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Introduction: the problem of GQM

General formulation of a physical system
I A set of states S representing the relevant degrees of freedom

I A set of observables O containing the posibles representations of
physical magnitudes in our model

I A way of representing the measurement process, i.e., an aplication
S ×O → R assigning a real number to the measurement of every
magnitude on every state.

I Besides, if we intend to define a dynamical system, we have to add a
differential (difference) equation whose solutions represent the
trajectories of the physical system.

Is it possible to find a common framework for Classical and Quantum
Mechanics?
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Classical nonrelativistic Hamiltonian system

I The set of states S corresponds to the phase
space of the system, i.e., the positions of the
system and their corresponding momenta

I the set of observable O corresponds to the real-valued functions
defined on S, i.e., O = F(S),

I measurement process is just the evaluation of the function on the
state:

S ×O 3 (s, f ) 7→ f (s) ∈ R

I Dynamics correponds to the integral curve of
the Hamiltonian vector field associated to the
function h which represents the energy of the
system:

Xh = {h, ·}
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Nonrelativistic Hamiltonian quantum system (Schrödinger formalism)

I The set of states S corresponds to a Hilbert
space (projective) H

I the set of observables O corresponds to the set of selfadjoint
operators on H,

I measurement corresponds to the evaluation

S ×O 3 (ψ,K ) 7→ 〈ψ|Kψ〉
〈ψ|ψ〉

∈ R

I Dynamics can be introduced via Schrödinger
equation, associated to the Hamiltonian
operator

i~ ∂
∂t |ψ(t)〉 = H|ψ(t)〉



Nonrelativistic Hamiltonian quantum system (Schrödinger formalism)

I The set of states S corresponds to a Hilbert
space (projective) H

I the set of observables O corresponds to the set of selfadjoint
operators on H,

I measurement corresponds to the evaluation

S ×O 3 (ψ,K ) 7→ 〈ψ|Kψ〉
〈ψ|ψ〉

∈ R

I Dynamics can be introduced via Schrödinger
equation, associated to the Hamiltonian
operator

i~ ∂
∂t |ψ(t)〉 = H|ψ(t)〉



Nonrelativistic Hamiltonian quantum system (Schrödinger formalism)

I The set of states S corresponds to a Hilbert
space (projective) H

I the set of observables O corresponds to the set of selfadjoint
operators on H,

I measurement corresponds to the evaluation

S ×O 3 (ψ,K ) 7→ 〈ψ|Kψ〉
〈ψ|ψ〉

∈ R

I Dynamics can be introduced via Schrödinger
equation, associated to the Hamiltonian
operator

i~ ∂
∂t |ψ(t)〉 = H|ψ(t)〉



Nonrelativistic Hamiltonian quantum system (Schrödinger formalism)

I The set of states S corresponds to a Hilbert
space (projective) H

I the set of observables O corresponds to the set of selfadjoint
operators on H,

I measurement corresponds to the evaluation

S ×O 3 (ψ,K ) 7→ 〈ψ|Kψ〉
〈ψ|ψ〉

∈ R

I Dynamics can be introduced via Schrödinger
equation, associated to the Hamiltonian
operator

i~ ∂
∂t |ψ(t)〉 = H|ψ(t)〉



Nonrelativistic Hamiltonian quantum system (Heisenberg formalism):

II Model is built on the set of physical
magnitudes O , which are the real part of a
complex C∗–algebra.

I The set of states corresponds to the dual vector space to O, i.e.
linear functionals ρ : O → C.

I Measurement corresponds to the action of the operator on the state

S ×O 3 (ρ,K ) 7→ ρ(K ) ∈ R

I Dynamics is introduced by Heisenberg
equation:

i~ ∂
∂t K (t) = HK (t)− K (t)H
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Introduction: GQM

Physical states I: Hilbert space

We choose to consider Hilbert space H as a real differentiable manifold
MQ . For the sake of simplicity, we will consider that the quantum system
is finite-dimensional.
I The set

|ψ〉 =
∑

j

zj |ej〉 =⇒ Cn 3 (z1, . . . , zn)→ (Re(z1), Im(z1), . . . ,Re(zn), Im(zn))

∼ MQ

I The scalar product can be described by a tensor on H:

〈ψ1|ψ2〉 = h(Xψ1 ,Xψ2 ) Xψ1 = (ψ,ψ1); Xψ2 = (ψ,ψ2)

By using the realification introduced
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I The complex structure of H becomes a 1:1 tensor field:

J : TMQ × T ∗MQ → C∞(MQ); J(X R
ψ ,X I

ψ) = (−X I
ψ,X R

ψ )

J =
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Theorem
Let (H, h) be a n–dimensional Hilbert space. Then (g , ω, J) endow MQ
with a Kähler structure of (real) dimension 2n.
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Physical States II: the projective space

Questions:
I How can we define the projective space corresponding to H?
I Can we characterize the tensor fields introduced above?

