Harmonic maps and shift-invariant subspaces

Rui Pacheco

University of Beira Interior

rpacheco@ubi.pt Joint work with A. Alemand (University of Lund) and J.C. Wood (University of Leeds)

September 2018

Definition (J. Eells and J.H. Sampson 1964)

A map $\varphi : (M, g) \to (N, h)$ of Riemannian manifolds is *harmonic* if it is a critical point of the energy functional

$$\int |d\varphi|^2 d \operatorname{vol}_M$$

on every compact subdomain of M.

The associated Euler-Lagrange equation is

$$\tau_{\varphi} := \mathrm{trace}_{g} \nabla d\varphi = \mathbf{0},$$

where ∇ is the connection on $T^*M \otimes \varphi^{-1}TN$ induced by the Levi-Civita connections on M and N. The quantity $\tau_{\varphi} \in C^{\infty}(\varphi^{-1}TN)$ is called the *tension field* of φ .

Some remarkable classes of harmonic maps:

- harmonic maps $S^1 \rightarrow N$ are the closed geodesics of N, parameterized by arclength;
- holomorphic and anti-holomorphic maps between Kähler manifolds are harmonic;
- a map φ = (φ₁,...,φ_n) : M → ℝⁿ is harmonic if and only if each component φ_i is a harmonic function in the usual sense, that is, it satisfies the Laplace's equation Δφ_i = 0;
- an isometric immersion $\varphi : (M,g) \rightarrow (N,h)$ is a minimal surface (soap film) if and only if it is harmonic;
- several classes of surfaces (e.g. CMC, CGC, Willmore surfaces) are characterized by the harmonicity of a suitable defined Gauss map;
- non-linear sigma models in the physics of elementary particles.

A (10) N (10)

For two-dimensional domains, we have the following:

- the energy is conformally invariant for the domain metric, hence we can refer to harmonic maps from a Riemann surface *M* without specify a representative of the conformal class of metrics associated to the complex structure of *M*;
- the Euler-Lagrange equation takes the form (in a local complex coordinate z of a Riemann surface M):

$$(\varphi^* \nabla^{\mathsf{N}})_{rac{\partial}{\partial z}} rac{\partial \varphi}{\partial z} = 0,$$

that is, $\frac{\partial \varphi}{\partial z}$ is holomorphic with respect to the Kozsul-Malgrange holomorphic structure induced by $\varphi^* \nabla^N$ in $\varphi^* T^{\mathbb{C}} N$.

Harmonic maps from surfaces into Grassmannians

- Interpret a smooth map ψ : M → Gr_k(ℂⁿ) as a smooth complex subbundle ψ of the trivial bundle <u>ℂ</u>ⁿ := M × ℂⁿ.
- Define vector bundle morphisms

$$A'_{\psi}, A''_{\psi} : \underline{\psi} \to \underline{\psi}^{\perp}$$

by

$$A_{\psi}'(v) = \pi_{\psi}^{\perp}(\partial_z v), \quad A_{\psi}''(v) = \pi_{\psi}^{\perp}(\partial_{\bar{z}} v)$$

for each smooth section v of ψ .

• Equip each subbundle $\underline{\psi}$ of $\underline{\mathbb{C}}^n$ with the connection induced from that of $\underline{\mathbb{C}}^n$ and consider on $\underline{\psi}$ the corresponding Koszul–Malgrange holomorphic structure.

 ψ is harmonic if and only if A'_{ψ} and A''_{ψ} are holomorphic.

• Hence, if we have an harmonic map $\psi : M \to Gr_k(\mathbb{C}^n)$, we can remove the singularities in order to obtain a vector subbundle $G^{(1)}(\psi)$ \mathbb{C}^n such that

 $G^{(1)}(\psi) = \operatorname{Im} A'_{\psi}$ almost everywhere on M.

• The vector bundle $G^{(1)}(\psi)$ represents a new harmonic maps into a certain Grassmannian. Hence we can proceed recursively in order to obtain a sequence

 $\{G^{(r)}(\psi)\}_{r\in\mathbb{Z}}$

of harmonic maps.

Let $\varphi : M \to U(n)$ be a smooth map, where U(n) is equipped with a bi-invariant metric and M is a Riemman surface.

