(6, D) ialé, ),
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Ehrenfest Statistical Models

Definition of the statistical model

A physical observable A will now be represented by a function 74 on the
manifold M. To define statistical averages of observables depending on
classical and quantum degrees of freedom (i.e., functions as fa(§,v)) we
will consider a probability density Foc defined on M, which allows us to
write

(A) = /M duac(é, b)Foclt, W, ),

A

Example
If we consider the Hamiltonian function of the hybrid system above, we
obtain

(H) = /M duaclE, ¥)Fac(é, b) (&, ¥),

\




If Foc(&,) is not a constant of the motion for Ehrenfest dynamics, the
measure is not invariant. We can define thus the master equation for our
system as the Hamiltonian flow of fy on C*°(M¢ x Mg):

dFoc
— {FocSt:
dt { QC, H}



If Foc(&,) is not a constant of the motion for Ehrenfest dynamics, the
measure is not invariant. We can define thus the master equation for our
system as the Hamiltonian flow of fy on C*°(M¢ x Mg):

dFoc
— {Fof
dt { QC, H}

From the solution, we can define the time-dependence of the
corresponding average values associated to the time-dependent
probability distribution Fgg(&, v; t)du(&, v):

(A)(t) = /M o€, ) Fac (6, )FAE ),
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|¥)(¢]

§) = [ dualw)Fac(e.v) s
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An alternative representation of the hybrid system is:

|¥)(¢]

(6 ::/P dpe(¥)Fec(é,¥) 7~ ()

Proposition

By construction, (&) is self-adjoint, positive definite, and normalized as

y du(§)Trp(§) =1
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An alternative framework

An alternative representation of the hybrid system is:

A(€) ::/P duq(¥)Fac(&,¥) |<1f/)><$>|

Proposition

By construction, (&) is self-adjoint, positive definite, and normalized as

du(§)Trp(§) =1

Mc

.

Proposition

By construction, (&) allows us to obtain the average value of any
observables of the form A(¢) as

/M du(E) T (PE)AE)) = 1



The solution of the dynamical equation allows us to write the expression
of the dynamics for the matrix p(§):

) (&
(¥, ¥)

AE 1) = /M dua()Fac(&, ¥ 1)



The solution of the dynamical equation allows us to write the expression
of the dynamics for the matrix p(§):

AE 1) = /M dmaly)Fac(e, vit) oy

We can also build the density matrix of the marginal quantum
distribution of the hybrid system:

Definition

The density matrix representing the quantum subsystem of our hybrid
system is obtained by averaging the effect of the classical subsystem

pt) = /M duc(€)p(E: 1)




The solution of the dynamical equation allows us to write the expression
of the dynamics for the matrix p(§):

(v, 9)

We can also build the density matrix of the marginal quantum
distribution of the hybrid system:

AE 1) = /M dua()Fac(&, ¥ 1)

Definition

The density matrix representing the quantum subsystem of our hybrid
system is obtained by averaging the effect of the classical subsystem

A1) = /M duc(€)p(E: 1)

This construction is formally analogous to the usual partial trace method
for the contraction of a quantum system.



Proposition

The dynamics associated to the statistical description defines a
non-unitary evolution which is able to exhibit decoherence effects on the
quantum subsystem. This is useful for applications, since the
non-statistical description is not able to capture decoherence.




Proposition

The dynamics associated to the statistical description defines a
non-unitary evolution which is able to exhibit decoherence effects on the
quantum subsystem. This is useful for applications, since the
non-statistical description is not able to capture decoherence.

We considered a simple example of an ensemble of Na™ ions, simulated
with the code Octopus, each with the same initial quantum state but
with different classical initial conditions, we obtain a change in the purity
of the quantum subsystem depending on the number of particles
considered in the ensemble and their initial (classical) conditions:

e~ e e —n

Purity

Ensemble A
Ensemble B
| | Ensemble C
0 10 20 30 40 50
Time (1000 a.u.)
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Ehrenfest dynamics is purity non-preserving: A necessary ingredient
for decoherence
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We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadia-
batic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial
conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we
introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)]. From it, we develop a
new framework to determine exactly the change in the purity of the quantum subsystem along with
the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which ex-
tent Ehrenfest statistical dynamics makes a system with more than one classical trajectory, and an
initial quantum pure state become a quantum mixed one. We prove this numerically showing how
the evolution of purity depends on time, on the dimension of the quantum state space D, and on the
number of classical trajectories N of the initial distribution. The results in this work open new per-
spectives for studying decoherence with Ehrenfest dynamics. © 2042 American Institute of Physics.
[http:/fdx.doi.org/10.1063/1.4737861]
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Application II: Definition of hybrid ensembles