True physical states correspond to the
equivalence class:
|ψ1〉, |ψ2〉 ∈ H0 = H− {~0}
|ψ1〉 ∼ |ψ2〉 ⇔ |ψ2〉 = λ|ψ1〉; λ ∈ C
The set of these equivalence classes
define the projective space PH, which
is diffeomorphic to the space of
projectors on one-dimensional
subspaces of the Hilbert space H:

[ψ] ' |ψ〉〈ψ|
〈ψ|ψ〉

.
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Question: How can we construct this object from MQ?

Consider two vector fields on MQ :

Lemma
∆ y Γ define an integrable distribution on MQ , and hence a foliation P.
This foliation is the geometric analogue of PH.

We thus have a projection

π : MQ → P.

But tensors G and Ω can not be projected directly

L∆G = −2G L∆Ω = −2Ω.

Solution:

GP = 〈ψ|ψ〉G −∆⊗∆− Γ⊗ Γ ΩP = 〈ψ|ψ〉Ω− (∆⊗ Γ− Γ⊗∆)
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Introduction: GQM

Physical magnitudes I: functions

Let us consider the sesquilinear forms defined on MQ :

fA(ψ(~q, ~p)) = 1
2 〈ψ(~q, ~p)|Aψ(~q, ~p)〉,A ∈ End(H)

We shall denote as F2(MQ) the set of those functions.
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On End(H) we have three algebraic
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I The associative product:
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I and the skew-symmetrical one:
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Introduction: GQM

Physical magnitudes II: algebraic structures

Tensors G and Ω define on F2(MQ)
the following structures:
I G recovers the anti-commutator

of the operators

G(dfA, dfB) = fA◦B

I Poisson tensors recovers the
commutator:

Ω(dfA, dfB) = fi[A,B]

On End(H) we have three algebraic
structrues
I The associative product:

A,B 7→ A.B

I its symmetrical part

A,B 7→ A ◦ B = (AB + BA)

I and the skew-symmetrical one:

A,B 7→ [A,B] = −i(AB − BA)



Introduction: GQM

Physical magnitudes II: algebraic structures

Tensors G and Ω define on F2(MQ)
the following structures:
I G recovers the anti-commutator

of the operators

G(dfA, dfB) = fA◦B := {fA, fB}+

I Poisson tensors recovers the
commutator:

Ω(dfA, dfB) = fi[A,B]

On End(H) we have three algebraic
structrues
I The associative product:

A,B 7→ A.B

I its symmetrical part

A,B 7→ A ◦ B = (AB + BA)

I and the skew-symmetrical one:

A,B 7→ [A,B] = −i(AB − BA)



Introduction: GQM

Physical magnitudes II: algebraic structures

Tensors G and Ω define on F2(MQ)
the following structures:
I G recovers the anti-commutator

of the operators

G(dfA, dfB) = fA◦B := {fA, fB}+

I Poisson tensors recovers the
commutator:

Ω(dfA, dfB) = fi[A,B] := {fA, fB}

On End(H) we have three algebraic
structrues
I The associative product:

A,B 7→ A.B

I its symmetrical part

A,B 7→ A ◦ B = (AB + BA)

I and the skew-symmetrical one:

A,B 7→ [A,B] = −i(AB − BA)



Introduction: GQM

Physical magnitudes II: algebraic structures

Tensors G and Ω define on F2(MQ)
the following structures:
I G recovers the anti-commutator

of the operators

G(dfA, dfB) = fA◦B := {fA, fB}+

I Poisson tensors recovers the
commutator:

Ω(dfA, dfB) = fi[A,B] := {fA, fB}

On End(H) we have three algebraic
structrues
I The associative product:

A,B 7→ A.B = 1
2 A◦B + i

2 [A,B]

I its symmetrical part

A,B 7→ A ◦ B = (AB + BA)

I and the skew-symmetrical one:

A,B 7→ [A,B] = −i(AB − BA)



Introduction: GQM

Physical magnitudes II: algebraic structures

Tensors G and Ω define on F2(MQ)
the following structures:
I Associative product

fAB = 1
2 G(dfA, dfB)+ i

2 Ω(dfA, dfB)

I G recovers the anti-commutator
of the operators

G(dfA, dfB) = fA◦B := {fA, fB}+

I Poisson tensors recovers the
commutator:

Ω(dfA, dfB) = fi[A,B] := {fA, fB}

On End(H) we have three algebraic
structrues
I The associative product:

A,B 7→ A.B = 1
2 A◦B + i

2 [A,B]

I its symmetrical part

A,B 7→ A ◦ B = (AB + BA)

I and the skew-symmetrical one:

A,B 7→ [A,B] = −i(AB − BA)



Introduction: GQM

Physical magnitudes III: Projective space

Question:If we consider the system defined on the projective space P,
how can we represent the observables?

I Expectation values

eA(~q, ~p) = 〈ψ(~q, ~p)|Aψ(~q, ~p)〉
〈ψ(~q, ~p)|ψ(~q, ~p)〉

I Dispersions:

∆A = 〈ψ(q, p)|A2ψ(~q, ~p)〉
〈ψ(~q, ~p)|ψ(~q, ~p)〉 −

(
〈ψ(~q, ~p)|Aψ(~q, ~p)〉
〈ψ(~q, ~p)|ψ(~q, ~p)〉

)2
=

= eA2 (ψ)− eA(ψ)2 = GP(deA, deA)
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Physical magnitudes: Spectral information

Let us denote as E(MQ) the set of expection value functions.

Theorem
Let A be a Hermitian operator on H, λ ∈ R an eigenvalue and |ψ∗〉 ∈ H
one corresponding eigenvector. Then:
I eA has a critical point at ψ∗
I eA(ψ∗) = λ

Therefore E(MQ) allows us:
I to represent the expectation value of physical observables
I to recover the spectral information



Introduction: GQM

Physical magnitudes: Spectral information

Let us denote as E(MQ) the set of expection value functions.

Theorem
Let A be a Hermitian operator on H, λ ∈ R an eigenvalue and |ψ∗〉 ∈ H
one corresponding eigenvector. Then:
I eA has a critical point at ψ∗
I eA(ψ∗) = λ

Therefore E(MQ) allows us:
I to represent the expectation value of physical observables
I to recover the spectral information



Introduction: GQM

Summary

QM:
I S = (H, h) or
S = PH

I O = Herm(H)
I 〈ψ|Aψ〉

CM:
I S = (M,Ω)
I O = F(M)
I f (~q, ~p)

GQM
I S = (MQ ,G ,Ω)

or
S = (P,GP ,ΩP)

I O = F2(MQ) or
E(MQ)

I fA(ψ) or eA(ψ)
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How can we define the dynamics

Question: How can we define the dynamics?

I We consider the function fH ∈ F2(MQ) or eH ∈ E(MQ)
I and the corresponding Hamiltonian vector fields (from Ω or ΩP) por

Ω:
XfH = ~−1{fH , ·}; XeH = ~−1{fH , ·}P

I Finally, we claim that the solutions of the physical dynamics
correspond to the integral curves of the Hamiltonian vector fields
XfH or XeH
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Geometric Quantum-Classical Molecular Dynamics

Aplication: Molecular dynamics

System: When modeling a molecule, it is impossible to treat all degrees
of freedom as a quantum system. As the dynamical time scales are very
different, we assume that the core can be represented as a point in a
classical manifold (MC ) while the valence electrons are represented as
rays on a Hilbert space H.
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Geometric Quantum-Classical Molecular Dynamics

Quantum-classical molecular dynamics

The basic steps to link the full quantum description of the complete
system with the hybrid quantum-classical description are the following:
I First of all, we assume that the wave function of the total system is

separable, i.e., Ψ(r ,R) ∈ L2(R6) can be written as:

Ψ = χN(R)⊗ ψe(r); χ(R), ψe(r) ∈ L2(R3),

I These two wave functions are chosen to satisfy a couple of
self-consistent equations associated to the original Schrödinger
equation.

i~χ̇ = − ~
2m ∆Rχ+ 〈ψ|Vψ〉; χ(R, 0) = χ0(R)

i~ψ̇ = − ~
2m ∆rψ + 〈χ|Vχ〉; ψ(r , 0) = ψ0(r)



I The nuclear wave function can be approximated by an approximate
delta function (roughly speaking, this implies that the probability
density is a gaussian function with variance ε)

Then, it can be proved that:

Theorem
The error of considering the evolution Ψ(t) as a separable state is of
order ε/L, where L is the natural length of the system.



By using WKB method, the nuclear wave function can be written as

χ(R, t) = A(R, t)e i
~ S(R,t) + o

(√
m
M

)
,

The corresponding equations for the amplitude and the phase read:

∂S
∂t + 1

2M (∇RS)2 + 〈ψ|Vψ〉 = 0

∂A2

∂t + divR

(
A2∇RS

M

)
= 0

First equation can be read as a Hamilton-Jacobi equation for the
momentum

P = ∇RS.

Combining WKB expansion and the approximate-delta assumption, it is
possible to prove, rigorously, that error considering the wave function
constructed as the tensor product of these (Ehrenfest) equations as the
solution of the original complete Schrödinger equation is of order
((ε/L)2 +

√
m/M).



Dynamics: Ehrenfest equations ( (~R, ~P) ∈ MC and |ψ〉 ∈ H,
He(~R) ∈ Herm(H))

Ṙk = Pk

Mk

Ṗk = −grad~R〈ψ|He(~R)ψ〉

i~d |ψ(t)〉
dt = He(~R)|ψ(t)〉



Dynamics: Ehrenfest equations ( (~R, ~P) ∈ MC and |ψ〉 ∈ H,
He(~R) ∈ Herm(H))

Ṙk = Pk

Mk

Ṗk = −grad~R〈ψ|He(~R)ψ〉

i~d |ψ(t)〉
dt = He(~R)|ψ(t)〉

Question: Is it possible to identify a Hamiltonian structure for these
equations?





Characterizing the hybrid system

I The quantum subsystem is assumed to be finite dimensional
I The space of states is S = MC ×MQ

I The set of physical magnitudes is O = C∞(MC ×MQ).
I We define a symplectic structure as ω = ωC + ~ωQ

I And a Hamiltonian function written as
fH(~R, ~P, ~q, ~p) =

∑
k

P2
k

2Mk
+ 〈ψ|He(R)ψ〉

〈ψ|ψ〉

Theorem
Ehrenfest equations define a Hamiltonian system on (MC ×MQ , ω).

Corolary
Being Hamiltonian and symplectic, we can use the symplectic volume to
define a measure on MC ×MQ which is invariant under the dynamics:

µ = ωdim(MC×MQ)
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Example: Classical integrable system (action-angle variables) coupled to
a two-level quantum system (very simplified model of an atom adsorbed
in a metal)

fH(J , θ, q, p) = Jθ + 〈ψ(q, p)|(σx + εJ cos θσz )|ψ(q, p)〉
〈ψ(q, p)|ψ(q, p)〉

Blue curve (ε = 0.15) almost linear behavior and red curve (ε = 1.55),
clearly non-linear.
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Application I: Ehrenfest Statistical Models and Decoherence

Statistical mechanical system

Let us consider the symplectic measure dµQC = ωn and the family of
measures of the form

d µ̂ = FQC (ξ, ψ)dµQC ,

where FQC (ξ, ψ) satisfies∫
M

dµQC (ξ, ψ)FQC (ξ, ψ) = 1, FQC (ξ, ψ) ≥ 0, ∀ξ ∈ MC , ψ ∈ MQ

Theorem
If FQC (ξ, ψ) is a constant of the motion, d µ̂ is an invariant measure for
Ehrenfest dynamics
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Application I: Ehrenfest Statistical Models and Decoherence

Ehrenfest Statistical Models

Definition of the statistical model
A physical observable A will now be represented by a function fA on the
manifold M. To define statistical averages of observables depending on
classical and quantum degrees of freedom (i.e., functions as fA(ξ, ψ)) we
will consider a probability density FQC defined on M, which allows us to
write