In local coordinates, we write

$$\varphi^{-1}d\varphi =: Adz + Bd\overline{z}.$$

The matrix-valued smooth functions A, B satisfy the Maurer-Cartan equation

$$A_{\bar{z}} - B_z = [A, B]$$
 (integrability)

The smooth map φ is harmonic if and only if

$$A_{\bar{z}} + B_z = 0$$
 (harmonicity)

Harmonic maps from surfaces into the unitary group

K. Uhlenbeck (1989) observed that

$$\begin{cases} A_{\bar{z}} - B_z = [A, B] \\ A_{\bar{z}} + B_z = 0 \end{cases} \iff \boxed{(A^{\lambda})_{\bar{z}} - (B^{\lambda})_z = [A^{\lambda}, B^{\lambda}]} \text{ for all } \lambda \in S^1, \end{cases}$$

where
$$A^{\lambda} = \frac{1}{2}(1 - \lambda^{-1})A$$
 and $B^{\lambda} = \frac{1}{2}(1 - \lambda)B$.

Then, if φ is harmonic, we can integrate to obtain an *extended solution*, that is, a map $\Phi : S^1 \times M \to U(n)$ satisfying $\Phi(1, \cdot) = I$, $\varphi = \Phi(-1, \cdot)$ and

$$\Phi(\lambda,\cdot)^{-1}d\Phi(\lambda,\cdot)=A^{\lambda}dz+B^{\lambda}d\bar{z}.$$

We can consider Φ as a map from M into the *loop group*

$$\Omega \cup (n) = \{ \gamma : S^1 \to \cup (n) \text{ smooth} : \gamma(1) = I \}.$$

G. Segal (1989) formulated the harmonicity equations for maps from surfaces into U(n).

• This model associates to each loop $\gamma: S^1 \to U(n)$ the subspace of $L^2(S^1, \mathbb{C}^n)$ defined by $W = \gamma H_+$, where is the usual Hardy space of \mathbb{C}^n -valued functions, i.e.

$$H_+ = \operatorname{Span}\{\lambda^i e_j: i \ge 0, j = 1, \dots, n\}.$$

If a closed subspace W of L²(S¹, Cⁿ) is of the form W = γH₊ for some loop γ : S¹ → U(n), then W is certainly shift-invariant, i.e. SW ⊆ W where S is the forward shift on L²(S¹, Cⁿ):

$$(Sf)(\lambda) = \lambda f(\lambda) \qquad (\lambda \in S^1).$$

Harmonic maps and shift-invariant subspaces

• A smooth map $\Phi: M \to \Omega U(n)$ corresponds to a smooth subbundle W of $M \times L^2(S^1, \mathbb{C}^n)$, whose (shift-invariant) fibre at z is given by

$$W(z) = \Phi(z)H_+.$$

• We have: Φ is an extended solution if and only if

$$S\partial_z W(z) \subset W(z), \quad \partial_{\overline{z}} W(z) \subset W(z).$$

The first condition means that $S\partial_z f(z)$ is a section of W for every smooth section $f: M \to W$. The second condition is interpreted in a similar way and it is equivalent to the holomorphicity of W.

• By extension we shall call the subbundle *W* an *extended solution* as well.

- In face of this connection between harmonic maps and families of shift-invariant subspaces, we intend to make use of operator-theoretic methods in order to deduce new results about harmonic maps.
- We shall focus on two major aspects: finite uniton number and symmetry.

We say that the harmonic map $\varphi: M \to U(n)$ has *finite uniton number* if it admits an extended solution Φ of the form

$$\Phi(\lambda,z) = \sum_{k=-r}^{s} C_k(z) \lambda^k, \quad C_k : M o \mathfrak{gl}(n,\mathbb{C}) ext{ smooth}.$$

Theorem (K. Uhlenbeck 1989)

Any harmonic map $\varphi: S^2 \to U(n)$ has finite uniton number.

Harmonic maps of finite uniton number

The standard factorization theory of matrix-valued functions on S¹ shows that such functions Φ are essentially polynomial Blaschke-Potapov products depending on z ∈ M. More precisely, there exist subbundles {α_i}^m_{i=1} of M × Cⁿ such that

$$\Phi = \prod_{j=1}^m (\pi_{lpha_j} + \lambda \pi_{lpha_j}^\perp).$$

 For n > 1, the factors are not necessarily unique. However, the factors can be chosen such that, for k ≤ m, the partial products

$$\Phi_k := \prod_{j=1}^k (\pi_{lpha_j} + \lambda \pi_{lpha_j}^\perp)$$

are extended solutions as well.