Composing molecular systems

Let us consider first the composition of hybrid systems. Given two hybrid
systems, defined in phase spaces Mg x Mg, and MZ x Mg, we shall
define a composed hybrid system in M¢ x Mg where

» the classical subsystem is the Cartesian product of the classical
subsystems:
Mc = Mg x MZ;

» the set of quantum states of the product system corresponds to the
projective space of the tensor product space

Mq = Mg ® Mp.
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Non-interacting particles: internal energy

If we consider a system composed of N, independent subsystems, the

Hamiltonian operator H is defined as a family of operators parametrized
N

by the classical variables ¢ € M¢ acting on the Hilbert space H® - Q@ H

(#H being a d-dimensional complex vector space that represents the

quantum degrees of freedom of each component and n = d"» the

dimension of the total Hilbert space), with the expression:
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N

by the classical variables ¢ € M¢ acting on the Hilbert space H® - Q@ H
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Application II: Definition of hybrid ensembles
Non-interacting particles: internal energy

If we consider a system composed of N, independent subsystems, the

Hamiltonian operator H is defined as a family of operators parametrized
N

by the classical variables ¢ € M¢ acting on the Hilbert space H® - Q@ H

(#H being a d-dimensional complex vector space that represents the

quantum degrees of freedom of each component and n = d"» the

dimension of the total Hilbert space), with the expression:

k—1 Npm—k
N,_/\ﬁ ,_/\_\

H(¢) = Z §k)—ZHH® @y eh(d) el - e,

k=

where ir(f;() denotes the Hamiltonian of each component in the system,
which depends on the classical degrees of freedom of the corresponding
classical space, and 3 is the identity operator on H.



In general, we can write that, if we consider the classical variables as
& = (R, P), and a coupling of the quantum degrees of freedom to the
"position” variables

2

h(Rk, Py) = (;\fh + V(R)> I+ h(Re).



In general, we can write that, if we consider the classical variables as
& = (R, P), and a coupling of the quantum degrees of freedom to the
"position” variables

Definition
The internal energy of the hybrid system is defined as the expression

U= (fu) = /M duc(€)Te(p(€)FI(E))




Application II: Definition of hybrid ensembles

The entropy of a hybrid system

When defining the entropy of any statistical system it is very important
to take into account the proper definition of its probabilistic nature.
When considering the entropy of a system the set of microstates
considered must be chosen in such a way that each one of them defines a
mutually exclusive event with respect to any other state. This is what
von Neumann entropy does for purely quantum systems, where the
spectral decomposition of the density matrix implements the mutually
exclusiveness of the set of events.
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The entropy of a hybrid system

When defining the entropy of any statistical system it is very important
to take into account the proper definition of its probabilistic nature.
When considering the entropy of a system the set of microstates
considered must be chosen in such a way that each one of them defines a
mutually exclusive event with respect to any other state. This is what
von Neumann entropy does for purely quantum systems, where the
spectral decomposition of the density matrix implements the mutually
exclusiveness of the set of events.

In the case of a hybrid system, two points of the phase space

(&1, 91), (&2,102) € Mc x Mg represent mutually exclusive events if and
only if & # & or (¥1|12) = 0. For each value of &, we can compute the
value of the von Neumann entropy S(&) associated with p(&). This is
thus a function of the classical manifold Mg and as such can be
considered to be a classical-density for the total entropy.