〈A〉 =
∫

M
dµQC (ξ, ψ)FQC (ξ, ψ)fA(ξ, ψ),

Example
If we consider the Hamiltonian function of the hybrid system above, we
obtain

〈H〉 =
∫

M
dµQC (ξ, ψ)FQC (ξ, ψ)fH(ξ, ψ),
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If FQC (ξ, ψ) is not a constant of the motion for Ehrenfest dynamics, the
measure is not invariant. We can define thus the master equation for our
system as the Hamiltonian flow of fH on C∞(MC ×MQ):

dFQC
dt = {FQC , fH}

From the solution, we can define the time-dependence of the
corresponding average values associated to the time-dependent
probability distribution FGQ(ξ, ψ; t)dµ(ξ, ψ):

〈A〉(t) =
∫

M
dµQC (ξ, ψ)FQC (ξ, ψ; t)fA(ξ, ψ),



If FQC (ξ, ψ) is not a constant of the motion for Ehrenfest dynamics, the
measure is not invariant. We can define thus the master equation for our
system as the Hamiltonian flow of fH on C∞(MC ×MQ):

dFQC
dt = {FQC , fH}

From the solution, we can define the time-dependence of the
corresponding average values associated to the time-dependent
probability distribution FGQ(ξ, ψ; t)dµ(ξ, ψ):

〈A〉(t) =
∫

M
dµQC (ξ, ψ)FQC (ξ, ψ; t)fA(ξ, ψ),



Application I: Ehrenfest Statistical Models and Decoherence

An alternative framework
An alternative representation of the hybrid system is:

ρ̂(ξ) :=
∫
PH

dµQ(ψ)FQC (ξ, ψ) |ψ〉〈ψ|
〈ψ,ψ〉

.

Proposition
By construction, ρ̂(ξ) is self-adjoint, positive definite, and normalized as∫

MC

dµ(ξ)Trρ̂(ξ) = 1

Proposition
By construction, ρ̂(ξ) allows us to obtain the average value of any
observables of the form Â(ξ) as∫

MC

dµ(ξ)Tr(ρ̂(ξ)Â(ξ)) = 1
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The solution of the dynamical equation allows us to write the expression
of the dynamics for the matrix ρ̂(ξ):

ρ̂(ξ, t) :=
∫

MQ

dµQ(ψ)FQC (ξ, ψ; t) |ψ〉〈ψ|
〈ψ,ψ〉

We can also build the density matrix of the marginal quantum
distribution of the hybrid system:

Definition
The density matrix representing the quantum subsystem of our hybrid
system is obtained by averaging the effect of the classical subsystem

ρ̂(t) :=
∫

MC

dµC (ξ)ρ̂(ξ; t)

This construction is formally analogous to the usual partial trace method
for the contraction of a quantum system.
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Proposition
The dynamics associated to the statistical description defines a
non-unitary evolution which is able to exhibit decoherence effects on the
quantum subsystem. This is useful for applications, since the
non-statistical description is not able to capture decoherence.

We considered a simple example of an ensemble of Na+ ions, simulated
with the code Octopus, each with the same initial quantum state but
with different classical initial conditions, we obtain a change in the purity
of the quantum subsystem depending on the number of particles
considered in the ensemble and their initial (classical) conditions:
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Composing molecular systems

Let us consider first the composition of hybrid systems. Given two hybrid
systems, defined in phase spaces M1

C ×M1
Q and M2

C ×M2
Q , we shall

define a composed hybrid system in MC ×MQ where

I the classical subsystem is the Cartesian product of the classical
subsystems:

MC = M1
C ×M2

C ;
I the set of quantum states of the product system corresponds to the

projective space of the tensor product space

MQ = M1
Q ⊗M2

Q .
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Non-interacting particles: internal energy

If we consider a system composed of Nm independent subsystems, the
Hamiltonian operator Ĥ is defined as a family of operators parametrized

by the classical variables ξ ∈ MC acting on the Hilbert space H
Nm︷ ︸︸ ︷

⊗ · · ·⊗H
(H being a d-dimensional complex vector space that represents the
quantum degrees of freedom of each component and n = dNm the
dimension of the total Hilbert space), with the expression:

Ĥ(ξ) =
Nm∑
k=1

Ĥk(~ξk) =
Nm∑
k=1

k−1︷ ︸︸ ︷
ÎH ⊗ · · · ⊗ ÎH⊗ĥ(~ξk)⊗

Nm−k︷ ︸︸ ︷
ÎH ⊗ · · · ⊗ ÎH,

where ĥ(~ξk) denotes the Hamiltonian of each component in the system,
which depends on the classical degrees of freedom of the corresponding
classical space, and ÎH is the identity operator on H.
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In general, we can write that, if we consider the classical variables as
ξ = (R,P), and a coupling of the quantum degrees of freedom to the
”position” variables

ĥ(Rk ,Pk) =
(

P2
k

2Mk
+ V (R)

)
I + ĥ(Rk).

Definition
The internal energy of the hybrid system is defined as the expression

U = 〈fH〉 =
∫

MC

dµC (ξ)Tr(ρ̂(ξ)Ĥ(ξ))
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ĥ(Rk ,Pk) =
(

P2
k

2Mk
+ V (R)

)
I + ĥ(Rk).
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Application II: Definition of hybrid ensembles

The entropy of a hybrid system

When defining the entropy of any statistical system it is very important
to take into account the proper definition of its probabilistic nature.
When considering the entropy of a system the set of microstates
considered must be chosen in such a way that each one of them defines a
mutually exclusive event with respect to any other state. This is what
von Neumann entropy does for purely quantum systems, where the
spectral decomposition of the density matrix implements the mutually
exclusiveness of the set of events.

In the case of a hybrid system, two points of the phase space
(ξ1, ψ1), (ξ2, ψ2) ∈ MC ×MQ represent mutually exclusive events if and
only if ξ1 6= ξ2 or 〈ψ1|ψ2〉 = 0. For each value of ξ, we can compute the
value of the von Neumann entropy S(ξ) associated with ρ(ξ). This is
thus a function of the classical manifold MQ and as such can be
considered to be a classical-density for the total entropy.
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As any other point in MC is mutually exclusive with respect to ξ, in order
to define consistently the entropy of the hybrid system, we must consider:

Definition
The entropy of the hybrid system is obtained as the corresponding sum
over all possible classical events, i.e., the integral

S = −kB

∫
MC

dµC (ξ)S(ξ),

where the entropy density S(ξ) is defined as

S(ξ) = Tr (ρ̂(ξ) log ρ̂(ξ)) .
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Application II: Definition of hybrid ensembles

Hybrid ensembles: definition

Generally speaking, any thermodynamic equilibrium (quantum, classical
or hybrid quantum/classical) requires two conditions:

I a state of equilibrium (we see examples later),
I and associated thermodynamic functions (such as entropy and

internal energy) that are extensive.
We can safely consider a composition of non-interacting subsystems,
which is an approximation valid for real hybrid systems which are, either
uncoupled or which have only short-range interactions. In such a case,
the effect of the interaction on the total behavior is negligible and the
approximation of independent systems is reasonable.
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Hybrid ensembles: Microcanonical

Consider the total phase space of the hybrid system M = MC ×MQ and
the energy function

fH =
∑

k

P2
k

2Mk
+ V (R) + eH(R,P, ψ)

.

The state of equilibrium of the hybrid microcanonical ensemble
corresponds to a distribution on M where all points with a fixed energy E
are equally probable, i.e.

F MC
QC (ξ, ψ) = δ(E − fH(ξ, ψ))

VE
,

where VE =
∫

M dµQC δ(E − fH(ξ, ψ)) represents the total volume of the
level set of the energy with value E .
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Hybrid ensembles: Canonical

The canonical ensemble can be constructed from the micro-canonical one
exactly as in the classical case. The probability density corresponding to
the state of equilibrium is written thus as:

F C
QC (ξ, ψ) = Z−1

HCE e−βfH (ξ,ψ),

where

ZHCE =
∫

M
dµQC (ξ, ψ)e−βfH (ξ,ψ).

and
fH =

∑
k
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k

2Mk
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Additivity of the thermodynamic functions

With these definitions, it is now time to characterize the additive
behavior of the functions when considering a composed system. It is
important to notice that the pure quantum limit of the HCE, exhibits a
strange behavior in this regard.
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Application II: Definition of hybrid ensembles

Results for few particles

A very simple model with MC = R2, MQ = CP1 and V = 0 (quantum
coupling to the position degrees of freedom in the form