Let $\varphi: M \to U(n)$ be harmonic with extended solution $W = \Phi \mathcal{H}_+$. Consider the operator T, acting on smooth sections of $\underline{\mathcal{H}_+} := M \times \mathcal{H}_+$, defined by

$$T = -\lambda^{-1} A_z^{\varphi} + D_z^{\varphi},$$

where $A_z^{\varphi} = \frac{1}{2} \varphi^{-1} \varphi_z$ and $D_z^{\varphi} = \partial_z + A_z^{\varphi}$.

Remark

- The 1-form $D_z^{\varphi} dz + D_{\overline{z}}^{\varphi} d\overline{z}$ may be interpreted as a unitary connection giving a covariant derivative on the trivial bundle $\underline{\mathbb{C}^n} := M \times \mathbb{C}^n$.
- **2** The harmonic equation is equivalent to $D_{\overline{z}}^{\varphi} A_{z}^{\varphi} = A_{z}^{\varphi} D_{\overline{z}}^{\varphi}$, which means that A_{z}^{φ} is a holomorphic endomorphism of $\underline{\mathbb{C}}^{n}$ w.r.t. $D_{\overline{z}}^{\varphi}$.

New criterion for finite uniton number

Consider also the *i*-th osculating bundle of $W = \Phi \mathcal{H}_+$:

. . .

$$W_{(i)} = \partial_z^i W + \partial_z^{i-1} W + \ldots + \partial_z W + W.$$

We have:

$$W_{(1)} = \Phi T(\underline{\mathcal{H}_{+}}) + W$$
$$W_{(2)} = \Phi T^{2}(\underline{\mathcal{H}_{+}}) + W_{(1)}$$
$$W_{(3)} = \Phi T^{3}(\underline{\mathcal{H}_{+}}) + W_{(2)}$$

Remark

The harmonicity of φ implies that each $W_{(i)}$ can be extended to a smooth subbundle of $M \times L^2(S^1, \mathbb{C}^n)$ by filling out zeros.

Rui Pacheco (CMA-UBI)

September 2018 15 / 29

Theorem

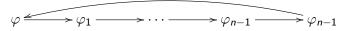
Let $W = \Phi \mathcal{H}_+$ be an extended solution associated to $\varphi : M \to U(n)$. Then the following are equivalent:

- (i) φ is of finite uniton number;
- (ii) there exists a smooth map $\hat{\Phi} : S^1 \to U(n)$ (independent of $z \in M$) such that $W \subset \hat{\Phi}\mathcal{H}_+$;
- (iii) the Gauss sequence of W stabilizes, i.e., there exists $i \ge 0$ such that $W_{(i+1)} = W_{(i)}$;
- (iv) if $T = -\lambda^{-1}A_z^{\varphi} + D_z^{\varphi}$, then the maximum power of λ^{-1} in T^r stays bounded when $r \in \mathbb{N}$, i.e., there exists $k_0 \in \mathbb{N}$ such that

$$\int_0^{2\pi} e^{ikt} T^r(e^{it}) u dt = 0, \quad k \ge k_0, \ u \in C^\infty(M, \mathbb{C}^n), \ r \in \mathbb{N}.$$

New criterion for finite uniton number. Example

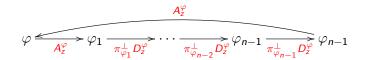
Let $\varphi: M \to \mathbb{C}P^n \hookrightarrow U(n)$ be a superconformal harmonic map:



Consider again $T = -\lambda^{-1}A_z^{\varphi} + D_z^{\varphi}$. A short calculation shows that

$$egin{aligned} &A_z^arphi(s)\,=\,-\pi_arphi^ot\partial_z s & ext{and} &D_z^arphi(s)\,=\,\pi_arphi\partial_z s &s\in\Gamma(arphi),\ &A_z^arphi(s)\,=\,-\pi_arphi\partial_z s & ext{and} &D_z^arphi(s)\,=\,\pi_arphi^ot\partial_z s, &s\in\Gamma(arphi^ot). \end{aligned}$$

Hence



and the maximum power of λ^{-1} in T^{jn} is 2j.

Rui Pacheco (CMA-UBI)

Corollary

A superconformal harmonic map $\varphi : M \to \mathbb{C}P^{n-1}$ is never of finite uniton number.

In particular, the Clifford torus

$$\mathbb{C}
i z = x + iy \mapsto (1/\sqrt{2})(\cos 2x, \sin 2x, \cos 2y, \sin 2y) \in S^3.$$

is not of finite uniton number $(S^3 \to \mathbb{R}P^4 \hookrightarrow \mathbb{C}P^4)$.