As any other point in M¢ is mutually exclusive with respect to &, in order
to define consistently the entropy of the hybrid system, we must consider:



As any other point in M¢ is mutually exclusive with respect to &, in order
to define consistently the entropy of the hybrid system, we must consider:

Definition
The entropy of the hybrid system is obtained as the corresponding sum
over all possible classical events, i.e., the integral

S——ke /M duc()S(©),




As any other point in M¢ is mutually exclusive with respect to &, in order
to define consistently the entropy of the hybrid system, we must consider:

Definition
The entropy of the hybrid system is obtained as the corresponding sum
over all possible classical events, i.e., the integral

S=—ka [ duc(S(e)
Mc
where the entropy density S(&) is defined as

5(§) = Tr (p(€) log A(€)) -
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Hybrid ensembles: definition

Generally speaking, any thermodynamic equilibrium (quantum, classical
or hybrid quantum/classical) requires two conditions:

» a state of equilibrium (we see examples later),

» and associated thermodynamic functions (such as entropy and
internal energy) that are extensive.

We can safely consider a composition of non-interacting subsystems,
which is an approximation valid for real hybrid systems which are, either
uncoupled or which have only short-range interactions. In such a case,
the effect of the interaction on the total behavior is negligible and the
approximation of independent systems is reasonable.
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Hybrid ensembles: Microcanonical

Consider the total phase space of the hybrid system M = M¢ x Mg and
the energy function

P2
fu =2 opp + V(R) +eu(R. P.¥)
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Hybrid ensembles: Microcanonical

Consider the total phase space of the hybrid system M = M¢ x Mg and
the energy function

P2
fu =2 opp + V(R) +eu(R. P.¥)
k

The state of equilibrium of the hybrid microcanonical ensemble
corresponds to a distribution on M where all points with a fixed energy E
are equally probable, i.e.

_ S(E — ful&.1))

Fac (&) FIENVL

where Vg = [, dugc 6(E — fr(&, 1)) represents the total volume of the
level set of the energy with value E.
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Hybrid ensembles: Canonical

The canonical ensemble can be constructed from the micro-canonical one
exactly as in the classical case. The probability density corresponding to
the state of equilibrium is written thus as:

FSc(&,9) = Zglpeciints ¥,

where
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Hybrid ensembles: Canonical

The canonical ensemble can be constructed from the micro-canonical one
exactly as in the classical case. The probability density corresponding to
the state of equilibrium is written thus as:

FSc(&,9) = Zglpeciints ¥,
where
Zyce :/ dugc(€,)e —Bfu()
and

fH_Zm+ V(R) + en(R, P, ).
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Additivity of the thermodynamic functions

With these definitions, it is now time to characterize the additive
behavior of the functions when considering a composed system. It is

important to notice that the pure quantum limit of the HCE, exhibits a
strange behavior in this regard.
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Additivity of the thermodynamic functions

With these definitions, it is now time to characterize the additive
behavior of the functions when considering a composed system. It is
important to notice that the pure quantum limit of the HCE, exhibits a
strange behavior in this regard.

The Appendix added to the Second Edition contains the general

o’ proof, that a consistent procedure, based on very simple assump-

o 42 -78 tions, alvays gives tho samo remults. Tho thermodynamical

@ STATISTICAL fanctions depend on the quantum-mechanical level-scheme, not

i THERMODYNAMICS on the gratuitous allegation that these levels are the only

allowed states. . .
We shall always regard the state of the assembly as deter-

A Course of Seminar Lectures mined by the indication that system No. 1 is in state, say, k,
DRLIVERED 1 SANUANY-MAROR 1044, AT TR | No. 2 in state I, ..., No. N in state Ly. We shall adhere to this,
T eovamons aroniaa | though the attitude is altogether wrong. For, a quantum-
e | mechanical system is not in this or that state to be described by

ERWIN SCHRODINGER a complete set of commuting variables chosen once and for all.

| To adopt this view is to think along severely ‘classical’ lines,
‘With the set of states chosen, the individual system can, at
best, be relied upon as having a certain probability amplitude,
and s0 a certain probability, of being, on inspection, found in
state No. 1 or No. 2 or No. 3, ete. I said: at best a probability
amplitude. Not even that much of determination of the single
system need there be. Indeed, there is no clear-cut argument for
attributing to the single system a ‘pure state’ at all.
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The quantum canonical ensemble