√
1 + ε cos θĤ),

where Ĥ corresponds to a two-level system.
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Application II: Definition of hybrid ensembles

Thermodynamic limit

Additivity of the thermodynamic functions, or, equivalently, separability
of the density matrix ρ(ξ) is recovered in the thermodynamic limit:

Definition
Consider a family of models, each defined on a phase space of the form
MNm

C ×MNm
Q , and an observable ANm . Consider also the volume V Nm

associated to the (classical) degrees of freedom of the positions of the
classical subsystems, which we assume that do not interact. Then, we
will claim that A∞ is the thermodynamic limit of the magnitude A if

A∞ = lim
Nm→∞

ANm ; (1)

and the limit process satisfies that

lim
Nm→∞

V Nm/Nm is constant. (2)
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Thermodynamic limit

Theorem
The thermodynamic limit of the HCE ensemble is represented by the
operator

ρ̂(ξ) = e−β
Tr(Ĥ(ξ))
dim(MQ ) IdimMQ =

⊗
k

e
−β Tr(Ĥ(ξk ))

dim(Mk
Q ) IdimMk

Q
.

Such an operator is trivially separable at any temperature and leads to
additive entropy and energy functions, also at any temperature.



Application III: Control of
hybrid ensembles



Application III: Control of hybrid ensembles

Control of hybrid systems: the concept

The dynamics of a hybrid system corresponds to the integral curves of a
vector field XfH on M = MC ×MQ which is Hamiltonian with respect to
the symplectic form ω = ωC + ~−1ωQ .

Controls on the dynamics as elements in the Hamiltonian fH give rise to
control vector fields XCi which are also Hamiltonian and a controlled
dynamical system which can be written as

X = XfH +
∑

i
ui (t)XCi .

Notions as local accessibility/controlability can be formulated, as it is
usually done on classical systems, by using Rashevsky-Chow theorem.
This has important applications in the control of chemical reactions and
processes where the quantum aspect of electron dynamics becomes
relevant, such as photo-induced processes.
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Control of hybrid systems: hybrid splines
We can consider the generalization of the definition of cubic splines for
classical or quantum manifolds.

Quantum Splines
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Control of hybrid systems: hybrid splines
We can consider the generalization of the definition of cubic splines for
classical or quantum manifolds.

Problem
Given a set of k points in the hybrid phase space M = MC ×MQ and a
set of times {tj}j=1,··· ,k , find the control functions {uα}α which define
the electronic Hamiltonian rate change

dH(t)
dt = u(t);

in such a way that the hybrid system driven by the vector field XfH

(fH =
∑

i
P2

i
2Mi

+ V (Ri ) + eH(t)) passes arbitrarily close to the given points
at the given times, and minimizes the power injected in the system that
can be computed as ∫

dt
〈

dH
dt ,

dH
dt

〉
.
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Control of hybrid systems: hybrid splines
Why? This is an approach which may serve to define controls for
chemical reactions, where the states of the different chemical species
correpond to local minima of the Potential Energy Surface (PES) of
the system, parametrized by the classical degrees of freedom of the
moleculae.
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A toy model of hybrid splines

We consider a simple example where:

I MC = R2, with coordinates (Q,P)
I MQ = CP1. We will use the representation as orthogonal projectors

on one-dimensional subspaces of C2 (i.e., pure density matrices ρ)
I We consider as energy function

fH = P2

2 + Q2

2 + Q ∗ Tr(ρH)

and H is the quantum-Hamiltonian whose time-dependence must be
determined

I The distance to the target points is defined as the sum of the
canonical riemannian distances (classical and quantum).
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Conclusions

I The geometric formulation of Quantum Mechanics can be
generalized to the case of hybrid systems and provide a rigorous
framework for molecular models

I Because of the Hamiltonian nature of the dynamics, we are able to
formulate a Statistical Dynamical model for Ehrenfest equations,
which allows us to recover electronic decoherence.

I The additivity of thermodynamical functions is a difficult issue that
fails for small number of particles, although it is well behaved in the
thermodynamic limit. This is relevant when considering computer
simulations.

I The nonlinear molecular dynamics, when considered within
(classical) control theory, offers a wide and interesting range of
relevant applications and problems.
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Thanks for your attention :-)
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