Definition

For an integer $k \ge 2$, a shift-invariant subspace W of $L^2(S^1, \mathbb{C}^n)$ is said to be *k*-symmetric if it is invariant with respect to the unitary operator

$$\hat{\omega}: L^2(S^1, \mathbb{C}^n) \to L^2(S^1, \mathbb{C}^n)$$

defined by

$$\hat{\omega}(f)(\lambda) = f(\omega\lambda),$$

where ω is the primitive *k*-th root of unity.

Spectral theorem for $\hat{\omega}|W$:

Theorem

Let W be a k-symmetric shift-invariant subspace and, for $0 \le j \le k - 1$, set

$$W_j = \{f \in W : \hat{\omega}(f) = \omega^j f\}.$$

We have:

k-symmetric shift-invariant subspaces

Proposition

Let W be a k-symmetric shift-invariant subspace such that $W = \Phi \mathcal{H}_+$ with $\Phi \ U(n)$ -valued a.e. on S^1 . Then:

- (i) There exists $\varphi_k \in U(n)$ with $\varphi_k^k = I$ such that $\Phi(\omega\lambda) = \Phi(\lambda)\varphi_k$.
- (ii) If $\beta_j = \ker(\varphi_k \omega^j I)$, and π_j denotes the orthogonal projection from \mathbb{C}^n onto β_j , then

$$\Phi_k(\lambda) = \Phi(\lambda) \sum_{j=0}^{k-1} \pi_j \lambda^{-j},$$

is a function of λ^k . Set $\Psi(\lambda) = \Phi_k(\lambda^{\frac{1}{k}})$. (iii) For $0 \le j \le k - 1$ and $\alpha_j = \bigoplus_{l=0}^j \beta_l$,

$$V_j = \Psi(\pi_{lpha_j} + \lambda \pi_{lpha_j}^{\perp})\mathcal{H}_+ \qquad W = \Psi(\lambda^k) \sum_{j=0}^{k-1} \pi_j \lambda^j \mathcal{H}_+.$$

We assume throughout that

$$W(z) = \Phi(\cdot, z)\mathcal{H}_+,$$

is k-symmetric for all $z \in M$, with $\Phi : S^1 \times M \to U(n)$ smooth and $\Phi(1, \cdot) = I$. With the same notations as before, we have

Proposition

The following are equivalent:

- (i) W is an extended solution,
- (ii) $V_0 \subseteq V_1 \subseteq \ldots \subseteq V_{k-1}$ is a λ -cyclic superhorizontal sequence, that is, $V_j, \ 0 \leq j \leq k-1$ are extended solutions,

$$\partial_z V_j \subseteq V_{j+1}, \ 0 \leq j < k-1$$
, and $\lambda \partial_z V_{k-1} \subseteq V_0$.

k-symmetric extended solutions

$$\Phi = \Psi(\lambda^k) \sum_{j=0}^{k-1} \pi_j \lambda^j.$$

Proposition

Let $\Psi : S^1 \times M \to U(n)$ be an extended solution with $\Psi(1, \cdot) = I$, let $\psi = \Psi(-1, \cdot)$, and $A_z^{\psi} = \frac{1}{2}\psi^{-1}\partial_z\psi$. If $\alpha_0 \subseteq \ldots \subseteq \alpha_{k-2}$ are smooth subbundles of the trivial bundle $M \times \mathbb{C}^n$, then Φ , with $\beta_j = \alpha_j \cap \alpha_{j-1}^{\perp}$, is an extended solution if and only if the following conditions hold:

(i) For
$$0 \le j < k - 2$$
 we have $\partial_z \alpha_j \subseteq \alpha_{j+1}$,
(ii) $\alpha_{k-2} \subseteq \ker A_z^{\psi}$ and $\operatorname{Im} A_z^{\psi} \subseteq \alpha_0$,
(iii) For $0 \le j \le k - 2$ we have $A_z^{\psi} = \partial_z \pi_{\alpha_j}$ on α_j^{\perp} .

Primitive harmonic maps

• Given positive integers r_0, \ldots, r_{k-1} with $r_0 + \ldots + r_{k-1} = n$, let $F = F_{r_0, \ldots, r_{k-1}}$ be the flag manifold of ordered sets

$$(A_0,\ldots,A_{k-1})$$

of complex vector subspaces of \mathbb{C}^n , with $\mathbb{C}^n = \bigoplus_{i=0}^{k-1} A_i$ and dim $A_i = r_i$.