Dorje C. Brody®
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Lane P. Hughston®
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The phase space I of quantum mechanics can be viewed as the complex projective
space CP" endowed with a Kiihlerian structure given by the Fubini-Study metric
and an associated symplectic form. We can then interpret the Schrodinger equation
as generating a Hamiltonian dynamics on I'. Based upon the geometric structure of
the quantum phase space we introduce the corresponding natural microcanonical
and canonical ensembles. The resulting density matrix for the canonical T'-
ensemble differs from the density matrix of the conventional approach. As an
illustration, the results are applied to the case of a spin one-half particle in a heat
bath with an applied magnetic field. © 1998 American Institute of Physics.
[S0022-2488(98)00212-6]
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Invariant measures under Schrédinger evolution
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G. Jona-Lasinio

ABSTRACT. 1f ome considers the evolution of quantum expectations of coor-
dinates and momenta of a system of oscillators, the classical Gibbs measure
appears naturally as an invariant measure. We show that the Gibbs measure
associated to the Schrodinger equation viewed as an infinite dimensional dy-
namical system induces the elassical ensemble on expectations. This type of
analysis can be extended to systems with non quadratic Hamiltonian and at
low temperature the so called effective potential replaces the classical poten-
tial in the Gibbs distribution. The quantum states typical in this regime for
the ensembles considered ate the coherent states in the case of oscillators and
a simple generalization of them otherwise. We briefly discuss the connection
with the usual canonical density matrix.
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Typical state of an isolated quantum system with fixed energy and unrestricted participation
of eigenstates

oris V. Fine
Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany
(Received 2 March 2009; published 30 November 2009)

‘This work describes the statistics for the occupation numbers of quantum levels in a large isolated quantum
system, where all possible superpositions of eigenstates are allowed provided all these superpositions have the
same fixed energy. Such a condition is not equivalent to the conventional microcanonical condition because the
latter limits the participating eigenstates to a very narrow energy window. The statistics is obtained analytically
for both the entire system and its small subsystem. In a significant departure from the Boltzmann-Gibbs
statistics, the average occupation numbers of quantum states exhibit in the present case weak algebraic depen-
dence on energy. In the macroscopic limit, this dependence is routinely accompanied by the condensation into
the lowest-energy quantum state. This work contains initial numerical tests of the above statistics for finite
systems and also reports the following numerical finding: when the basis states of large but finite random
matrix Hamiltonians are expanded in terms of eigenstates, the participation of eigenstates in such an expansion
obeys the newly obtained statistics. The above statistics might be observable in small quantum systems, but for
the macroscopic systems, it rather re-enforces doubts about self-sufficiency of nonrelativistic quantum me-
chanics for justifying the Boltzmann-Gibbs equilibrium.
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Emergence of equilibrium thermodynamic properties in quantum
pure states. I. Theory

Barbara Fresch® and Giorgio J. Moro®
Department of Chemical Science, University of Padova, Via Marzolo 1, Padova 35131, Italy

(Received 16 March 2010; accepted 2 June 2010; published online 20 July 2010)

Investigation on foundational aspects of quantum statistical mechanics recently entered a
renaissance period due to novel intuitions from quantum information theory and to increasing
attention on the dynamical aspects of single quantum systems. In the present contribution a simple
but effective theoretical framework is introduced to clarify the connections between a purely
mechanical description and the thermodynamic characterization of the equilibrium state of an
isolated quantum system. A salient feature of our approach is the very transparent distinction
between the statistical aspects and the dynamical aspects in the description of isolated quantum
systemns, Like in the classical statstical mechanics, the equilibrium distribution of any property is
identified on the basis of the time evolution of the d system. As a

properties of quantum system appear to depend on the details of the initial state due to the
abundance of constants of the motion in the Schrodinger dynamics. On the other hand the study of
the probability distributions of some functions, such as the entropy or the equilibrium state of a
subsystem, in statitical ensembles of pure states reveals the crucial role of typicality as the bridge
between macroscopic thermodynamics and microscopic quantum dynamics. We shall consider two
particular ensembles: the random pure state ensemble and the fixed expectation energy ensemble.
The relation between the introduced ensembles, the properties of a given isolated system, and the
standard quantum statistical description are discussed throughout the presentation. Finally we point
out the conditions which should be satisfied by an ensemble in order to get meaningful
thermodynamical characterization of an isolated quantum system. © 2010 American Institute of
Physics. [doi:10.1063/1.3455998]
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Abstract.  New quantum fluctuation relations are presented. In contrast with the
standard approach, where the initial state of the driven system is described by the
(micro) canonical density matrix, here we assume that it is described by a (micro)
canonical distribution of wave functions, as originally proposed by Schrodinger.
While the standard fluctuation relations are based on von Neumann measurement
postulate, these new fluctuation relations do not involve any quantum collapse,
but involve instead a notion of work as the change in expectation of the
Hamiltonian.
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ed that thermodynamical functions cannot be based on the gratuitous allegation that
eigenstates of the Hamiltonian operator) are the only
s for a quantum system [E. Schridinger, Statistical Thermodynamics (Coutier Dover, Mineola,
1967)]. Different authors have interpreted this by introducing density distributions on the space of
quantum pure states with weights obtained as functions of the expectation value of the Hamiltonian of the
system. In this work we f fthe best known of d prove that, when considered in
composite quantum systems, it defines partition functions that do not factorize as products of partition functions
of the noninteracting subsystems, even in the themodynamical regime. This implies that it is not possible to
h h lei

al levels (ipically the orthogor

: the internal energy, or
entropy by using these models. Therefore, we conclude that this distribution inspired by Sehridinger's idea
cannot be used to construct an appropriate quantum equilibrium thermodynaics.

DOI: 10.1103/PhysRevE.91022137 PACS number(s): 05.30.Ch, 05.70.~a, 03.65.Aa.
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coupIing to the position degrees of freedom in the form /1 + e cos OH),
where H corresponds to a two-level system.
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A very simple model with Mc = R?, Mg = CP! and V =0 (quanturp
coupIing to the position degrees of freedom in the form /1 + e cos0H),
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Results for few particles

A very simple model with Mc = R2, Mg = CP* and V =0 (quantum
coupling to the position degrees of freedom in the form /1 + e cos0H),
where H corresponds to a two-level system.

0,035

25 3

T(ke=1)



Application II: Definition of hybrid ensembles

Thermodynamic limit

Additivity of the thermodynamic functions, or, equivalently, separability
of the density matrix p(&) is recovered in the thermodynamic limit:



Application II: Definition of hybrid ensembles

Thermodynamic limit

Additivity of the thermodynamic functions, or, equivalently, separability
of the density matrix p(&) is recovered in the thermodynamic limit:

Definition

Consider a family of models, each defined on a phase space of the form
Mé’”’ X /\/Ig”’, and an observable AN». Consider also the volume V/Nm
associated to the (classical) degrees of freedom of the positions of the
classical subsystems, which we assume that do not interact. Then, we
will claim that A is the thermodynamic limit of the magnitude A if
A® = |im AN (1)

N, — o0

and the limit process satisfies that

lim VNo/N,, is constant. (2)

N,,— o0
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Thermodynamic limit

The thermodynamic limit of the HCE ensemble is represented by the
operator

Ta(he)) 5 Tr(AER)

)
) d)m(Mk
p(g) —e dlm(MQ) ]IdlmMQ ® e ]Idlka

Such an operator is trivially separable at any temperature and leads to
additive entropy and energy functions, also at any temperature.
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Control of hybrid systems: the concept

The dynamics of a hybrid system corresponds to the integral curves of a
vector field Xg, on M = M¢c x Mg which is Hamiltonian with respect to
the symplectic form w = wc + h~lwg.

Controls on the dynamics as elements in the Hamiltonian fy give rise to
control vector fields X¢, which are also Hamiltonian and a controlled
dynamical system which can be written as

X =Xg, + > ui(t)Xc.

Notions as local accessibility/controlability can be formulated, as it is
usually done on classical systems, by using Rashevsky-Chow theorem.
This has important applications in the control of chemical reactions and
processes where the quantum aspect of electron dynamics becomes
relevant, such as photo-induced processes.
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Control of hybrid systems: hybrid splines

We can consider the generalization of the definition of cubic splines for
classical or quantum manifolds.

week endin;

PRL 109, 100501 (2012) PHYSICAL REVIEW LETTERS 7 SEPTEMBER 2012

Quantum Splines

Dorje C. Brody,' Darryl D. Holm,? and David M. Meier”

'Mathematical Sciences, Brunel University, Uxbridge UBS 3PH, United Kingdom
*Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
(Received 20 June 2012; published 4 September 2012)

A quantum spline is a smooth curve parametrized by time in the space of unitary transformations,
whose associated orbit on the space of pure states traverses a designated set of quantum states at
designated times, such that the trace norm of the time rate of change of the associated Hamiltonian is
minimized. The solution to the quantum spline problem is obtained, and is applied in an example that
illustrates quantum control of coherent states. An efficient numerical scheme for computing quantum
splines is discussed and implemented in the examples.