• As a homogeneous space

$$F = U(n)/U(r_0) \times \ldots \times U(r_{k-1}).$$

• Fix a point $x_0 = (A_0, \dots, A_{k-1}) \in F$ and set

$$s(\omega) = \sum_{i=0}^{k-1} \omega^i \pi_{A_i} \in \mathsf{U}(n).$$

Consider the inner automorphism τ of $\mathfrak{u}(n)$ defined by

$$\tau = s(\omega)^{-1} X s(\omega) \qquad (\tau^k = I).$$

• The automorphism τ induces an eigenspace decomposition $\mathfrak{gl}(\mathbb{C}^n) = \sum_{i \in \mathbb{Z}_k} \mathfrak{g}^i$, where

$$\mathfrak{g}^i = \sum_{j \in \mathbb{Z}_k} \operatorname{Hom}(A_j, A_{j-i})$$

is the ω^i -eigenspace of τ .

- The fixed-set subgroup U(n)^τ is precisely the isotropy group at x₀.
 Hence, F has a canonical structure of k-symmetric space.
- F can be embedded in U(n) as a connected component of ^k√I via the Cartan embedding ι : F → ^k√I ⊂ U(n) defined by ι(gx₀) = gs(ω)g⁻¹.

• Use the Maurer-Cartan form of F to identify

$$T^{\mathbb{C}}F\cong \sum_{i
eq 0} [\mathfrak{g}^i], \qquad [\mathfrak{g}^i]_{g imes_0}=g\mathfrak{g}^ig^{-1}.$$

We say that $\varphi: M \to F$ is primitive if $\frac{\partial \varphi}{\partial z}$ is a section of $\varphi^*[\mathfrak{g}^{-1}]$.

$$\varphi(z) = (A_0(z), A_1(z), A_2(z), A_3(z)) \qquad \frac{\partial \varphi}{\partial z} = \begin{pmatrix} 0 & 0 & 0 & * \\ * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \end{pmatrix}$$

- If k ≥ 3, then any primitive map φ : M → F is harmonic with respect to the metric on F induced by the Killing form of u(n) (as a matter of fact, φ is harmonic with respect to all invariant metrics on F for which g⁻¹ is isotropic).
- For k = 2, all smooth maps into F are primitive.
- By primitive harmonic map into F we mean a primitive map if k ≥ 3 and a harmonic map if k = 2.

27 / 29

Primitive harmonic maps

Let $W = \Phi \mathcal{H}_+$ be a k-symmetric extended solution. Evaluating

$$\Phi = \Psi(\lambda^k) \sum_{j=0}^{k-1} \pi_j \lambda^j.$$

at $\lambda = \omega$, we obtain the map

$$\Phi(\omega) = \sum_{j=0}^{k-1} \pi_j \omega^j,$$

which can be identified via Cartan embedding with the map

$$\varphi = (\beta_0, \beta_1, \ldots, \beta_{k-2}, \beta_{k-1}) : M \to F_{r_0, r_1, \ldots, r_{k-1}},$$

where $r_0 = \dim \beta_0, r_1 = \dim \beta_1, \dots, r_{k-1} = \dim \beta_{k-1}$.

φ is a primitive harmonic map.

Rui Pacheco (CMA-UBI)

- Let ψ : M → CP³ → U(4) be a full holomorphic map and π_ψ be the orthogonal projection onto ψ.
- The corresponding extended solution is $\Psi(\lambda) = \pi_{\psi} + \lambda \pi_{\psi}^{\perp}$ and we have $(A_z^{\psi})^2 = 0$.
- Set $\alpha_0 = G^{(1)}(\psi)$ and $\alpha_1 = G^{(1)}(\psi) \oplus G^{(2)}(\psi)$. These subbundles satisfy the conditions of Proposition 3. Then

$$W = (\pi_{\psi} + \lambda^3 \pi_{\psi}^{\perp})(\mathcal{G}^{(1)}(\psi) + \lambda(\mathcal{G}^{(1)}(\psi) \oplus \mathcal{G}^{(2)}(\psi)) + \lambda^2 \mathcal{H}_+).$$

• The corresponding primitive harmonic map is

$$\varphi: M \to F_{1,1,2}, \qquad \varphi = \big(\mathcal{G}^{(1)}(\psi), \mathcal{G}^{(2)}(\psi), \psi \oplus \mathcal{G}^{(3)}(\psi) \big).$$