DO 10.1103/PhysRevLett.109.100501 PACS numbers: 03.67.Ac, 02.30.Xx, 02.60.Ed, 42.50.Dv
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Control of hybrid systems: hybrid splines

We can consider the generalization of the definition of cubic splines for
classical or quantum manifolds.

Problem

Given a set of k points in the hybrid phase space M = M¢ x Mg and a
set of times {t;}j—1.... k, find the control functions {u, }+ which define
the electronic Hamiltonian rate change

dH(t) |
dt = u(t);

in such a way that the hybrid system driven by the vector field Xj,

2
(fu=">; % + V(R;) + epr)) passes arbitrarily close to the given points
at the given times, and minimizes the power injected in the system that

can be computed as
/dt dH dH
dt’ dt /-
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Control of hybrid systems: hybrid splines

Why? This is an approach which may serve to define controls for
chemical reactions, where the states of the different chemical species
correpond to local minima of the Potential Energy Surface (PES) of
the system, parametrized by the classical degrees of freedom of the
moleculae.
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A toy model of hybrid splines

We consider a simple example where:

> Mc = R?, with coordinates (@, P)
> Mg = CP'. We will use the representation as orthogonal projectors
on one-dimensional subspaces of C? (i.e., pure density matrices p)
» We consider as energy function
P2 Q2

fH:7+7+Q*Tr(pH)

and H is the quantum-Hamiltonian whose time-dependence must be
determined

» The distance to the target points is defined as the sum of the
canonical riemannian distances (classical and quantum).
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Preliminary results

Two limiting cases:

Limit of pure quantum points




Conclusions and Outlook



Conclusions and Outlook

Conclusions

» The geometric formulation of Quantum Mechanics can be
generalized to the case of hybrid systems and provide a rigorous
framework for molecular models



Conclusions and Outlook

Conclusions

» The geometric formulation of Quantum Mechanics can be
generalized to the case of hybrid systems and provide a rigorous
framework for molecular models

» Because of the Hamiltonian nature of the dynamics, we are able to
formulate a Statistical Dynamical model for Ehrenfest equations,
which allows us to recover electronic decoherence.



Conclusions and Outlook

Conclusions

» The geometric formulation of Quantum Mechanics can be
generalized to the case of hybrid systems and provide a rigorous
framework for molecular models

» Because of the Hamiltonian nature of the dynamics, we are able to
formulate a Statistical Dynamical model for Ehrenfest equations,
which allows us to recover electronic decoherence.

» The additivity of thermodynamical functions is a difficult issue that
fails for small number of particles, although it is well behaved in the
thermodynamic limit. This is relevant when considering computer
simulations.



Conclusions and Outlook

Conclusions

The geometric formulation of Quantum Mechanics can be
generalized to the case of hybrid systems and provide a rigorous
framework for molecular models

Because of the Hamiltonian nature of the dynamics, we are able to
formulate a Statistical Dynamical model for Ehrenfest equations,
which allows us to recover electronic decoherence.

The additivity of thermodynamical functions is a difficult issue that
fails for small number of particles, although it is well behaved in the
thermodynamic limit. This is relevant when considering computer
simulations.

The nonlinear molecular dynamics, when considered within

(classical) control theory, offers a wide and interesting range of
relevant applications and problems.
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Conclusions and Outlook

Outlook

Understanding better the behavior in the thermodynamic limit of
statistical systems.

Study in detail the notion of controlability of hybrid systems and the
applications of the notion of hybrid splines in Chemistry.

Use of machine-learning techniques to optimize parameters in the
models. Application to the design and synthesis of organic dyes for
DSSC solar cells.

Suggestions? ...



Thanks for your attention :-)
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